Chapter II1
Forking

In this chapter we introduce the concept of a stable theory and expound
Shelah’s notion of forking. We will show that in a stable theory nonforking
obeys the axioms described in Chapter II. One intuition behind this notion
is that if t(a@; B) is not free over A then @ must satisfy more relations over
B than it does over A. Each of e,ev?,and el/? realize the same type over
Q, the field of rational numbers, namely the type p of a transcendental
element. Both p; = t(eV?; QU {e}) and p, = t(e/2;Q U {e}) extend p, but
p1 is clearly a more generic or freer extension than p,. We will give an
account of the distinction between p; and po which applies to any stable
theory. A first approximation, ‘¢!/? is in the algebraic closure of e while
eV? is not,” works in a few cases. Thinking of the theory of algebraically
closed fields of characteristic zero as a prototypical w-stable theory, one
can notice that the Morley rank of p; equals the Morley rank of p while
the Morley rank of p; is less than that of p. This version will apply to any
w-stable theory. The extension to arbitrary stable theories requires some
effort.

The most naive statement of the leitmotif of stability theory reads, ‘many
types implies many models; few types implies few models.” To make this
notion precise we must specify what is meant by ‘many types’ and we
must refine the phrase ‘few models.” The appropriate rendering of ‘few
models’ is ‘admits a structure theory’, and more specifically in this chapter,
‘admits a freeness relation satisfying the axioms described in Chapter II.’
We show in this chapter that a theory which has few types admits a freeness
relation satisfying our axioms. We show this by introducing the notion of
‘definability of types’ and showing that if a theory has few types then
every type is definable. From this we derive the existence of an appropriate
freeness relation.

Thus in Section III.1 we show the equivalence of the two main charac-
terizations of a stable theory.

i) There are few types, in the sense made precise in Section III.1.
ii) Every type is definable.

Thereafter, we develop the positive structure theory for stable theories
solely from this definability property without further recourse to the num-
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ber of types. We outlined in Section 1.5 the proof that ‘many types’ implies
there are ‘many models.’

From one standpoint, a freeness relation can be seen as a means of pick-
ing out certain distinguished extensions of a type. That is, when C C B, the
property, ‘t(a; B) FC’ distinguishes ¢(@; B) among the extensions of ¢(a; C).
We restrict ourselves in Section III.2 to searching for such a distinguished
extension when C is the universe of a model. We note that the definable
extension of a type provides such an extension and then investigate sev-
eral characterizations of this extension. We establish the symmetry lemma
for types over models, an important precursor of the exchange lemma.
One important tool for these investigations is the fundamental order of
Lascar-Poizat; another is the notion of a strongly saturated model. We
conclude Section III.2 by combining these two ideas to provide a charac-
terization of conjugate types.

In Section II1.3 we show that if T is stable we can define a notion of
independence satisfying the axioms of Section II.1. We relate this notion,
nonforking, to the fundamental order and show that all nonforking exten-
sions of a complete type over A to the monster model M are conjugate
over A. We return to the ‘distinguished extension’ theme and show that
the nonforking extensions (to a global type) of a type p € S(A) are exactly
those which have few conjugates over A.

In Section III.4 we investigate the effect of those axioms which are true,
but trivial, in the vector space case and so had not been singled out: the
finite character of freeness and the existence of stationary types. We connect
these axioms with the function which computes the number of types over
a set of power k. This leads to the division of stable theories into three
classes, depending on the values of this function for the theory. We provide
a number of examples of theories in the various classes and compute the
spectrum of saturation of a stable theory. Section IIL.5 is devoted to a
survey of algebraic examples illustrating the material in this chapter. We
explain the meaning of forking in the context of modules and discuss various
definable chain conditions in algebra.

1. Stable Theories: ¢-Types, Rank, and Definability

In [Shelah 1971], Shelah took the crucial step for the development of stabil-
ity theory. He specialized Morley’s discussion of complete types to a study
of types which consist of instances of a single formula or its negation. This
localization distinguishes stable from w-stable theories. For, the concept of
a stable theory is defined by a condition on instances of single formulas. It
is important to deal with instances of one formula in order to make some
crucial compactness arguments.

In this section we lay the basis for our study. We show the notion of a
stable theory can be defined by a definability criterion, by conditions on
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the cardinalities of Stone spaces, or by the existence of local rank functions.

The basic intuition is a familiar one. If there are few possibilities for
a given phenomenon then each possibility is definable. Beth’s Theorem
[Chang & Keisler 1973] is a prototype for such results and, in fact, the key
Theorem 1.22 of this section can be proved using Beth’s theorem [Lascar
& Poizat 1979]. However, we will follow here the original route of Shelah
and introduce rank as the tool used to find the definition of a ¢-type over
a set A.

Recall the following convention.

1.1 Separation of Variables. When we write the formula ¢ in the form
¢(Z;7), this indicates that Z should be regarded as a sequence of free vari-
ables in the usual way, but 7 is a placeholder for a sequence of parameters.
Thus, in forming ¢(ZT;7)-types over A as in the following definition, we
know from the expression ¢(Z;7) that we are defining a subset of S™(A)
(where n = 1g(Z)) and that sequences from A will be substituted for 7.

1.2 Definition. Let ¢(Z;7) be a formula. A ¢-type over A is a consistent
set of formulas, each formula having the form ¢(Z;a) or —¢(Z; @), where @
is a 1g(y)-sequence from A. The ¢-type p is a complete @-type if for each
1g(y) sequence @ from A, either ¢(Z;a) or —¢(Z; @) is in p. We denote by
Sy(A) the set of all complete ¢-types over A. If p € S(A) we write py for
the restriction of p to instances of ¢ and —¢.

For any set of formulas A = {¢;(Z;7) : ¢ € I} we define a A-type over
A to be a consistent collection of A-instances of formulas in A or their
negations. In the natural sense we may say an arbitrary type p is complete
for ¢ if py is a complete ¢-type.

The notion of a A-type is fundamental for stability theory. As will be
seen through this book, much of the material about stable theories can be
seen as localizing results about types in w-stable theories to results about
A-types for arbitrary finite sets of formulas A. Shelah in [Shelah 1978] and
earlier [Shelah 1971] shows how to code A-types for a finite A as 1-types
for a single formula 1. The idea is to consider the conjunction of formulas
of the form (z; = bp — ¢i(T;7)) A (2; = b1 — —¢i(T; 7)) where the z; are a
collection of new variables and by, b; are a pair of points used as indicators.

1.3 Exercise. Show that for any set A with |A| > 2 and any finite set A
of formulas there is a single formula % such that each A-type over A is
equivalent to a ¥-type.

1.4 Exercise. Show that if A is subset of a model of any theory with
2 < |A| < w then for each ¢, |S4(A4)| < w.

The following definition provides a technical framework for discussing
freeness of types.

1.5 Definition. (Fig. 1). Let p be a type and let k be a cardinal. Then
T, (¢, k) is the following set of sentences in the language obtained by adding
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to L additional constant symbols @,,7 € 2¢ and ¢,, s € 2<*.
Ty(¢, k) = {p(@) : 7 € 2°} U{(@r; ;)" 11 < &}

Here p(@,) denotes {¢(a,): % € p} and ¢"(*) denotes ¢ or ¢ depending
on whether 7(¢) is 0 or 1.

The collection I'y(¢, k) is consistent just if there is a complete binary
tree of height k of extensions of p by instances of ¢ such that each path
is consistent but the paths are pairwise contradictory. Note we can easily
extend our definition to I'(y(¢, k) by letting () denote the empty type.
The following diagram illustrates the definition of I'y(#, ). The @, in the
definition correspond to paths through the tree; the ¢; correspond to nodes.

1.6 Theorem. I'y(¢,n) is consistent for arbitrarily large finite n if and
only if T'p(¢, k) 1s consistent for all k.

Proof. The result is immediate by compactness noting that the consistency
of an arbitrary n-element subset of I'y(¢, k) is implied by the consistency
of I'p(o,n).

The key to this argument is the fact that all the nodes on the tree, except
the base, are instances of ¢ or —¢.

We now show that if for some infinite A, |Sy(A)| > |A| then there is
such an A of each infinite cardinality. The proof has two stages. The first is
a variant on the proof that a closed uncountable set of reals has a perfect
subset. While in that proof we choose a pair of disjoint open subsets which
are each uncountable, here we show there is a single formula ¢(Z;a) such
that both ¢ and —¢ are elements of more than |A| distinct ¢-types. Then,
as completeness of the reals allows us to construct the perfect set, the
compactness theorem allows us to find arbitrarily large A satisfying the
condition.

1.7 Lemma. Suppose that for some A and ¢, |Sy(A)| > |A| =k > w. Then
for each infinite cardinal X there exists a B with |B| =X, |Sy(B)| > A and,
a fortiori, |S(B)| > .
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Proof. Note first that for some @ € A both X (@) = {p € Sy(A) : ¢(%;a) € p}
and Y (a) = {p € S4(A) : ~¢(Z; @) € p} have more than « elements. If not,
S4(A) = Uzea Z(a@) U {q} where Z(a) is whichever of X (@), Y (a) has < x
elements, while ¢ is the unique complete ¢-type such that ¢(Z;a) € ¢ if and
only if | X (@)| > k. But then |Sy(A)| < k. Relativizing this argument to X (@)
and Y (@) and proceeding by induction, we see I'( y(¢, Ro) is consistent. Fix
A and let u be the least cardinal with 2¥ > ). Then, by compactness,
T'(y(¢, u) is consistent. Let B be a set of interpretations for {¢, : s € 2<#};
we have the lemma. For, 2<# has at most A nodes while 2* has more than
A

The preceding argument of Shelah localized to a single formula the fol-
lowing seminal result of Morley.

1.8 Exercise. Let T be a countable theory. Show that if for some infinite
A there is a set B with |B| = A and |S(B)| > A, then there is a countable
set A with |S(A)| > Ro. In fact, |S(A)| = 2%e.

We can now relate the cardinalities of S(A) and Sy(A).

1.9 Theorem. Let T be an arbitrary complete first order theory. The fol-
lowing are equivalent:

i) For every A, |S(A)| < |A|'T!.

ii) For every A, if |A|IT! = |A| then |S(A)| < |A].
iii) For every countable A and each ¢, |S4(A)| < Ro.
iv) For every infinite A and every ¢, |Ss(A)| < |A|.

Proof. Clearly, i) implies ii). By Lemma 1.7, ii) implies iii) and iii) implies
iv). As S(A) can be embedded into the Cartesian product of the S,(A) for
¢ € F(0) by mapping p to (ps : ¢ € F(0)), iv) implies i).

We now introduce a notion of local rank. While the entire subject of sta-
bility theory can be erected on the basis of this notion, we use it primarily
as a tool to obtain the definability of types in this section and use defin-
ability as our basic notion. Our axioms for independence guide the choice
of properties derived from the definability of all types in a stable theory.
The relation between the formulation here and the various rank notions is
explained in Chapter VII.

1.10 Definition. Let p be a type over A. The ¢-rank of p is defined by
induction as follows.

e R(p,¢) > 0 for all p.

e R(p,¢) > 6 if R(p,$) > o for all @ < 6§ when § is a limit ordinal.

e R(p,¢) > B+ 1 just if for each finite ¢ C p there is a sequence @ € M
such that:

R(qu{¢(z;a)},¢) 2 B and R(qU {~¢(Z;a)},¢) 2 0.

e R(p,¢) =aif R(p,$) > a but R(p,¢) 2 o+ 1.
e R(p,¢) = o if R(p, ) > o for every ordinal a.
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1.11 Exercise. Show that for n < w, R(p, ¢) > n iff I'y(¢, n) is consistent.
1.12 Exercise. For every p and ¢, R(p,¢$) < w or R(p,¢) = oo.

1.13 Exercise. For every formula ¢

i) f pCq, R(p,¢) > R(q, ¢).
ii) For every p, there is a finite subtype py C p with the same rank.

These results are immediate from the definition. The following fundamental
result is only slightly harder to prove.

1.14 Proposition. Fiz a formula ¢. If for each countable A,|S4(A)] < Ro
then for every p, R(p, ¢) < w.

Proof. By Exercise 1.11 unless R(p, ¢) is bounded below w, each I'p(¢, n) is
consistent; so to, by Theorem 1.6, is ', (¢, o). But if A = {¢,:s € 2<Ne},
|A] = Ro while |S;(A)| = 2%o.

We come now to the critical notion of a definable type. We shall see that
stable theories can be characterized by the definability of every type. More-
over, we will construct our freeness relation by generalizing the intuition
that definable extensions of types are free.

1.15 Definition. Let p(Z) be an n-type over A. Let d be a map from for-
mulas ¢(Z;y) into formulas d¢(y) with parameters from B. Then d defines
p over B if for each formula ¢(Z;7) and each @ € A:

#(Z; @) € p implies = d¢(a) and —¢(T;a) € p implies = ~do(a).

Note that if p is complete we can simplify this definition to ¢(Z;a) € p
if and only if = d¢(@). In Corollary 1.23 and Lemma 1.26 we clarify the
dependence of d on both p and ¢ and show that for A a model d is a
Boolean homomorphism.

1.16 Exercise. Let M be a model of the theory of an equivalence relation
with infinitely many infinite classes. Find a definition over M for each
1-type in S(M).

1.17 Exercise. Show that if {¢(z,a@)} |- p then p is definable over a@.

1.18 Exercise. Using the quantifier elimination results for modules dis-
cussed in Chapter I, verify that every 1-type, p, over an Abelian group A
is definable as follows. Let p = t(c; A). Every formula ¢(z;%) is equivalent
to a Boolean combination of formulas of the forms: n|(kz + y) or kz = y.
(Check that the replacement of 7 by y is legitimate.) In the first case, if for
some a € A, n|jkc + a let dp be n|y — a; otherwise, let d¢ be y # y. In the
second case, if for some a € A, kc = a, let d¢ be y = a; otherwise, let d¢

bey #y.

The following exercise uses the same trick explained before Exercise 1.3
to code information about a finite set of formulas in terms of one formula.
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1.19 Exercise. Show that for any set A with |A| > 2 and any n formulas
#0(Z;9), ..., dn—1(%; J) there is a formula ¥*(Z; 7y, Z) such that for any Y, if
a x-type p is definable by one of the ¢;, then it is definable by an instance
of ¥*.

Now we can define the fundamental concept of this book.

1.20 Definition. The theory T is stable if for every A C M and every
p € S(A), p is definable over A.

In accordance with our convention this means that for some unspecified
n, every n-type is definable. After we relate the definability of n-types to
the cardinality of S™(A), we will note (Exercise 1.36) that this condition
holds for one n if and only if it holds for all n. In the meantime we do not
hesitate, as in the next exercise, to verify that a theory is stable by showing
only that all its 1-types are definable.

1.21 Exercise. Deduce from Exercise 1.18 that for any Abelian group A,
Th(A) is stable.

Using the rank machinery we can immediately link the definability re-
quirement with conditions on the cardinality of Stone space

1.22 Theorem. The theory T 1s stable if and only if for each formula ¢
and for each set A, |Sy(A)| < sup (|A4|,|T)).

Proof. Clearly if T is stable the number of complete ¢-types over A is
bounded by the number of definitions over A. So, for each A, |S,(A4)| < |A|.
If |S4(A)| < |A| for all A and ¢, then, by Theorem 1.9 and Proposition 1.14,
for every p € S(A), R(p, ¢) is finite. Fix p with, say, R(p, ¢) = n. Choose
by Proposition 1.13 a finite subset po of p so that R(p,#) = R(po, ).
Note that ¢(Z;@) € p if and only if R(po U {¢(Z;a)},4) = n. That is,
#(7;a) is in p if and only if Ty u(¢(z:a)}(#,n) is consistent. The consis-
tency of I'p u4(z:a)} (¢, 1) can be expressed by a single first order formula
d¢(7) whose parameters are those occurring in pg. That is, |= d¢(@) just if
Tpouié(za)} (9, n) is consistent.

We now explore several ways to uniformize the definability of types in
a stable theory. The difference between Corollary 1.23 and Lemma 1.24 is
clarified by the proof of Theorem 2.23. First we show that we can ‘define’
the collection of parameters which may serve to define p.

1.23 Corollary (Harnik). If T is stable, for every formula ¢(Z;7y) and
each p € S(A) there ezist L-formulas 6(Z;Z) and x(¥;Z) such that:

i) For some @ € A, 0(%;0) € p. _ _
ii) For every @,b € A, if 0(%;a) € p then [¢(Z;b) € p iff = x(b;@)].

Proof. We use the notation from the proof of the last theorem. Let 6 (Z;Z)
be the result of replacing the parameters in the conjunction of py by the
variables Z, let 0(Z; Z) be 0o(Z; Z) A (A To,(z:z) (6, n)) and let x(7;Z) express
the consistency of T'(gz;3) u{¢(z7)} (9 1)-
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Note that both § and x depend on p as well as ¢. Yet our notation in
Definition 1.15 indicates that d depends only on ¢ even though a formula
d¢ which satisfied the definition could depend on both ¢ and p. We now
show that we can choose a formula dé(7;Z) (depending only on ¢) and
express the dependence on p by the choice of the parameter substituted for

Z.
Technically, the following lemma only holds when any A under consid-
eration has cardinality at least two. Since this is the only interesting case

and can always be easily arranged we suppress that hypothesis to ease
readability.

1.24 Lemma. If for each A, every p € S(A) s definable over A then there
s a map d taking formula ¢(Z;y) to formulas do(Y;Z) such that for each
A and each p € S(A) there is a sequence Gy p € A such that dp(7;aypp)
defines p.

Proof. If not, there is a formula ¢, such that for each formula v (¥;%) there
is a set A, and a type p € S(A) such that for each @ € A, ¥(7;a@) does not
define py. Add to L a new unary predicate R and a new constant ¢. Now
the following set of sentences is consistent.

{(v2)(R(z) — ((F)(R@) A ~[6(c;9) < $(@:2)]) : ¥(¥;2) € L}.

But, if B is the interpretation of R in a model of these sentences then
t(c; B) is not definable over B, contrary to the stability of T.

The argument for Lemma 1.24 seems rather nonconstructive. Note, how-
ever, that by the completeness theorem the function d is recursive (in T').
Moreover, the most natural candidate for a constructive proof of the theo-
rem fails. That is, we would like to argue that there is some uniform choice
of the type po which arises in the proof of Theorem 1.22. We couldn’t
hope to fix the type pg but since it is a conjunction of instances of ¢ and
instances of —¢, we might hope to fix the number of each. The following
example shows that life is not that simple.

1.25 Exercise. If p is a finite ¢-type, let |p| = (n, k) assert that p contains
n instances of ¢ and k instances of ~¢. Show that there is a stable theory
and a formula ¢ such that for infinitely many distinct (n, k) there exist an
A and a p € S(A) such that if pg is the least (where |p| is ordered by the
sum of n and k) subtype of p with R(p,¢) = R(po, ¢), then |po| = (n, k).
(Hint: Consider the theory of an equivalence relation with arbitrarily large
finite classes.)

We will rely on the following easy but important fact about the map d
which defines a type p.

1.26 Lemma. Let T be stable. For any model M and €, the map d which
defines t(c; M) is a Boolean homomorphism from F(T) into F(M).

1.27 Exercise. Prove Lemma 1.26; give an example showing the necessity
to assume that we work over a model M rather than an arbitrary set A.
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The following definition provides an alternative view of definability. The
duality between the roles of parameters and the sets they pick out which is
exploited in the next few results recurs in the symmetry lemma in Section 3.

1.28 Definition. We say N is a conservative extension of M and write
M <. N if for every formula ¢(Z;y) and every # € N, there is a formula
¢*(%;Z) and an @ € M such that ¢(N,n) N M = ¢* (M, m).

1.29 Exercise. Show that if M < N are models of Th(Z,S) then N is a
conservative extension of M.

1.30 Exercise. Show that as models of the theory of dense linear order
without endpoints the reals are not a conservative extension of the ratio-
nals.

1.31 Lemma. Let N be an elementary extension of M. Then N is a con-
servative elementary extension if and only if every type over M which is
realized in N 13 definable over M.

Proof. Suppose M is an elementary submodel of N and for each @ € N,
t(@; M) is definable over M. Then for any formula ¢(Z;7),
{meM:NEo¢(mm)}={meM:¢T;m)etnM)}
={meM:M =dp(m)}.

Similarly, if N is a conservative extension of M,
{m: 9(@im) € t{m; M)} = {m: N = g(im)}
={m:M |= ¢*(m)}
s0 we can use ¢* as d¢ to define t(7; M).

We can now easily prove the following proposition.

1.32 Proposition. Suppose for every pair, M, N, of models of T, M < N
implies M <. N. Then T 1is stable.

1.33 Exercise. Prove Proposition 1.32.

1.34 Exercise. Show Th(Z,S) is stable. Show Th(Q, <) and Th(Z, <) are
not.

The following theorem summarizes this section.

1.35 Theorem. The theory T is stable iff it satisfies any of the following
equivalent conditions.

i) For every A, |S(A)| < |A|T.
ii) For every A, if |A|'T! = |A| then |S(A)| < |A|
iii) For every A, if |A| = Ro then for each ¢, |Sy(A)| < Ro.
iv) For every A and every ¢ |Sg(A)| < |A].
v) For every ¢ and p, R(p, ¢) < oo.
vi) Every elementary extension of a model of T is a conservative ele-
mentary extension.
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The following exercise and condition ii) of Theorem 1.35 justify our
failure to distinguish the various S™(A) when defining stability.

1.36 Exercise. Show that for each A with |4] < A, |S(A)| < X if and
only if for each A with |A| < X and each n < w, |S™(A)| < A. (It is essential
that we quantify over A on both sides of the equivalence.)

1.37 Historical Notes. Morley began the investigation of cardinalities
of families of Stone spaces S(A) for A contained in a model of a count-
able complete theory T in [Morley 1965]. Ressayre [Ressayre 1969] and
Rowbottom [Rowbottom 1964] extended this analysis to uncountable the-
ories while working on the generalized Los conjecture: if T is categorical
in some A > |T| then T is categorical in all powers greater than T..She-
lah ([Shelah 1969a], [Shelah 1971]) discovered the importance of consid-
ering the restriction to instances of a single formula. Most of the results
in this section come from those two papers. In particular, the definabil-
ity lemma was first proved by Shelah [Shelah 1971]. A weaker version (for
w-stable T) was proved by Baldwin [Baldwin 1971] at about the same
time. This formulation was applied directly in [Baldwin 1975] and, with
more effect, in Lascar [Lascar 1973]. The definition of stability in terms of
conservative extensions was first made explicitly in [Baldwin 1975]. It was
suggested by analogy with the role of conservative extensions of models
of Peano arithmetic. This analogy deserves further examination [Kirby &
Pillay 1986]. The significance of varying Theorem 1.22 to obtain Corol-
lary 1.23, by uniformizing the defining formula, was discovered by Harnik
in 1980. Various applications of the strengthened form appear in [Harnik
& Harrington 1984] and later in this book. In [Shelah 1974], Shelah pro-
vides another argument for Theorem 1.22 in the guise of a generalization of
the Chang-Makkai Theorem. The examples of two ‘obviously’ independent
transcendental numbers given in the first paragraph of this section require
some acquaintance with number theory. (One cannot simply choose an ap-
parently random pair of transcendental numbers. It is unknown whether e
and 7 are algebraically independent or whether e + 7 is rational; or even
whether e and e™ are algebraically independent.) The example given follows
from the Lindenbaum-Weierstrass theorem: If b4, ..., b, are algebraic num-
bers which are linearly independent over the rationals then e, ..., e are
algebraically independent. Siegel [Siegel 1949] contains a clear introduction
to this material.

2. Types Over Models

In this section we begin the proof that a freeness relation satisfying the
axioms of Chapter II can be defined in any stable theory. We investigate
the distinguished (i.e. definable) extensions of types over models. In the
process, we consider the relation between definability and Poizat’s funda-
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mental order. We also introduce the notion of a strongly saturated model
and prove an initial version of the exchange lemma. This chapter provides
the groundwork for the extension to types over arbitrary sets in Section 3.
For the remainder of this chapter the theory T is tacitly assumed to be
stable.

We begin by noticing that if p € S(B) is definable over A, this definition
induces a (possibly inconsistent) set of formulas over any set.

2.1 Definition. Let p be in S(A) and B be arbitrary. If p is defined by
d, the d-eztension of p on B, denoted d(p, B), is the collection of formulas
#(Z; b) with parameters from B which satisfy: ¢(Z;b) € d(p, B) iff = dé(b).

We use the term d-extension because usually A will be a subset of B.
The map d encodes all the information from p so we sometimes write just
d(B) for d(p, B). This observation leads to the following definition.

2.2 Definition. i) A preschema over A is any map d taking formulas
o(Z;Y) € F(0) to formulas do(y) € F(A).
ii) A good schema is a preschema which is also a Boolean algebra ho-
momorphism.
Recall from Lemma 1.26 that if d defines p € S(M) then d is a good
schema. Lascar [Lascar 1976] has an intermediate notion of schema.

2.3 Exercise. Let p be a type over a model M. Suppose d and d’ are
definitions of p. Show that for each formula ¢(Z;7), = d¢(y) < d'¢(7).

2.4 Exercise. Show Exercise 2.3 fails if M is replaced by an arbitrary
subset A.

2.5 Exercise. Give an example of p € S(A) such that d(p, B) is not a
(consistent) type for some B containing A.

In general, the d-extension of p € S(A) to a set may not even be consis-
tent. However, if p is definable over a model, it is. We have the following
slightly more general result.

2.6 Theorem. Let M be a model and p € S(B). Suppose the preschema
d defines over M an extension of p to an element of S(M U B). Then for
any A containing B, d(p, A) is a consistent complete type.

Proof. Consider any finite subset ¢1(Z;@1),...9n(Z;@n) of d(p, A). Then
d¢;i(a;) holds for each . Now M satisfies the formula:

(V&1) . .. (V)| /\ doi(w;) — /\ ¢i(Z,u;))

and M is a model of T so (3Z)\,c;#:(%;@;) holds in the monster model
whence d(p, A) is consistent. But clearly d(p, A) is complete since for each
@ € A and ¢(Z;7), dp(a) V ~d¢(a) holds and —~d¢ is d(—¢).

2.7 Exercise. Show that if d is a good schema then for any A, d(A) is a
consistent complete type.
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We introduce now some simple notions which turn out to be extremely
useful in the context of stable theories. We begin with a simple but signif-
icant ordering relation on types.

2.8 Definition. The formula ¢(Z;7) is represented in the type p over A if
for some @ in A, ¢(Z;a) is in p.

Thus the formula y = 22 is represented in ¢(e'/?;Q U {e}) although not
in t(e!/?; Q). Suppose E is an equivalence relation. If E has only finitely
many classes then E(z;y) is represented in every type whose domain is a
model; this fails if £ has infinitely many classes.

We now formalize the idea that one type satisfies more relations than
another.

2.9 Definition (The Fundamental Order). Let p be in S(A) and ¢ in S(B).
Then p > g, if every formula which is represented in p is represented in q.
We write p ~ ¢q if p < ¢ and ¢ < p. We denote the equivalence class of a
type p under the resulting equivalence relation by [p)].

Note that the domain of this ordering relation is the collection of all types
with domain a subset of the monster model. When C' C dom p N dom ¢q we
can naturally strengthen this notion to p >¢ ¢ if every formula in L(C)
which is represented in p is represented in q. We call the resulting order
the fundamental order over C. Observe that this ordering is ‘upside down.’
That is, ¢ < p if q represents more formulas than p. Nothing in this definition
restricts us to types of finite sequences. Usually only a type whose domain
is a model is considered in defining the fundamental order [Lascar & Poizat
1979)].

2.10 Example. i) Consider the theory T of dense linear order without
endpoints and suppose a < b; < by < ... are elements of a model of T'. Let
B = {b1,bs,...} and C = {bs,bs,...} and let p = t(a, B) and g = t(a,C).
Recalling that T is quantifier eliminable, we see that (up to equivalence in
T) the only formulas represented in p are equivalent to Boolean combination
of 2 < y1,7 < y1 < yg,... and some equality formulas and these are all
represented in ¢ so p > ¢q. Since C C B, ¢ >¢ p. However, the formula
z <y < by in L(C) is represented in p but not in ¢ thus p 2¢ q.

ii) Let T be a complete theory of Abelian groups which admits elim-
ination of quantifiers (in the language of groups). Then every formula
#(Z;7) is equivalent to a Boolean combination of equations of the form:
Y icn PiTi + Y ;e €Y = 0. Now the position in the fundamental order of
a 1-type g € S(A) is determined by the ideal, I,, of those integers n such
that if ¢ realizes ¢, then nc is in A, the function f from I, into A defined
by f(n) = nc, and K, the ideal composed of integers which annihilate any
realization of ¢. Note that K, is determined from I, and f by K, = ker(f).

2.11 Exercise. Let p € S(M). Show that if the type p is minimal in the
fundamental order then p is realized in M. Show the converse is false. (Hint:
Consider the formula z = y.)
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2.12 Exercise. Construct the fundamental order for the theory T of two
refining equivalence relations and for the theory T» of two crosscutting
equivalence relations. Assume each equivalence relation has infinitely many
classes, all infinite. (These theories are considered in more detail in Section
II1.4.)

2.13 Exercise. Show that if p and ¢ are comparable in the fundamental
order, they have the same restriction to the empty set.

Certainly if q extends p, p > ¢q. We distinguish those extensions q of p
where the reverse inequality also holds.

ol
ol

0

#Q(a; b)

Fig. 2. t(@; M Ub) is finitely satisfied in M.

2.14 Definition. (Fig. 2). Let M be a model of T and M be contained in
A.
i) Let p € S(M); q € S(A) is an hesr of p on A if and only if ¢ extends
p and p ~ps q.
ii) t(a; A) is a coheir of t(a; M) on A if and only if t(a; A) is finitely
satisfiable in M.
The following exercise explains coheir in terms of heir.
2.15 Exercise. Suppose M C A. Let @ realize p € S(M). Then t(a; A) is
a coheir of p on A if t(A; M U@) is an heir of t(A; M).
Here is another characterization of & coheir.
2.16 Exercise. Show t(a; A) is a coheir of t(a; M) on A iff t(a; A) is an
element of the topological closure of {t(¢; A):¢ € M}.
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We can derive the definability of types from the hypothesis that T is
stable in some power )\ using Beth’s theorem as follows. From Beth’s the-
orem one can deduce that each type which has a unique heir in S(A) for
every A containing dom p is definable. A non-trivial compactness argument
shows that this result propagates to show that if p € S(M) is not definable
(and thus has two heirs), then every heir p;. € S(M;y) of p with M = M,
also has two heirs. Now a union of chains argument shows T is unstable in
all sufficiently large A. The details can be found in [Lascar & Poizat 1979]
or [Pillay 1983a].

N

AN

> =
’

— X—X—X—

Fig. 3. Heirs

2.17 Example. Consider (Q, <) = M as a dense linear order and let p be
the 1-type of an irrational cut. Let N be an elementary extension of M
with another copy of @ in the cut. Now p has continuum many heirs on
N, namely one for each type over N extending p but not realized in N.
(Fig. 3). However, p has only two toheirs on N, namely the types of points
in the cuts between the models M and N. (Fig. 4). For, suppose there are
elements a, b in N — M such that a < z < b is in ¢. Let ¢ realize q. Then
71 < ¢ < z9 isin t(a™bh;Q U {c}) and z; < y < z3 is not represented in

t(a™b; Q).

Fig. 4. Coheirs

2.18 Exercise. i) Let A C B be Abelian groups and suppose Th(B) is
quantifier eliminable, p € S(A), ¢ € S(B). Show p > ¢ iff K, = K,
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I, Q)Iq, follp = fp and f;1(A) = I,. (Kp, I, are defined in Exercise
2.10.

ii) Let T be the theory of algebraically closed fields of characteristic zero.
Let k =T and suppose L, K are superfields of k. Show ¢(K; L) is an
heir of ¢(K;k) if and only if K and L are algebraically independent
(equals linearly disjoint) over k ([Zariski & Samuel 1958]). What,
if anything, can be said if the restriction that k is a model of T is
removed?

We will consider the generalization of Exercise 2.181) to an arbitrary
module in Section 5.

2.19 Definition. Let B be contained in A and p € S(A). Then p splits
over B if for some @, b in A, @ and b realize the same type over B but for
some formula ¢(Z; ), ¢(Z;@) is in p and —¢(Z;b) is in p.

2.20 Theorem. Let M be contained in A, p an element of S(M), and q
a coheir of p on A. Then q does not split over M.

Proof. Suppose € realizes g but ¢(c;@) holds while ¢(c; b) does not. Then,
since (@™ b; M UT) is the heir of ¢(@™b; M) for some m € M, ¢(m; @) holds
and ¢(7; b) does not. But then @ and b do not realize the same type over
M.

2.21 Corollary. For any M a model of T and any p in S(M) and any
elementary extension N of M, the mazimal number of coheirs of p on N
depends only on the cardinality of M (not N ).

Note that we do not need to assume T is stable.

2.22 Exercise. Compute an upper bound in terms of | dom p | on the num-
ber of coheirs of p.

Now we examine the relation between the fundamental order and defin-
ability of types.

2.23 Theorem. Let T be stable. If M is a model, M C A, and p € S(M)
then d(p, A) is the unique type q extending p such that q ~ p. A fortiors,
d(p, A) 13 the unique heir of p on A.

Proof. Note that d(p,A) is an heir of p. For, ¢(Z;a,m) € d(p,A) (with
a€ A— M, me M) implies | d¢(a,m) and thus = (Iy)d¢é(7, ™). Since
M is an elementary submodel of the monste- model, this in turn implies
k= d¢(m',m) for some M’ € M which holds if and only if ¢(Z,77') is in p.

For the uniqueness, suppose r € S(A), r ~ p and r # d(p, A). Fix 0(%; %)
and \(;Z) as in Corollary 1.23. Since r # d(p, A), the formula —[¢(Z; ) <
A(T; Z)] AO(T; Z) is represented in r. But then it is represented in p, contrary
to the definability of p.

If M C Aand M =T, we can now speak of the definable extension
of p without mentioning the particular definition d, since the last theorem
asserts that all definitions of p yield the same extension to S(A).



68 III. Forking

If M C A and p € S(M) then p has a coheir on A. To see this, fix
any ¢ realizing p and let A’ realize d(t(4, M), M U {¢}). Then, if f is an
automorphism which fixes M and maps A’ to A, f(¢) realizes a coheir of
p on A. Unlike Theorem 2.23, this remark does not require T to be stable.
With the stability assumption we could conclude the coheir is unique.

Note that Theorem 2.23 reduces the question of whether an extension
of p € S(M) is an heir of p to properties of the fundamental order over the
empty set rather than the fundamental order over M. More precisely, we
have the following result.

2.24 Exercise. Let M C N, p € S(M) and p C q € S(N). Show p ~ ¢
implies ¢ is an heir of p.

2.25 Exercise. If p € S(M) and p is not realized in M then for any A
containing M, d(p, A) has infinitely many solutions in the monster model.

Now we will show the relation between heir and coheir in stable theories.
This relationship leads ultimately to the exhange lemma for our notion of
independence. We first indicate by a series of exercises how to prove the
result using the basic definability theorem Theorem I1.2.27. (This proof is
due to Poizat.)

2.26 Exercise. Suppose M C N, N is |M|*-saturated, p € S(M) and ¢
is a coheir of p on N. Use Theorem 2.20 to show that ¢ is definable not
only over N but over M. Observe that this means that for any A with
M C A C N, the coheir of p on A is definable over M.

2.27 Exercise. Use the previous exercise and Theorem 2.23 to show that
if p€ S(M) and M C A, the heir of p on A equals the coheir of p on A.

To introduce some useful techniques and show some further consequences
of stability, we will give a different proof based on the following characteri-
zation of stability. This argument will be the only place in the development
of the forking notion that we appeal to the characterization of a stable the-
ory in terms of the cardinality of Stone spaces. The previous exercises show
that this appeal is unnecessary.

2.28 Definition. The formula ¢(Z;3) has the order property if in some
model of T' there exist infinite sequences {@; :¢ < w} and {b; :7 < w} such
that }= ¢(5i;bj) iff 1 < 7.

2.29 Theorem. If some formula ¢(Z;Y) has the order property then T is
not stable.

Proof. Show that I'(y(¢,n) is consistent for each n.

The converse to this theorem also holds ([Shelah 1978], Chapter II) but
we will not need it here. In fact, the class of unstable theories can be divided
into those which satisfy the strict order property and those which satisfy
the independence property. These two notions mean that there is a formula
#(%;7) and a sequence (@; : 7 < w) such that the sets {¢(M;a;):7 < w} are,
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respectively, linearly ordered by inclusion or independent (i.e., every finite
Boolean combination is nonempty.) We discuss these notions in more detail
in Sections 4.42 and 4.43.

2.30 Theorem. Let M be a model of the stable theory T. Suppose M is
contained in C and p is in S(M); then the heir of p on C equals the coheir
ofponC.

Proof. Let @ realize g, a coheir of p on C. If q is not d(p, C), the heir of p on
C, then there is a formula ¢(Z;7) and a sequence ¢ € C such that ¢(Z;¢) € ¢
but —~d¢(c). Let r = t(¢; M). Since g is the coheir of p on C, t(¢; M Ua) is
the heir, hence the definable extension, of » on M U a. This means that,
letting ¥ (7; ) = ¢(Z; ), = #(@;¢) iff = d'y(a) where d’ defines t(¢; M).

Now, choose &;, f; for i < w, by induction, with & = @ and f, = € so
that

i) €; realizes the definable extension of p on M U E; U F; and
ii) f; realizes the definable extension of r on M U E;; U F;.

Since g; realizes p we have d'v(&;) for all 4. Similarly, since each f; realizes
r, we have —~d¢(f;) for all 4.

Now i) implies for 7 > 7, ¢(E,-,Tj) iff dg(f;) while ii) implies for ¢ < j
that |= ¢(e;, f;) iff = d'¢(&;). Thus |= é(e;, f;) iff ¢ < 7 so T is unstable.

We can summarize the last few results in the following theorem.

2.31 Theorem. Let M be a model of a stable theory T, p € S(M) and
M C C; then p has a unique distinguished extemsion to a complete type
over C which is its heir, coheir, and definable extension.

In the next section we will define the notion of nonforking. Under this
definition, for any model M and superset A, if p € S(A), p does not fork
over M just if p is the definable extension of p|M. This notion satisfies
the monotonicity and transitivity properties. ;From Lemma 11.2.10 and
Theorem 2.31 we will deduce the symmetry theorem for nonforking.

We introduce now a strengthening of the notion of a saturated model
which plays an important role in the investigation of stable theories. We
show in Theorem XI.2.3 that this notion agrees with Shelah’s notion of an
F?-saturated model.

2.32 Definition. The model M is strongly k-saturated if for each set A
with |A| < k, any type over A in fewer than « free variables over A which
is finitely satisfied in M is realized in M.

The crucial point in this definition is that A need not be a subset of M.
The concept defined by replacing a type of less than k elements by a type
of any finite number of elements is apparently weaker. For, t(bo"b1; A)
finitely satisfied in M does not imply that ¢(by; A U bp) is finitely satisfied
in M. Thus, there is no obvious way to obtain the analog to the fact that
if a model is saturated for types over finite sets then it is saturated for
w-types over finite sets.
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2.33 Exercise. Let p € S(B) and A C B. Suppose there is a strongly
|B[+-sa.turated model M with B C M and there is an extension of p to
p' € S(M) such that p’ is definable over every NETwith ACNCM.
Then the definable extension (coheir) of p’ to a global type is deﬁnable over
every model containing A.

On first reading of the proof of the following lemma, take k to be w.
We explain after the proof the, primarily notational, adjustments which
must be made for arbitrary «. The key to the proof is the recognition that
in a formula ¢(Z,7,z), we are free to decide which variables are to stand
for parameters and which to be viewed as the free variables of a type. We
reflect this in our notation by writing (d,7)¢(Z, ¥, Z) to indicate that 7 is the
variable of the type r which is being defined. This marvelous notation was
introduced in [Hrushovski 1986]. The quantifier (d,y) is read ‘For generic
¥ realizing r.

2.34 Lemma. If M is a k-saturated model of a stable theory and k > |T|
then M 1s strongly k-saturated.

Fig. 5. Lemma 2.34

Proof. (Fig. 5). Suppose |A| < k and let AN M = Ap. Let € be a sequence of
less than « elements such that p =t(e; A) is finitely satisfiable in M. For any
finite sequence @ from A — Ag, we will show how to convert ¢(e; Ao U@) into
an equivalent type q over a subset N of M with |[N| < k and A C N C M.
Given this conversion, the k-saturation of M guarantees that t(e; A) is
realized in M.

Let d define r = t(a; M) over M. By Lemma 1.24 we may suppose only
|T| parameters occur in the range of d. Let N be a submodel of M with Ag
and all these parameters contained in N and with |N| < k. Now for any
#(z,7,2), m€ M,a € A — A, and b from Ay,

= 6(m,a,b) iff k= (d-9)6(m,7,b).
So the required translation type is {(d,7)¢ (m, ,b) : ¢(Z;
see this type is consistent, note that for any ¢, = ¢(¢;a,

b) € p}. To

a,
b) implies by
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finite satisfiability that there is an € € M such that |= ¢(¢’;@,b) and thus
— — — 3!
F (d:-9)¢(€,7,b).
If k is uncountable, fix an enumeration of € (and thus of Z). Now the
translation type is formed by applying the procedure above to each formula
(7', 7,Z) where T’ is a finite subsequence of Z.

2.35 Definition. Let A C M and p,q € S(M). We say p is conjugate to q
over A and write p ~4 q if there is an automorphism of M which fixes A
and maps p to q.

We now relate this notion to the fundamental order. In the next ar-
gument we use the expression ¢t(B; A U¢) = t(B’; AUd). Recall from the
discussion in Chapter I that this means there is an automorphism which
fixes A, maps B to B’ and € to d.

2.36 Theorem. Let T be stable. If M s saturated, |M| = k > |T|, and
|A] < & then for any p,q € S(M), if p~4 q then p ~4 q.

Proof. Let € realize p and d realize g. Choose for each formula ¢(Z;7),
formulas 6(Z;%) and A(¥;Z) to define ¢(¢; M) in the manner of Corollary
1.23. Choose B C M such that A C B, |B| < |A| + |T| and B contains all
parameters necessary to define p. That is, for each 6 chosen according to
Corollary 1.23, there is a b € B such that 6(Z;b) € p and for every m € M,
[¢(z; M) < A(M;b)] € p. Since p~4 g, if B € Aut(M) fixes A and maps ¢ to
d, t(B(B); AUd) is finitely satisfied in M. Now by strong saturation, choose
B’ C M such that ¢(B; AUT) = t(B’; AUd). Let a be an automorphism of
M fixing A and taking B to B’. Now for each ¢, and each 6 and A depending
on ¢, if 6(Z;b) € p then 0(Z; ab) € q. Now towards a contradiction suppose
that ap # q. Therefore —[¢(Z; ) +> A(7; ab)] € g. Since p ~4 g, there exist
b and 7’ with o(z; 5’) € p and —[¢(T'; M) — A(T7; 5’)] € p, contrary to our
choice of # and A. Thus ap = q as required.

We need to have M saturated to express our condition in terms of full
automorphisms of the model M. A somewhat weaker version (expressing
the result in terms of extending partial automorphisms) holds with only
the hypothesis that M is |A| + |T'|-saturated.

2.37 Exercise. Show the hypothesis of stability is necessary for Theorem
2.36. (Hint: Consider Example 2.10.)

Since M is extremely saturated and conjugate types certainly represent
the same formulas we have

2.38 Corollary. On S(M), ~4 and ~4 define the same equivalence rela-
tion.

There is a further obvious corollary.

2.39 Corollary. If T is stable in |A| then the equivalence relation ~4 has
at most 2|T1+1Al equivalence classes.
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2.40 Historical Notes. There are several variants in the literature of the
definition of a good schema. The definition here agrees with that in [Lascar
1976] and [Pillay 1983e] but not with the one in [Berline 1983]. The notions
of coheir and fundamental order first appear in [Lascar & Poizat 1979]. The
notion of splitting was introduced by Shelah. The order property character-
ization of stability is from [Shelah 1971]. The proof given for heir = coheir
is adapted from [Lascar 1976]. The definition here of strong saturation is
from [Baldwin 1984]. The relation to Shelah’s notion of F? .-saturation is
discussed in Chapter XI. This notion is entirely different from that called
strong saturation by Shelah in [Shelah 198?c]. Theorem 2.36 is implicit
in [Lascar & Poizat 1979]. There has been considerable work, [Lascar &
Poizat 1979], [Harnik & Harrington 1984], [Pillay 1987?] developing a local
stability theory where one assumes only that a particular formula is stable
rather than the entire theory. Since this project can only aid in the study
of independence, as opposed to generation, we have not pursued it in this
book.

3. Nonforking Types QOver Sets

In Section 1 we saw that for p € S(M), M a model, the definable extension
of p to a set A containing M is the kind of canonical extension we envisioned
in Chapter II. Here, we find an analogous extension for types over arbitrary
sets and verify that all the axioms of Section II.1 hold. This analog will be
called a nonforking extension of p. Following a suggestion of M. Ziegler, we
introduce nonforking by first defining the notion for types over the monster
model (so called global types) and then extending it to types over arbitrary
subsets in the natural manner to satisfy the monotonicity axioms.

3.1 Definition. i) Let p € S(M). Then p does not fork over A iff for every
M =T with A C M, p is definable over M.

ii) Let p be a type over B. Then p does not fork over A if for some

p € S(M) with p C p, p does not fork over A. We say the formula

&(T; J) does not fork over A if the type ¢(Z;y) does not fork over A.

The following exercise gives a sufficient, but by no means necessary,
condition for showing a type p does not fork over A.

3.2 Exercise. Show using Theorem 2.23 that if p € S(M) and for some
model M D A, p|M is definable over A then p does not fork over A.

There are actually three layers of complexity in defining nonforking:
complete types over models, complete types over arbitrary sets, and in-
complete types. For most purposes one can ignore the third case on a first
reading. The cases where the extension to incomplete types gives the most
trouble are pointed out.
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3.3 Notation. We may write ‘(p]B; A)’ for p does not fork over A where
B = domp. We write (¢]B; A) or €| 4B for t(¢; BU A) does not fork over A.
This notation naturally extends to (C|B; A) as explained in Section II.2.
We often read this as C is independent from B over A. Note that we do
not require A C B to write ¢(C; B) does not fork over A, although this will
frequently be the case. If so, (C|B; A) is equivalent to ¢(C; B) does not
fork over A.

If A C B we write N(B, A) for {p € S(B) : p does not fork over A}.

If the type p with parameters from A is stationary and A C B we write
p® for the, necessarily unique, nonforking extension of p to a complete type
over B whose existence is guaranteed by Theorem 3.11. Other authors write
p| B for this extension; we reserve that notation for the restriction of a type.

3.4 Exercise. Show that p € S(B) does not fork over A iff for some
strongly (|T| + |A| + |B|)*-saturated model M; with A, B C M, there
is an extension of p to p' € S(M;) such that p’ is definable over every
N ET with ACN C M.

3.5 Exercise. If p, § € S(M), p does not fork over A and p ~4 § then §
does not fork over A.

3.6 Exercise. Give an example of a theory T and elements a, b, ¢ which
are pairwise independent but not independent. (Hint: Almost any theory
with an addition operation will do.)

We now want to show that the nonforking relation satisfies the axioms for
freeness. Immediately from the definition, we see that nonforking satisfies
the monotonicity axioms and the second extension axiom.

3.7 Lemma. The nonforking relation satisfies the following arioms.

M;. If ¢ C p and p does not fork over A then q does not fork over A.

M,. If AC B and p does not fork over A then p does not fork over B.

E,. If p does not fork over A and domp C B, there is a p; € S(B)
which extends p such that py does not fork over A.

To verify our remaining existence axiom, F7, we show that if p € S(A)
then p does not fork over A. We derive this from the fact that heir and
coheir are the same for types over models and the following lemma. The
lemma, is proved by a compactness argument. The next exercise spells out
the method for showing the consistency of each finite subset of the infinite
set of sentences considered in the lemma.

3.8 Exercise. Suppose pi,...,pk iS an increasing sequence of types in
the fundamental order with each p; € S(M;). Show there is a model M
containing dom p; for each 7 and a type p € S(M) such that p > p; for each
t. (Hint: Let M contain |J; M; and let p be the definable extension of px
to M.)

3.9 The Extension Lemma. Let p € S(A). There exists a p € S(M) with
p C p such that for every model M with A C M, p is the heir of p|M.
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Proof. Let Z = {q: There exists a model M, A C M, g€ S(M) and p C q}.
Z is partially ordered by <4. If p* is a maximal element of Z and p is the
heir of p* on M then by Theorem 2.23, p is as required. To show such a p*
exists, we need, invoking Zorn’s lemma, show only that if P = {p; :7 € I'}
is an increasing chain in Z then P has an upper bound p’. For this, let N
be a model of the following set of sentences, I', which can easily be shown
consistent using the previous exercise. I' is in the language obtained by
adding to L new constant symbols cg, ..., cn—1, names for the members of
dom p; = M;, and a new unary predicate symbol R. Let T be:

TUT|RUJ,c; Diag(M;) U{R(m):m € M;,i € I}
U{(v9)(R(7) — ~¢(%;7)) : (X)(Z;7) is not represented in p;}.

There is little difficulty in extending Lemma 3.9 to allow the type p to
have infinitely many variables and we will use the extended version without
comient.

3.10 Theorem. If p is a type over A then p does not fork over A.

Proof. In view of the first monotonicity axiom we can assume p € S(A). By
the previous lemma, we can find p € S(M) which extends p and is the heir
of each of its restrictions to a model containing A. By Theorem 2.31, (heir
= coheir) it is the definable extension of each of these restrictions. Thus p
and, a fortiori, p does not fork over A.

Note that the use of (heir = coheir = definable extension) is vital here;
a direct proof of the existence of a p which is the coheir of each of its
restrictions can be given but is much longer (see Paragraph 3.30).

We can now establish a useful equivalent to nonforking.

3.11 Definition. (Fig. 6).

i) The formula ¢(Z;¢), where the parameters ¢ come from anywhere
in the monster model, is almost satisfied in A if for every model M
containing A, ¢(M;c) N M #£ 0.

ii) The type p is almost satisfied in A if every finite conjunction of
formulas in p is almost satisfied in A.

3.12 Lemma. Let A C B and let p be a type over B; p does not fork over
A iff p 18 almost satisfied in A.

Proof. If p does not fork over A then p C p for some global type p which
is definable over M for each model M containing A (and thus by Theorem
2.31 finitely satisfied in M). For the converse, suppose p is almost satisfied
in A. Choose by the Extension Lemma a strongly |B|*-saturated model
M such that ¢(M; B) does not fork over A. Then p is finitely satisfied in
M and thus realized in M by some ¢. Now p C ¢(¢; B) which does not fork
over A. By monotonicity, p does not fork over A.

3.13 Corollary. If p is a type over B which is closed under conjunction
and p forks over A then there is a formula ¢(Z;b) € p such that every type
containing ¢(T;b) forks over A.
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Fig. 6. ¢(z;¢) is almost satisfied in A.

Proof. The notion of almost satisfaction obviously has the required finite
character.

The necessity of the assumption that p is closed under finite conjunction
is demonstrated in Example V.3.10.

The notation disguises an important aspect of Corollary 3.13. The corol-
lary does not say there is a formula ¢(Z;7) such that for any l—),, any type
containing ¢(Z; 5’) forks over A. This holds only for those %" which realize
t(b; A). We will show in Corollary IV.2.2 a closely related result: if A C B,
g € S(B) and q forks over A then there is a formula ¢(Z;7) such that for
some b, ¢(Z;b) € q, and for any ¢, q|A U ¢(Z;¢) forks over A.

. The following exercise gives Corollary 3.13 a useful topological form.

3.14 Exercise. Show that for any A C B, N(B, A) (the collection of types
in S(B) which do not fork over A) is closed in S(B).

The next few results connect the fundamental order with the notion of
forking. Recall [g] denotes an equivalence class in the fundamental order.

3.15 Definition. For any A and any p € S(A), the bound of p, 3(p) is the
least upper bound of W = {[g] : p C ¢ and q is a type over a model}.

We justify this definition by deducing from the following lemma that W
does have a unique least upper bound.

3.16 Exercise. Show, using both the fact that the class of nonforking
types is closed under isomorphism and the Extension Lemma that for any
B and A we can find an N such that ¢(B; N) does not fork over A.
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3.17 Lemma. Let A C B, p € S(B), and suppose p extends to p € S(M)
which does not fork over A. Let M be any model containing B and let
plA € g € S(M). Then [q] <4 [p|M].

Proof. Choose, by Exercise 3.16, an N which is strongly |M|*-saturated and
so that t(M; N) does not fork over A. Since p does not fork over A, p|M is
realized in N by some €. Let d realize q and let « be an automorphism of
M which fixes A and maps d to ¢. Let § denote the definable extension of
q to a global type. Then, at(d; M) = (ag§)|(aM) = t(c; oM ). Now suppose
#(Z;7) € F(A) is represented in [p]. This implies that for some m € M,
k= #(¢;m). Since t(m; N) is almost satisfiable in A, for some m' € aM,
= ¢(c;m'). That is, ¢(Z;7y) is represented in g, hence in §, hence in q.

Of course, in Lemma 3.17 we could replace <4 by the weaker relation
<. Now we can show rapidly that the nonforking relation satisfies the rest
of the axioms from Section II.1. We note first that forking can now be
described in terms of the fundamental order.

3.18 Corollary. Fiz any A and p € S(B) with AC B. If g =p|A thenp
forks over A iff B(p) < B(q).-

Proof. Let p and § be B(p) and B(p|A) respectively. Then § does not fork
over A. If p does not fork over A then p does not fork over A so Lemma 3.17
implies [p] = [¢]. For the converse, if p forks over A, then for every p
extending p to S(M) there is an M containing A such that p is not the
definable extension of p|M so by Theorem 2.23, [p] < [p|M]. But by Lemma
3.17, [plM] < [¢1M] and hence A(p) < A(plA).

We now can deduce the transitivity axiom without effort. From Theorem
I11.2.31 and the reduction of the symmetry lemma to symmetry for types
over models in Lemma I1.2.12 we derive the symmetry lemma.

3.19 Corollary. i) (Transitivity) Let AC BC C andletpe S(C). If p

does not fork over B and p|B does not fork over A then p does not
fork over A.

ii) (Symmetry) If t(a; AUDb) does not fork over A then t(b; AU@) does
not fork over A.
3.20 Exercise. Show that (@~bl¢™d; A) implies (@ld; AUbUT).
Applying Lemma 3.17 once again we get the conjugacy lemma for non-
forking extensions.

3.21 Corollary (The Conjugacy Lemma). If p|A = §|A and neither p nor
G forks over A then p ~4 §.

Proof. By Lemma 3.17 we have p ~ 4 § whence the result follows by Theorem
2.36.

The following exercise provides an extremely useful corollary to the con-
jugacy lemma.
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3.22 Exercise. Let ¢(Z;b) be a formula. Show that the set of types ¢ in
S(M) which do not fork over A and contain a conjugate of ¢(Z;d) is the
same as the collection of ¢ in S(M) which do not fork over A and satisfy:
q|A has a nonforking extension to a type over M which contains ¢(Z;5).
Note that the first of these collections is open in N(M, A).

The next result, the open mapping theorem, has enormously important
consequences. These consequences and some generalizations of the result
will be discussed in Chapter X. It is an easy consequence of the results at
hand.

3.23 Theorem (The Open Mapping Theorem). The restriction map r
from N(B, A) onto S(A) is an open map.

Proof. First note it suffices to prove the result for B = M, since the re-
striction map from M to A is the composition of the map from M to B
with the one from B to A. We use the following easy topological fact: if
f is a continuous map between compact spaces and W is a saturated (i.e.,
W = f~1(f(W)) ), open subset of the domain, then f(W) is open. Thus,
to show r is an open map it suffices to show that if U is an open subset of
N(M, A) there is a saturated U with r(U) = r(U). But this is exactly the
content of the previous exercise.

Since it is clear that types over models are stationary we have established
all the axioms except (T) < oo. This easily follows from Corollary 3.18
but we delay the derivation until Theorem 4.22 since Section 4 is devoted
to an exhaustive analysis of x(T") and its variants.

The following exercise provides a useful reformulation of the open map-
ping theorem.

3.24 Exercise. Show that if ¢(z;b) does not fork over M then there is a
formula v4(7;@) € F(M) such that if p € N(M Ub, M) and 44(Z;a) € p
then ¢(Z;b) € p. (Hint: Use the fact that all types over M are stationary.)

3.25 Exercise. Show the previous exercise fails if the model M is replaced
by an arbitrary set A.

We can summarize the various characterizations of a nonforking exten-
sion as follows.

3.26 Theorem. Let A C B and p € S(B). The following are equivalent.

i) p does not fork over A.
ii) p is almost satisfied in A.
iii) There is a model M with B |4 M and a good schema d over M with
p € d(M).

Proof. By Lemma 3.12, i) implies ii). To see that ii) implies iii), note that if
p is finitely satisfiable in M and M is strongly |dom p|*-saturated then p
is contained in a type which is defined by a good schema d over M (taking
d¢(T;Y) to be ¢(m;y) where @ realizes p). Now choosing an appropriate
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M we have ii) implies iii). Assuming iii), let € realize the extension of p to
M U B given by the schema d. Then ¢(¢; M U B) does not fork over M.
Since we have t(B; M) does not fork over A, symmetry and transitivity
yield t(B; M U¢) does not fork over A; by symmetry and monotonicity we
conclude £(¢; B) does not fork over A and we finish.

3.27 Exercise. Let A C M and p € S(A). Show that ¢ € S(M) does not
fork over A if and only if [g] is maximal among the [r] for 7 an extension
of p to a type over a model.

3.28 Exercise. Give an example of an A C B and a p € S(B) such that p
forks over A even though p is definable over A. (Hint: Consider an equiv-
alence relation with infinitely many infinite classes. Let a be a member of
one these classes and show the type over a which contains only the formula
E(z,a) is definable over @ but forks over 0.)

3.29 Exercise. Show using the example in the previous exercise that the
stronger form of Corollary 3.13 discussed in the paragraph after Corollary
3.13 is false.

3.30 Other Approaches to Forking. The definition here of forking is a
variant on the definition in [Lascar & Poizat 1979]). We will briefly discuss
another variation on the Lascar-Poizat approach due to Harnik and Har-
rington. Both the approach in the text above and the one outlined below
differ from that in Lascar-Poizat primarily in the way they avoid certain
arguments which depend on an extremely judicious choice of objects in
general position. This theme is by no means eliminated from the theory, it
is just played less often. In Section V.3 we discuss the original approach of
Shelah and in Chapter VII we consider the definition of forking in terms of
rank.

3.31 Definition. The type p € S(A) needs the formula ¢(Z;7) if for each
extension of p to a type p’ over a model, ¢(Z;7) is represented in p’. In
particular, if ¢(Z;@) € p then p needs ¢(Z; 7).

3.32 Exercise. The type p needs ¢(%;7) iff for some formula é(7) over A
and some finite set I with v; Cv for: € I:

(F0)6(v) A (Vo) (6(0) — b\6/1¢(f; ) € p-

3.33 Definition. If A C B and p € S(B) then p does not fork over A just
if every formula needed by p is also needed by p|A.

With this definition it is easy to verify the transitivity axiom but the
extension lemma requires a complicated compactness argument referring
to the definition of stability in terms of the number of ¢-types. The key
step is to prove: If p needs ¢ V ¢ then p needs ¢ or p needs .

3.34 Exercise. Derive this assertion assuming that the two notions of
forking are the same.
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3.35 Exercise. Show that p € S(M) does not fork over A if and only if
for every ¢(Z;7) which is represented in p, p|A needs ¢.

3.36 Exercise. Prove directly that if p needs ¢ V ¢ then p needs ¢ or p
needs . (Hint: (Ziegler) The following five steps are one way to solve this
exercise.)

1. Show using Exercise 3.32 that if p needs ¢(Z;%u) V ¥(Z;%) then for
some formula §(7): (30)6(7) A (V0)[6(7) — ¢(Z;9) V ¢(T; )] € p.

2. Now if p is over A and p needs ¢ V ¥ but p needs neither ¢ nor ¥ show
that there is a |T|*-saturated M D A and sequences by, b; realizing
p such that for every m € M, |= ~¢(b1; M) A < (bo; 7).

3. By mapping by to b; and considering both M and its image under
this map, trade the picture of two realizations of p over one model, for
a picture with one realization of p and two models. That is, construct
an element ¢ and two models My, M; contained in a third model V
with all three saturated such that

i) € realizes p.
ii) ¢(N;T) N Mo = 0; p(N;2) N M; =0.
i) 0 # 6(N)N Mo C %(N;2); 0 # 6(N) N M; € $(N;2).

4. Using the fact that N ~ M; for ¢+ = 1,2, iterate this construction w
times to build a tree.
5. Deduce that ¢(Z; %) is unstable.

3.37 Historical Notes. The notion of forking was invented by Shelah
[Shelah 1978]. The use of finite satisfiability as a characterization of a non-
forking type over a model also appears in [Shelah 1978]. The fundamental
order was discovered by Lascar and Poizat[Lascar & Poizat 1979]. They
showed how to define forking in terms of the fundamental order, heirs, and
coheirs. The approach in Definition 3.30 is described in [Harnik & Harring-
ton 1984]. Some further refinements occur in Harnik [Harnik 1985]. Both
of these approachs require an appeal to the characterization of stability
in terms of cardinality of Stone spaces as well as the definability of types.
Our approach, which avoids this appeal and which uses strong saturation
to eliminate still more of the appeals to symmetry, first appeared inBaldwin
[Baldwin 1984]. A further refinement of this approach is due to Rothmaler
[Rothmaler 1983]. In fact, the precise definition of almost satisfaction (clos-
ing under conjunction) is taken from [Rothmaler 1983]. Another approach
which avoids the appeal to uncountable cardinals was developed by Hodges
[Hodges 1981].
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4. k(T) and the Spectrum of Stability

One of the most remarkable features of the stability notion is that it pro-
vides a fruitful division of all first order theories into four classes: unstable,
stable, superstable and w-stable. Most of this book is devoted to develop-
ing the positive properties of the last three of these classes. In this section
we define this classification and provide prototypic examples of stable and
superstable theories. We also calculate the stability spectrum (the class of
cardinals where T is stable) and the spectrum of saturation (the class of
cardinals where T has a saturated model) of a theory T. We show, with
the possible exception of a few small cardinals, these spectra are the same.
We prove in fact that there are only four possible functions for the spectra
of stability and these determine the classification.

We introduce three invariants of a theory T: «(T), A(T), and u(T).
The first two determine the stability classification. The main step in the
classification is Theorem 4.25, whose proof provides a certain free tree to
witness the non-superstability of a theory. This tree is used here to calculate
the spectrum of saturation of T' and will be used in Section IX.6 to show
that a stable but not superstable theory has 2* models of power A\. We
refine this tree to show the nonexistence of saturated models in certain
cardinalities. We conclude by discussing unstable theories.

4.1 Definition. i) T is stable in p if for every A with |A| < pu, |S(A)| < p.

ii) T is stable if T is stable in some p.

iii) The theory T is superstable if T is stable in all y > 2IT!,

iv) The countable theory T is w-stable (or totally transcendental) if T

is stable in all infinite u.

A theory T is strictly stable if it is stable but not superstable while T
is strictly superstable if it is superstable but not w-stable. Shelah [Shelah
1978] provides the appropriate generalization of w-stability to uncountable
theories.

One of the most natural ways of constructing theories which are stable
but not w-stable is through consideration of families of equivalence rela-
tions. There are several variations on this idea. These variations depend
on three factors, how many equivalence relations there are, whether the
different equivalence relations crosscut or refine, and whether there is any
additive structure present. The following exercise is an important tool for
investigating these examples.

4.2 Exercise. Show that if T is a quantifier eliminable theory of equiv-
alence relations (i.e. T' asserts each basic relation of T is an equivalence
relation.) then T is stable.

4.3 Example (Refining Equivalence Relations with Finite Splitting). See
Fig. 7. For each ordinal « let REI, denote the theory of o equivalence
relations E;, ¢ < a, such that for ¢ < j, E; refines E; and each E; class is
refined into infinitely many F;,; classes.
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The following series of exercises outlines the crucial properties of a num-
ber of examples. Full solutions to these exercises, particularly Exercise 4.16,
would be much longer than the solutions to the other exercises in this book.

4.4 Exercise. Show each REI, is quantifier eliminable and stable.
4.5 Exercise. Show REI, is not superstable if « is infinite.
4.6 Example (Refining Equivalence Relations with Infinite Splitting).

i) Let REF, be the variant on Example 4.3 obtained by insisting that
each E; equivalence class is refined into two E;11 equivalence classes.

ii) Let REF] be the theory of the structure (2%,+, E;)i<a Where the
E;i(o,7) holds only if ol = 7|i The operation + is interpreted as
coordinatewise addition mod 2.

4.7 Exercise. Show that REF,, is stable. Show that if & < w then REF,
is superstable.

4.8 Exercise. Show that if @ > w - w then REF,, is not superstable.
4.9 Example (Crosscutting Equivalence Relations with Finite Splitting).

i) Let CEF, be the variant on Example 4.6 obtained by demanding
that for 7 < & each equivalence class of E;;; splits each equivalence
class of E; into two classes. Thus, each E; has only two classes.

ii) Let CEF} be the theory obtained from CEF,, as REF] is obtained
from REF,, i.e. Th(2¥, E;,+) where E;(o,7) holds if and only if
o|n = 7|n and + denotes coordinatewise addition.

4.10 Exercise. Show that if K < w then CEF, is superstable.

4.11 Exercise. Show that if T is CEF,, or REF,, and A is an arbitrary
subset of a model of T, then for any unrealized p € S(A), p does not fork
over 0.

4.12 Example (Crosscutting Equivalence Relations with Infinite Split-
ting). (Fig. 8). Let CEI. be the variant of Example 4.9 obtained by in-
sisting that for i < j each E; equivalence class intersects each E; class in
infinitely many classes.
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Fig. 8. CEI,

Note that the theories of crosscutting equivalence relations are defined
with respect to a cardinal while the refining equivalence relations are de-
fined with respect to an ordinal.

4.13 Exercise. Formulate precisely the idea indicated in Example 4.12
and determine the spectrum of stability of the resulting theory.

4.14 Notation. When we refer to any of these examples without specify-
ing k, we mean k to be w.

4.15 Exercise. Show each of these examples is w-stable if « is finite.

4.16 Exercise. Compute the number of models of each of these theories
in every power. (This is rather subtle for Example 4.6.)

4.17 Exercise. Find natural models for each of these theories. For £k = w,
the universe of the natural model will be either 2¢ or w® .

In Chapter II and Section IT1.2 we discussed the local (or finite) character
of nonforking. That is, for any type p, there is a ‘small’ subset A of domp
such that p does not fork over A. We show here the size of this A can be
uniformly bounded for all p by a cardinal «(T') and this cardinal largely
determines the stability spectrum of 7. There are several slight variations
on the definition of the cardinal «(T'). We begin by defining &(T') as well
and describing the relation between these two cardinals. If |T| is singular
we will have to consider still a third invariant &, (T').

4.18 Definition. i) x(T) is the least infinite cardinal, if one exists, such

that for any finite sequence @ and each strictly ascending sequence
of sets (A; : 1 < k(T)), for some %, t(a@; A;+1) does not fork over A;.

ii) %(T) is the least infinite cardinal, if one exists, such that for every
type p there is a set A C domp with |A| < ®(T') and p does not fork
over A.

iii) In the event that the cardinals described in i) and ii) do not exist
we set &(T"), respectively (T, equal to co.

iv) Let &,(T) = &(T) if &(T) is regular and (T)* if x(T) is singular.

While %(T) is the bound that we will apply in practice; it is easier to
evaluate «(T). Fortunately, the cardinals are almost the same. In particular,
they are equal for countable T'. The next two results showing the relations
between these cardinals are of most interest for uncountable languages. We
begin with a technical proposition.
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4.19 Proposition. For every A < &(T), cf(A) < &(T).

Proof. Suppose (A;:7 < A) and @ are such that ¢(@; A;41) forks over A; for
each ¢ < X and the A; are a continuous increasing chain. Then if B C A,
and t(a@; A)) does not fork over B, |B| > cf()). So for every A < (T),
cf(A) < ®(T).

4.20 Lemma. For every T, B(T) < k(T) < ®(T)*. If &(T) is regular then
&(T) =&r(T).

Proof. Choose A < £(T') and let p be a type such that for every A C domp
with |A| < A, p forks over A. Define (A; : 7 < A) so that A;4; — A; is
finite and p|Ai+1 forks over A;. (This is possible by the finite character of
forking.) Then (A; : ¢ < ) demonstrates x(T) > A. Thus, «(T) > &(T).
The second inequality and the second assertion are immediate from the
preceding proposition.

4.21 Examples. ®(REIx ) =R,. k(REIx_ ) = X}. Let T be the theory of
a disjoint union of models of REI, for o < X,,. Then §(T') = «(T') = R,,.

Now we bound «(T').
4.22 Theoren. For every T, (T) < |T|*.

Proof. Suppose (A; : ¢ < A) and @ are such that ¢(@; A;+1) forks over A; for
each 7 and the A; are a continuous increasing chain. Now, if p; = t(a; 4;), by
Corollary 3.20 we have [p;] > [p,] if # < 7. But it is clear that any decreasing
sequence in the fundamental order has at most |T'| elements so A < |T|*
as required.

4.23 Exercise. What are the possible values of x(T') and (T") when T is
countable?

4.24 Exercise. Define «!(T') to be the cardinal one obtains in the defini-
tion of (T') if the types p are required to be 1-types. Show x1(T) = &(T).
(Hint: If t(a™b; A;+1) forks over A; then either ¢(a; A;41) forks over A; or
t(b; Ai4+1 U a) forks over A; Ua.)

We will now show that for stable T there is a cardinal A(T) < 2!7! such
that T is stable in g if and only if = u<*(T) and p < A(T). Simple cardinal
computations show that the conclusion of this assertion holds for exactly
the same p if «(T') is replaced by «,(T).

This computation of the stability spectrum could be carried out for
an arbitrary freeness relation satisfying the axioms discussed in Section
II.1. Such an argument would show that any first order theory with a
freeness relation satisfying the axioms is stable. We give such an abstract
formulation in Section VII.1 and show the ‘categoricity’ of the freeness
axioms. Note that in the next construction we use only the monotonicity,
extension, symmetry, and transitivity axioms along with the definition of
k(T). We could rephrase this theorem as saying that if £(T") is infinity then
T is unstable.
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Fig. 9. Building a Shelah Tree

4.25 Theorem. If T is stable and p < u<*T) then T is not stable in p.

Proof. (Fig. 9). Let k be the least cardinal such that u* > p. Then there
exists a sequence (A; : ¢ < k) and a sequence b such that ¢(b; A;+1) forks
over A; (as k is certainly less than «(T)). Without loss of generality we
may assume that |A;| < |¢| + Rp, the sequence is continuous and for each ¢,
A;41 — A; is a finite sequence @;. (This depends on the finite character of
forking.) Now for each v € u<* we will define an elementary map f, with
dom f, = Ajg(,) and mg f, C M. If Ig(v) = 6, a limit ordinal, let f, be
Ua<sfula- f1g(v) = a+ 1, first let A =, o g fy. Now for v =n"%,
define f,~; by induction on ¢ < u by choosing @,~; = fy~i(@a) so that
t(an~i; Ay U {@y~; : 7 < 1}) does not fork over A, = f,(A,) and extends
[n(t(@a; Aa))- For o € p®, let g, be an arbitrary extension to A, U {b} of
fo and extend t(go(b); As) to a complete type over A* =], <Ay realized
by @, such that t(a,; A*) does not fork over A,.

Now, if o # 7, then t(a,; A*) # t(@,; A*). To see this, note first that
since g, is an elementary map, t(@s; Ag|g UGy |a+1) forks over A, s for any
B < k. Let a =B +1 be least such that @y|o # Trja; 50 Asp = Ar|g. We will
show ¢(@y; A;|3 U@r|o) does not fork over A, 5. Let Cy = {a,5: 8 <6 <~}
We show by induction that for every ~, with § < v < &:

(C'ylarla;Aalﬁ)~ (*)
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The induction step depends on the following exercise which is essentially
Lemma I1.2.11.

4.26 Exercise. Let ANB=0and ANC=0.1fC |4 Band D |4,c B
then CUD |4 B.

Returning to the proof of the theorem, for v = 8+ 1, () holds by the
choice of @, (and the symmetry lemma). Now fix v with 8 < v < &;
let C<7 = {@,|5: # < 6 < 7} and suppose by induction: C<7 l4,5 Trla
To apply the exercise, take A as A3, B as Gr|q, C as C<7, and D as
@s|(y+1); then CU D is C,. The second hypothesis of the exercise follows
from the construction by monotonicity. Applying the exercise we finish the
induction.

Consider the case v = k. It asserts Cx |4,,, @;|o- By monotonicity, as
Ug|k = Tg, To LA, 5 Or|a- Thus, H(Ts; Ag|p U Trja) # t(@r; Asjp UTr|e) and
we finish.

In this construction we only had to assure:
ap—i | AL U {ﬁnﬁj 1j <1}
Aq

The relation of @,~; to @, for a v with Ig(v) = a but v|a # na is irrelevant.
We can deduce a further consequence to the proof. In fact, as we see below,
a, can realize at most 2%(T) distinct types of the form t(a,; A,). But |A,| <
k(T). This leads to a proof (see Exercise 4.40 below) of Corollary 4.27 ii)
with the additional hypothesis that u < 2(T). However, we can exploit the
indiscernibility of the tree constructed in Theorem 4.25 to obtain an even
stronger result.

The tree described in Theorem 4.27 i) epitomises a strictly stable theory.
It is sometimes referred to as a Shelah tree.

4.27 Corollary. Let T be a countable stable, but not superstable, theory.

i) There exists a sequence of formulas ¢;(Z;y) for i <w and for each p
sequences Gy for each n € p<* such that:

a) For each n € p<¥, {Gp—q 1o < p} 1s a set of indiscernibles over
Ay ={av:v 20},

b) For each o € p*, po = {$i(Z;Ggi) : ¢ < w} 1s consistent.

¢) For each n € p<¥ and a # B < p, ¢i(Z,an~a) A ¢i(T;a9~p) i3
inconststent.

i) If Ry < u < p® then T does not have a saturated model of power p.

Proof. To prove i) we will construct a sequence of at most countably many
approximations to the ¢; and @,. The kth approximation will satisfy con-
ditions a) and b) (for @, depending on k) and the following weaker form of

c).

¢’) For each i < w and each n € p* there is an mk such that if X C p
and |X| > m¥, {¢¥(Z;a,~4) : @ € X} is inconsistent.
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The chief point of the construction is that for each ¢ < w, m""’1 < mk
and for some i <w, m'c+1 < mk. In fact, for each ¢, for all sufﬁmently large
k < w, m{ = 2. Thus, we eventually satisfy condition c).

For k = 0, we take the @, constructed in Theorem 4.25 and choose
#i(T;y) to witness that ¢(b; A; Ua;) forks over A;. Thus ¢(Z;a,) forks over
A,. Since the (@,~q : @ < p) are independent over A,, Theorem II.2.18
guarantees the existence of m? for each 7 < w.

We say that ¢ requires attention at stage k if for each j < ¢, mf = 2.
We may suppose then that at a certain stage, ¢ is the least ordinal which
requires attention. Thus we have @), ¢f and m;? for 7 < w so that conditions
a), b) and c¢’) are satisfied and m;? = 2 if j < 7. We must choose new @,

k+1 k+1 k+1
¢j + +

and m;™" so that m;™"" < m¥. Fix n € u*. There are two cases.

To descrlbe the first case, let ] denote a sequence of 5 1’s. Then we are
in the first case if the following collection of formulas is consistent.

I ={¢f(Z;an) : 1 <i}U{oF,;(T; a,~;) 5 < whU{o¥(F; an~0)}-

Let

Witt =gk ifj#4

Vi (%91, 72) = VE(E 7)) AvE (T3 52)

mitl =mk if j#£4

mi+! = [(mf +1)/2].
The indiscernibility of {@,~4 : @ < u} at the previous stage guarantees that
we have satisfied the condition at @, and thus at @, for each v € u*.

If T is inconsistent, we are in the second case. That is, for some n < w

Lo = {¢f (T;apy) : 1 <} U{9f,;(Z;a, ;) : 5 < n} U {8 (T;an-0)}
is inconsistent. In this case, let
pEtl =gk ifl<i
¢k+l Nicisn 01(T:71)
ot =k, ifi>i
;“+1 =mF ifl<i

mk+1 =9
k+1 k+1 - .
mT =m, ifl>1.

For ii), let k be the least cardinal such that u® > u. Suppose for con-
tradiction that M is a saturated model of T with power u. Since u<* < u
and M is p-universal, the tree constructed in part i) can be embedded in
M. Identify the original tree with its image in M. Now the {p,: 0 € u*}
are pairwise inconsistent and p“ < u so they cannot all be realised in M
contrary to the assumption that M is saturated.

Now we introduce the invariant that was mentioned in the introduction
to Part A, the bound on the number of free (i.e. nonforking) extensions of
an independent set. We will denote this invariant by u(T') but it will not
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figure prominently in the sequel since we will shortly (Lemma 4.32) bound
it by a more visible invariant denoted by A(T'). If we had proceeded totally
abstractly we would have deduced stability of T' from the assumption that
k(T) and u(T) are less than infinity (and our other axioms).

4.28 Definition. Let p be a type in finitely many variables.

i) Let u(p), the multiplicity of p be the least cardinal u such that p
does not have ut pairwise contradictory nonforking extensions.
ii) Let u(T), the global multiplicity of T, be the least cardinal u such
that for any type p, u(p) < u.
ili) Let uy(p), the ¢-multiplicity of p, be the least cardinal u such that
there do not exist u* contradictory ¢-types which do not fork over
dom p but whose restriction to domp is pg.

We can derive a sufficient condition for stability in x in terms of the
global multiplicity of T and one further invariant.

4.29 Definition. For a stable theory T, let A\(T") denote the least cardinal
in which T is stable.

4.30 Lemma. For any cardinal x, if u(T) and A\(T) are at most x and
x = x<*(T) then T is stable in x.

Proof. Let | B| = x. For each A C B with |A| < k(T), |S(A)| < 2<%(T), Each
element of S(A) has at most u(T') distinct extensions in S(B) which do
not fork over A. But if p € S(B), for some A C B with |A| < ®(T) < k(T),
p does not fork over A. Thus, there are at most x<*(T) (the number of
subsets of B with power x(T)) times 2<*(T) (the number of types over
each A) times pu(T) (the number of nonforking extensions of a type over
A) which equals x types over B.

To discuss the properties of A(T") and u(T') for uncountable theories we
need the following lemma which is obvious when the language is countable
orif x > |T|.

4.31 Lemma. If T is stable in x then every set of power x is contained
tn a model of power x.

Proof. Let A be an arbitrary set of power x. Define a sequence A; for 1 < w
with Ag = A and such that |A;| = x for all 7 and A;;; realizes all types
over A;. Then A, = U{A; :7 < w} is the required model of T

Now we can bound u(T) by A(T) and A(T) by 2!T1.
4.32 Lemma. If T is stable (i.e. if A(T) < 00) then u(T) < A(T) < 271

Proof. For the first inequality, let p € S(B). There exists A with A C B
and |A| < ®(T) such that p does not fork over A. We know from Lemma
4.25 (taking A\(T') as p ) that A(T) > &(T). So if |A| < &(T'), we can choose
by Lemma 4.31 a model, M, containing A with |M| < A(T') and thus
|S(M)| < A(T). But types over models are stationary so the number of
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contradictory nonforking extensions of p|A and, a fortiori, of p is bounded
by A(T) as required.

Now we prove the second inequality. For any A and any p € S(A), p can
be viewed as the product over ¢ € L of py. But, since T is stable for each
, |Ss(A)| < |A] s0 |S(A)| < |A|'T!. In particular, T is stable in 2!71.

4.33 Exercise. Show there is no relation between u(T) and «(T'). For
example, if T is theory of countably many independent unary predicates
k(T) = w and u(T) = 1. But, if T is CEF,,, #(T) = w and u(T) = 2¢.

Now using Lemma 4.32 we calculate the class of cardinals in which a
stable theory is stable.

4.34 Theorem (The Stability Spectrum Theorem). If T is stable then T
is stable in x if and only if x = M\(T) + x<*(T).

Proof. By Theorem 4.25 and the definition of A(T), the equality holds if T
is stable in x. The converse is immediate from Lemma 4.29 and 4.32.

From Theorem 4.34, Exercise 1.8, and simple facts about cardinals (e.g.
There are arbitrarily large cardinals of cofinality w; x°f(X) > y. ) one can
easily deduce the following result.

4.35 Corollary. T s superstable iff k(T) is w.

Theorem 4.34 gives a characterization of the stability spectrum above
2IT1. For countable T', A(T') = R or A(T") = 280 and the following theorem
describes the situation completely. If T is uncountable and A(T) < 2!7!
the more complicated situation is completely described in III.5 of [Shelah
1978).

4.36 Theorem. For a countable theory T one of the following four mutu-
ally exclusive situtations holds.

i) T is stable in all .

ii) T 1s stable in all x > 2%°.
iti) T is stable in x iff xX®° = x.
iv) T is stable in no x.

Proof. This easily follows from our previous results noting that «(T) is
either Rg or N;.

We can combine Theorems 4.25 and 4.34 to establish

4.37 Theorem. Suppose T is a countable stable theory and x > k(T).
Then T has a saturated model of power x iff T is stable in .

Proof. Suppose that T is not stable in x. Then by Theorem 4.34, either
A(T) > x (and certainly T does not have a saturated model of power x)
or x < x<*T)_ In the second case, T does not have a saturated model in
power x by Corollary 4.27.

We now prove that if T is stable in x then T has a saturated model
of power x. Let My be an arbitrary model of power x and construct by
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induction a continuous chain of models {M; : 7 < x} such that |M;| = x
for all 2 and every type over M; is realized in M, ;. Now let M be the
union of the chain {M; :7 < x}. We will show M is saturated. Let A be a
subset of M with |A| < x and let p be in S(A). If x is regular, it is easy
to see any such p is realized in M so for the rest of the proof we assume
X is singular. Extend p to r in S(M). There exists Ay contained in M
such that r does not fork over Ag and |Ag| < k(T'). Thus, we may assume
Ap is contained in My as, by Theorem 4.25, k(T') < cf(x). Now, choose
E = {&; :1 < x} such that €; is in M;4, and realizes r|M;. Note that r| M,
is stationary. As in the proof of Theorem I1.1.30, choose Ey U My C E such
that t(A; E U Mp) does not fork over Eg U Mp and |Ep| < «(T) + |A] < x
(since x is singular). Thus E — Ej is not empty. Any element e of E — E,
satisfies: t(e; Eg U AU M) does not fork over Eg U My (by the symmetry
lemma). But also t(e; Eo U Mp) does not fork over Mg so t(e; Eo U AU My)
does not fork over M. Hence e realizes p.

This argument is very similar to that in Theorem I1.1.30. We obtain the
sharper result because we have computed (7). Note that the existence
of saturated models did not rely essentially on the hypothesis that T is
countable.

The following exercises consider some variations on Corollary 4.27 ii)
and Theorem 4.37.

4.38 Exercise. Show that if (M; :7 < §) is an increasing sequence of -
saturated models and «(T) < cf(6) then |J; s M; is A-saturated.

4.39 Exercise. Find examples of superstable countable theories which do
and do not have countable saturated models.

4.40 Exercise. Prove the following weaker form of Corollary 4.27 ii) with-
out relying on Theorem 4.27 1). If 2ITI < 4 < u<<(T) then T has no saturated
model of power p. (Hint: Imbed the tree of Theorem 4.25 in a putatively
saturated model and show no b can realize more than 2!T! of the p,.)

4.41 Exercise. Prove the following generalization of Theorem 4.37 to un-
countable languages. Suppose T is stable and x > k(T'). Then T has a
saturated model of power x if and only if T is stable in x. (Hint: Extend
the proof of Theorem 4.271) to deal with trees contained in u<*(T) for
uncountable «(T"). Then proceed as in Theorem 4.37.)

4.42 Unstable Theories. In this subsection we briefly summarise the
properties of unstable theories. An introductory but more detailed account
of this subject appears in [Pillay 1983a]; a full treatment appears in Chapter
II of [Shelah 1978].

For any theory T let o(k) = o(T, k) = sup{|S(A)|: |A| < k} (where A
is a subset of the monster model of T'). The stability spectrum theorem
shows that for countable stable T there are only three possibilities for this
function: oy (k) = k, 02(k) = sup(k, 2*), 03(k) = k“. In the presence of the
generalized continuum hypothesis the only other possible such function is
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7(k) = 2*. With no hypothesis beyond ZFC it is provable that there are
only three possible such functions for unstable theories. These functions
depend on the value of ded(k), the supremum of the cardinals A such that
there is a linear ordering of power x with A Dedekind cuts. Shelah [Shelah
1978] and Keisler ([Keisler 1976], [Keisler 1978]) have shown that the only
other possibilities for o are o4(k) = ded(k), o5(k) = ded(k)¥, and og(k) =
2%. Each of these functions is determined by a syntactic property of T'.

¢ (x,b))

¢ (x, b))

¢ (xb)

(0} ('x,b3)

Fig. 10. ¢(z;y) has the strict order property.

¢ (a,b,)iff () =0
Fig. 11. ¢(z;y) has the independence property.

4.43 Definition. i) T has the strict order property (Fig. 10) if there are
a formula ¢(Z;7) and sequences (b; : ¢ < w), (@; : 4 < w) such that
E ¢(a;; b;) iff « < 5.
ii) T is multiply ordered if there exist a family of formulas ¢; for 7 < w
and sequences @; ; for ¢, j < w and ¢, for o0 € w* such that

|= ¢i(Ea;ai,j) iff j < O'(Z)
iii) T has the independence property (Fig. 11) if there are a formula
#(Z; ) and sequences (a; : ¢ < w) and (¢, : o € 2*) such that
E ¢(a@i;¢,) iff o(z) = 0.

Shelah [Shelah 1978] shows a theory has the order property (Fig. 12)
if and only if it is unstable (Fig. 13) if and only if it has either the strict
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. a3 . b3
] a2 . b2
.al . bl
-a, -b, (p(al.;bj)iffi<j
Fig. 12. ¢(z;y) has the order property.
a
c

?lazb)iftco
Fig. 13. ¢(z;y) is unstable.

order property or the independence property ([Shelah 1978] I1.2.25). Keisler
shows the equivalence between o (T, k) = 05 and T is multiply ordered. It
is not known whether it is consistent for o4 and o5 to be distinct functions.
There has been considerable work on such questions as replacing ¢(Z;7) by
¢(z;7) in the above definitions and in trying to extend results about stable
theories to theories which are not too badly unstable.

The results discussed here illustrate a common phenomenon in stability
theory which recurs for example in the solution of the spectrum problem for
the number of models of an w-stable theory. The spectrum functions that we
have computed involve the exponential function and thus the computation
of the functions is very much subject to axioms of set theory beyond those of
ZFC. The properties which distinguish the cases, however, stability, strict
order property etcetera are all very low in the Levy hierarchy (arithmetic
in this case) and so are absolute between, e.g. V' and L.

4.44 Historical Notes. Morley [Morley 1965] introduced the notion of
an w-stable countable theory and proved that an w-stable theory is stable
in all powers. Shelah, in considering uncountable languages, discovered the
importance of considering single formulas and introduced the full stability
hierarchy. The key Theorem 4.25 for establishing the stability spectrum
theorem appears here with a new proof (also due to Shelah). This proof
substitutes machinery from stability theory for the combinatorial argument
in [Shelah 1971]. The particular argument given here for Theorem 4.37 was
suggested to me by W.W. Tait. The theorem was first proved in various
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special cases by Harnik [Harnik 1975a] and in full generality by Shelah
[Shelah 1978]. Poizat [Poizat 1985] gives a straightforward proof that an
unstable theory has no saturated model of power A if A is singular.

5. Definable Chain Conditions in Algebra

In this section we apply the stability classification to the classification of
such natural algebraic structures as groups, rings, modules and fields. Our
primary interest is the identification of a family of examples for the general
theory. Since the basic notions of stability theory are extremely general for-
mulations of well known algebraic phenomena, they should and do acquire
a concrete and natural interpretation when applied to the most common
algebraic structures.

In general the calculation of the stability spectrum depends on finding
the cardinality of the Stone space and in finding certain trees of formulas.
But if a structure admits a multiplication then these trees can be replaced
by chains.

5.1 Definition. i) A group G satisfies the w-stable descending chain con-
dition if there is no infinite properly descending chain of definable
subgroups of G. (Fig. 14).

ii) A group G satisfies the superstable descending chain condition if
there is no infinite properly descending chain of definable subgroups
of G such that each subgroup has infinite index in its predecessor.

iii) A group G satisfies the stable descending chain condition if there
is no infinite properly descending chain of definable subgroups of G
each defined by an instance of a single formula ¢(z; 7).

iv) Let G be a group, ¢(z;y) a formula, and I' the collection of finite
intersections of ¢-definable subgroups of G. The group G satisfies the
full stable descending chain condition if there is no infinite properly
descending chain of elements of T'.

There are two somewhat unusual usages in the statements of these def-
initions and the following theorem. First, when we say G is a group, we
mean some formula in the language of G defines a binary operation under
which G is a group. Thus, G may admit additional structure. For example,
any field is a group in this sense. Secondly, in the following theorem we take
properties such as stability, which are defined for theories, to be properties
of algebraic structures, by saying, for example, G is stable when the theory
of G is. With these caveats we can state the following theorem.

5.2 Theorem. i) If G is w-stable then G satisfies the w-stable d.c.c.
i) If G is superstable then G satisfies the superstable d.c.c.
iil) If G is stable then G satisfies the stable and even the full stable d.c.c.
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Fig. 14. The w-stable d.c.c.

Proof. i) Let (B; :1 < w) be a properly decreasing chain of definable sub-
groups of G. Choose b; € B; — B;11. For each 1 € 2* define the type p,
which asserts that z € Cy;; where Cy)); is the coset of B;;; which contains
I1 j<iN(7)bj. Now as the types p, are pairwise inconsistent and can be ex-
tended to complete types over the countable set of elements necessary to
define the B; and their translates, there are 28 types over this set so G is
not w-stable.

The proof for ii) is similar, noting that since the index of B;;; in B; is
infinite, one can construct an w-branching tree and thus contradict super-
stability.

iii) It is immediate from the definition that a stable group satisfies the
stable d.c.c. The following argument extends the result to the full stable
descending chain condition. Let 9(z,y,Z) denote ¢(z - y,Z). Thus, each
translate of a subgroup defined by an instance of ¢ is defined by an in-
stance of ¢. So, if I contains an infinite descending chain the same type of
argument as in i) allows us to constuct a full binary tree of instances of 1.
Thus, T is unstable.

This consideration of formulas which define the translations of sets
within a group is the foundation for Poizat’s stratified order [Poizat 1981].
This refinement of the notion of the fundamental order provides an elegant
setting for much of the material discussed in this section. We survey this
approach in Section VII.3.

5.3 Exercise. Show that if G is a stable group then G satisfies the de-
scending chain condition on centralizers of elements. (Recall that the cen-
tralizer of a € G is {b € G : ba = ab}.) We denote it by Cg(a).)

5.4 Exercise. Show that if G is a stable group then for any subset X of
G there is a finite Xo C X with Cg(X) = Ca(Xo).

5.5 Exercise. Show that if G is an w-stable Abelian group then G has
the form D @ H where D is a divisible group and every element of H
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has order less than n for some integer n. In this situation H is said to
have bounded exponent. (Hint: Consider the descending chain of definable
subgroups (n!G : n < w).)

Macintyre [Macintyre 1971] proved the converse to the last exercise and
noted that w-stability is preserved by finite direct sums.

While the descending chain conditions are implied by the stability prop-
erties for any group, Garavaglia discovered the remarkable fact that for
modules the converses hold. The statement of these converses is facilitated
by the following useful notation.

5.6 Definition. Fix a theory T of modules. For any p = t(a@; B), let p+_de-
note {¢(Z;b) € p: ¢(Z;y) a p.p. formula}. Further, let p~ denote {—¢(Z; b) €
p: ¢(Z;7) a p.p. formula}.

Note that p is axiomatized by pt Up™ and p~ is determined by p*. Thus
the number of types over a set A is determined by the number of possible
pt over A. The following exercise relies on the p.p. elimination theory for
modules discussed in Section II.

5.7 Exercise. Prove that every theory of modules is stable..

5.8 Theorem. For any module M, M 1is superstable, respectively, w-stable
Just if M satisfies the superstable chain condition, respectively, the w-stable
chain condition on p.p.-definable subgroups.

Proof. We treat the superstable case and leave the easier w-stable version as
an exercise. If M satisfies the superstable d.c.c. for p.p.-definable subgroups,
then for every type p there is a formula ¢(z;b) € p such that there is no
¥(z,€) € p such that ¥(M;0) has infinite index in ¢(M;0). Now p* can
be axiomatized by p.p. formulas t(z;¢) such that | ¢(z;¢) — ¢(z;b).
But since each ¢(M;0) has finite index in ¢(M;0), there are for each ¥
only finitely many choices for inequivalent formulas 1(z;¢). Thus we have
only |R| + |B| + Ro choices for ¢(z;b) and then only 2!EI+®e choices for
the sequence of ¢(z;¢). That is, the number of positive types over B and
thus the number of types over B is bounded by 2!El+Ro x |B|. Hence T is
superstable.

The following argument provides a sufficient condition for a theory to
be unstable.

5.9 Lemma. Let M be a structure and ¢(Z;y) an atomic formula. If there
exist a,b € M such that

= 6(a;@) A 6(b;) A ¢(a; b) A ~¢(b;a)
then M* 13 unstable.
Proof. Let (¢;:7 < w) be the sequence of elements of M* defined by: ¢;(5) =@
if 7 >4 and ¢(5) = b if j < 4. Then MY |= ¢(C;; k) if and only if ¢ < k.
Thus, ¢ has the order property (Definition 4.43) and so T is unstable.
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This lemma has proved a key for applying stability theory to investigate
varieties of algebras. [Baldwin & Lachlan 1973] contains a complete discus-
sion of categoricity in power for varieties and more generally for universal
Horn classes. [Baldwin &McKenzie 1982] shows that much of the spectrum
problem for, at least, congruence modular varieties can be reduced to the
study of varieties of modules. All of these studies are based on extending
the definition of stability to include incomplete theories. An arbitrary the-
ory T is said to be stable if every complete extension of 7" is stable. The
following dichotomy summarises the value of this definition in the solution
of the spectrum problem for incomplete theories. If some extension of T
has the maximal number of models then so does T'; the requirement that
every complete extension of T" be stable imposes very strong conditions on
T.

5.10 Exercise. Show that if M is not w-stable then M* is not superstable.

5.11 Exercise. Show that every non-Abelian variety of groups is unsta-
ble. (Hint: Apply Lemma 5.9 to the formula ¢(zo, 21, yo,¥1) which asserts
[0, ¥1] = 1. See [Baldwin & Lachlan 1971], [Baldwin & Saxl 1976].)

Many of the examples in the rest of the book come from the theory
of modules. Thus, we need to develop some machinery for determining
whether types in the theory of modules fork. The following definition is the
first step.

5.12 Definition. Let T be a theory of modules, A C M, and p € S(A).

i) Let G(p) be
{#(M;0) : for some @ € A, ¢(z;a) € p*}
and let Go(p) be
{8(M;0) : (z;7) is p.p., [%: ¢ A 9] < w for some %(Z;0) € G(p)}-

ii) Let G(p) = §(p) and Go(p) = Go(p)-
5.13 Exercise. Show that if p C ¢ then G(p) 2 G(g) 2 Go(q) and Go(p) 2
Go(9)-

We show that ¢ is a nonforking extension of p just if the final contain-
ments of the last exercise can be reversed. Our argument relies on the

characterization of nonforking extensions of a type in terms of the number
of conjugates which is discussed in Section IV.1.

5.14 Theorem. Let T be a theory of modules and p C q. Then q 1s a
nonforking extension of p if and only if Go(q) = Go(p).

Proof. First observe that if § is a global type extending p and Go(§) 2 Go(p)
then ¢ is a nonforking extension of p. For, each conjugate of § is determined
by a map which assigns to each p.p.-definable subgroup of M, the coset of
that subgroup which is in §. But Go(§) 2 Go(p) implies that every such
subgroup has finite index in some member of G(p). Thus, ¢ has at most



96 III. Forking

2|RI+|AI+R0 conjugates over A and thus does not fork over A (Lemma
IV.1.14).

The following lemma shows that any ¢ with Go(q) € Go(p) can be ex-
tended to a § with the same property. By monotonicity, if Go(q) = Go(p), ¢
is a non-forking extension of p. But if ¢ does not fork over p then g extends
to a conjugate of a type p with Go(p) = Go(p). Since this last property is
preserved by conjugacy over A we see Go(q) = Go(p) and finish.

5.15 Lemma. Ifp C q and Go(q) 2 Go(p) then there exists § € S(M) with
p C ¢ and Go(g) = Go(p).
Proof. 1t suffices to show that

pU{~¥(z;m):me M, $(M,0) & Jo(p)}
is consistent. If not, there exist p.p. formulas ¢, Xi, ¥ such that for some
@ € A, ¢(z;a) € p, ~x(T;a) € p, and P(M;0) € Go(p) but for some W € M
ME ¢@;a) = (Vxi@a) v V o;(zm)).
<n I<m

Since M £ ¢(Z;@) — (V;<,Xi(Z;@)), Lemma 1.4.13 implies that for some
7, #(M;0) N ;(%;0) has finite index in #(M;0). But this, in turn, implies
that 4;(M;0) has finite index in ¢(M;0) + 1;(M;0). Since the last group
is in G(p) we have a contradiction.

5.16 Exercise. Show that if Go(p) = G(p) then p is stationary. Find a
counterexample to the converse.

5.17 Exercise. Let T be the theory of M = Zf“. For each p.p.-formula
o, let (¢) denote the set of p.p. formulas which are deducible from ¢. Let
p be the type determined by pt = (2 X v = 0). Let a € M be an element
of order 4 and let q be the type determined by ¢* = (2(z — a) = 0). Then
in M @& Zj, p is realized by (0,2) and q is realized by (a,2). Show that
Go(p) = Go(q) = {z:2 x z = 0} and thus that p does not fork over 0 but
q does.

The definition of Go(p) reflects an idea that plays an important role in
this area.

5.18 Definition. The group G is connected if it has no proper definable
subgroup of finite index.

This name is suggested by analogy with the connected component of
the identity in an algebraic group with the Zariski topology. The notion
is important here both because of the relative ease with which connected
groups can be found in this context and the consequences of assuming a
group to be connected. In fact, if G is an affine algebraic group over an
algebraically closed field F' and we consider G in the language imposed by
the imbedding of G in F™, then G is connected in our sense exactly if G is
connected in the sense of the Zariski topology.

The following terminology is convenient for discussing the structure of
stable groups. The usage is standard in the study of infinite groups.
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5.19 Definition. Let ¥ and K be classes of groups. Then the group G is
said to be ¥ by K if there is a normal subgroup H of G which is in ¥ such
that G/H € K.

5.20 Exercise. Show that if G is an w-stable group then G is connected
by finite. (Hint: Apply the d.c.c.)

We prove a more delicate version of this result which is in [Baur, Cherlin
& Macintyre 1979).

5.21 Theorem. If G is Rg-categorical and stable then G is connected by
finite.

Proof. Let T',, be the collection of subgroups of G which are definable with
at most n parameters and have finite index in G. By the Rg-categoricity and
Ryll-Nardzewski’s theorem (Theorem 1.3.1), there are only a finite number
of possible defining formulas for these groups. Thus by the full stable d.c.c.
there is a minimal such group, H, which is definable without parameters.
If (H, : n < w) forms an infinite decreasing chain, then G realizes infinitely
many 1-types, again contradicting Ryll-Nardzewski’s theorem.

The following results presage the proof in Chapter VIII that a super-
stable division ring is an algebraically closed field.

5.22 Theorem. If F' is an infinite stable division ring then the additive
group FT of F is connected.

Proof. Suppose for contradiction that A is a proper definable subgroup of
F* with [F* : A] < w. Let T be the collection of subgroups aA for a a
nonzero element of F. By the full stable d.c.c., there is a group Ap =T
with finite index in F. But then Ag is an ideal in F' and since F is infinite,
Ao # (0); thus, Ag = F.

A very similar argument solves the following exercise.

5.23 Exercise. Show that if N is a finite normal subgroup of a connected
group G, then N is contained in the center of G. (Hint: Imbed G in the
automorphism group of N via conjugation. Consider the kernel of this
imbedding.)

5.24 Exercise. Show that if G is a group, f is an endomorphism of G
such that ker f is finite, and [G : f(G)] is infinite, then [f(G) : f2(G)] is
infinite.

5.25 Theorem. Let G be a connected superstable group and h a definable
endomorphism of G with finite kernel. Then h is surjective.

Proof. If f is not onto, G is connected implies [G: f(G)] is infinite. Applying
Exercise 5.24 and induction we see [f"(G) : f**!(G)] is infinite for each
n < w. But this contradicts the superstable d.c.c.

5.26 Historical Notes. The reduction of stability to chains in structures
admitting a multiplication is foreshadowed in [Macintyre 1971] and ex-
plicit in [Baldwin & Saxl 1976] and [Shelah 1975]. The proof that stable
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groups satisfy the full descending chain condition first appears in [Cher-
lin & Reineke 1976]. As remarked there the argument generalizes that for
centralizers which Baldwin generalized from a lemma in [Baldwin & Saxl
1976]. The simple argument given here was pointed out by Ziegler. Poizat
[Poizat 1981] gives still another proof.

There have been a number of powerful applications of the methods de-
scribed in this section. It has been shown in varying degrees of generality
in [Felgner 1975], [Cherlin & Reineke 1976}, [Sabbagh 1975], and [Bald-
win & Rose 1977] that any semisimple stable ring is a finite direct sum
of matrix rings over division rings. This generalizes the classical proof of
the Wedderburn-Artin theorem by showing that each use of the descend-
ing chain condition on all ideals can be replaced by a use of the stable
descending chain condition.

The strongest known result concerning stable groups is that an Rg-
categorical stable group is nilpotent by finite; moreover, if the group is
w-stable then it is Abelian by finite. This profound result was proved in
[Baur, Cherlin & Macintyre 1979).

In another direction, Cherlin [Cherlin 1979] has conjectured that the
w-stable simple groups with finite Morley rank are ‘classical ’ simple groups
and verified this result for groups with low Morley rank. Simon Thomas
[Thomas 1983] has verified this conjecture for locally finite groups. Further
important work on this line is contained in [Nesin 1985], [Berline & Lascar
1986], [Hrushovski 198?d], and [Hrushovski 1986].





