
Chapter I

Groundwork

The first section of this chapter purports to be a nontechnical introduction
to stability theory. It attempts to provide an overview where a neophyte can
find his bearings when the subsequent discussions threaten to lose the forest
for the trees. The second section contains the necessary list of prerequisites
and fixing of notation. We attempt to explain a few of the conventions
which have become second nature to specialists but are unfamiliar to many
model theorists and unknown to recursion theorists. The third section is
an attempt to both summarize the results that a reader should at least be
aware of and to show how some of the particular constructions of this book
fit into the proof of a more familiar result, Morley's categoricity theorem.
One aim of this book is to show the relationship between stability theory
and classical algebra. Although various illustrations of this relation will
appear in the book, the simplest continuing example is the theory of mod-
ules. Thus, in Section 4 of the first chapter we relate the basic properties
of the model theory of modules. As we explain in Section 1 the subject of
stability theory contains both a structure and a nonstructure side. Most of
this book concerns the structure theory. Section 5 contains a brief survey
of the methods and results on the nonstructure side.

1. An Overview of Stability Theory

An algebraic structure theorem (Ulm's theorem) assigns to each member
of a class K of algebras (countable Abelian groups) a system of invariants
(the Ulm invariants) which determine the structure up to isomorphism.
But many familiar classes, for example, the class of linear orderings, have
no such structure theorem. A classification theorem for universal algebra
determines for each member K of a family K of classes of algebras whether
or not such an algebraic structure theorem holds for K, and, if there is one,
exhibits it. This book expounds the fundamentals of what is, perhaps, the
first such classification theorem for universal algebra. This theory applies to
several families of classes, the most important of which is the family of first
order definable classes of algebras or more generally, relational structures.
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To aid this exposition and as a step towards the eventual extension of the
theory to more general families of classes, we have adopted an axiomatic
framework for this book. These axioms describe notions of independence
and generation which when satisfied yield the structure theory. Parts A and
B of this book describe these axioms and the partition of first order theories
which they determine. In Part C we develop the richer part of the structure
theory and in Part D use the invariants assigned by the theory to count the
number of models of a theory. We outline briefly at the end of Chapter I
how to construct the maximum number of nonisomorphic models for each
class K which does not have a structure theorem in our sense. However,
since a very different and rather set theoretic group of methods is used to
prove these results we do not develop them in this book.

The use of the phrase 'system of invariants' in the previous paragraph
begs a fundamental question. The usual mathematical meaning of this
phrase is a single number (the dimension of a vector space) or a finite
sequence of cardinals (the orders of the generators of a finitely generated
Abelian group) or an infinite sequence of cardinals (Ulm invariants). We
must make a major generalization of this notion which is suggested by the
following simple example. Let T be the theory of two equivalence relations
£?ι, EΪ such that E\ has infinitely many classes and each EI class is re-
fined into infinitely many infinite E<2 classes. A model of T is determined
by a set of sets of cardinals: for each E\ class the set of cardinalities of
E<2 classes contained in it. Since it is easy to iterate this example, we are
led to the following inductive definition of a system of invariants. A system
of invariants of rank 0 for a structure A is a set of at most 2'τl cardinal
numbers each less than or equal to \A\. A system of invariants of rank β
is a set of at most 2lr'systems of invariants each of rank less than β. We
discuss in the text some natural variants on this idea. The methodological
significance of this notion is argued at greater length in [Shelah 1985] and
[Baldwin 1986].

There are a number of other uses of the word invariant in mathematics.
For example, one refers to the fundamental group of a topological space as
an invariant of that space. We demand that a system of invariants for a
structure determines that structure up to isomorphism. Still, it would be
possible to provide more general systems than suggested here. For example,
[Pillay & Steinhorn 1986], one could replace the cardinal numbers by linear
orderings. It seems the definition given here produces as simple a set of
invariants as one could envision if structures involving refining equivalence
relations are to be covered by the theory.

The computation of the number of isomorphism types of members of a
class K with cardinality at most Nα provides a challenging test problem
for a structure theory. We call the resulting function of a the spectrum
function for the class K. We write /*(Nα,/Γ) = \{M G K : \M\ < Nα}|.
Our definition of a system of invariants has the following immediate conse-
quence. If all members of K have a system of invariants of rank less than
/?, then /*(Nα,/f) < 3/?(sup(2^°, |α + ω|)). (The \a + ω\ arises here as the
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number of cardinals less than Nα.) A weak version of the contrapositive of
this result is even more striking. If, for all sufficiently large /c, K has 2*
models of power K then K has no system of invariants of rank β for any
β. This raises the question of whether there is a middle ground, a class K
which has fewer than the maximal number of models but does not admit a
system of invariants. The major conclusion about the spectrum function is
that no such middle ground exists. To state this result precisely but sim-
ply, let K be the family of all elementary classes in a countable language.
For every K G X", for all sufficiently large α, /*(Nα, K) = 2**α or for all α,
/*(Nα, K) < 1β(\a + ω\) for some β less than ω\. This dichotomy is known
as 'the main gap'.

The ultimate regularity which arises from the classification of the finite
simple groups is the existence of a finite number of families of simple groups.
This regularity is obscured by the 26, relatively small, sporadic groups.
Similarly, the classification of the spectrum function is obscured by some
'static' among the small models. The correct picture is obtained by first
examining the eventual behavior of the spectrum function and then fine-
tuning to find its values for small cardinals.

Thus, in this book we will first develop a classification of first order
theories. Then for each class of theories we will prove that no structure
theory exists for that class or develop one. This classification consists first
of a partition of all theories into four stability classes. There are three other,
mutually independent, relevant properties: the dimensional order property,
the omitting types order property, and depth. A priori, these properties
divide all theories into 32 classes. In fact, once a property can be shown to
imply that there is no structure theorem we do not have to consider the
partition of the theories with that property by the other properties.

In the remainder of this introduction we provide a geography of stable
theories. That is, giving few formal definitions and no proofs, we list the
types of theories, state the relations between the different types and provide
a few examples of each kind. We indicate how invariants are attached to
models of theories in the various classes.

In the following survey we deal only with first order theories with count-
ably many relation and function symbols. Our ambivalent attitude toward
uncountable languages in this book has two sources. First, most of the
theories that arise in mathematical practice are naturally formalized in
countable languages. However, some are not, notably the theory of vector
spaces over the real numbers. Second, a number of important advances in
the theory, and I mean important for the study of countable theories, arose
from the consideration of uncountable theories. Thus, in the main text, we
state most results in a form applicable to uncountable languages and we
remark when this case involves added difficulties.

The first dichotomy in our classification of theories is between those
which are stable and those which are unstable. Essentially, a theory T is
unstable if it is possible to find in some model of T a linear order which is
definable in T on some infinite set of n-tuples. Otherwise, T is stable. Thus,
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any theory of linear order, any extension of the theory of Boolean algebras,
and the theory of arithmetic are all examples of unstable theories. Any
unstable theory has 2λ models of power λ for any uncountable λ ([Shelah
1978]). Thus, no structure theory of the sort described above is possible for
the class of models of T.

We will discuss the class of stable theories from an historical viewpoint.
The notion of stability arose in the study of categorical theories. A theory
T is said to be categorical in power λ if all its models of power λ are
isomorphic. Los [Los 1954] and Vaught [Vaught 1954] proved in the middle
1950's that if a countable theory with no finite models is categorical in
some infinite power λ then it is complete. Los conjectured in [Los 1954]
that if a countable theory T is categorical in one uncountable power then
T is categorical in every uncountable power. (This conjecture is suggested
by the Steinitz theorem that every algebraically closed field is determined
by the cardinality of its transcendence basis over the prime field.) Morley
[Morley 1965] proved the Los conjecture; in the process, he introduced
a wider class of theories than the NI-categorical theories, those that he
called totally transcendental and which we now call α -stable. Examples
of α -stable theories include, in addition to all NI-categorical theories, the
theory of differentially closed fields of characteristic zero, the theory of an
equivalence relation with infinitely many infinite classes, and the theory of
any Abelian group which is the direct sum of a divisible Abelian group and
one of bounded exponent. A more specific version of the last example is
the theory of the Abelian group Z$ φ Z%.

While extending Morley's theorem to theories in uncountable languages,
Shelah discovered that the crucial properties of α -stable theories could be
generalized by localizing some of Morley's notions from types involving all
formulas to φ-types, types which contain only instances of a single formula,
φ. He was then able to isolate a larger class than the α -stable theories which
shared a number of the properties which make α -stable theories tractable.
He called these theories stable. At the same time he discovered a notion
which lies between α -stability and stability which he called the class of
superstable theories. In [Shelah 1978], Shelah extends the nonstructure
result by proving that any theory which is not superstable has 2λ models
of power λ for every uncountable λ. A natural example of a superstable but
not α -stable theory is the theory of (Z, +). A slightly less natural example
of a stable but not superstable theory is the theory of (Zw, +).

The effort to determine exactly which theories have the maximal num-
ber of models in each uncountable power required the introduction of two
further concepts. A theory is said to have the dimensional order property if,
speaking roughly and somewhat inaccurately, it is possible to define an or-
dering within the theory with the use of cardinality quantifiers (There exist
KX such that ...). Any such theory has 2λ models of cardinality λ for any
uncountable λ. The simplest example of such a theory is the theory of two
crosscutting equivalence relations E\ and E<ι such that each equivalence
class of the relation E\ Π E<2 is infinite.
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Another complication appears exactly at the separation between super-
stable and u -stable theories. It is much more difficult to work out the
structure theory for superstable theories than it is for u -stable theories.
An interim solution is to restrict the class of models considered when T is
only superstable. Of course, such a restriction actually strengthens the re-
sult when we prove the restricted class has the maximal number of models.
There are a number of families of classes of models which can be treated in a
nearly uniform way. The two families K which receive the most attention in
this book are KI = {K: K is the class of models of an u -stable theory} and
JC2 = {K: K is the class of S-models of a superstable theory}. The models
in the second family, which we call the strongly ω-saturated models, are
also known in the literature as F^-saturated models, Ne-saturated models
and α-models.

The discussion so far shows that if a theory is to have less than the
maximal number of models in some uncountable power λ, then T must
be superstable and must not have the dimensional order property. In this
book we give a complete solution to the spectrum problem for countable
u -stable theories and for S-models of countable superstable theories. The
full solution of the original problem, that is the assigning of invariants to
the class K$ = {K : K is the class of models of a superstable theory} was
obtained recently and will appear in the second edition of [Shelah 1978].

The solution of the spectrum problem for theories in the classes KI
and KI depends upon a key construction which assigns to each model of
power A a skeleton of submodels. Each submodel has cardinality at most
2ω and the skeleton is partially ordered by the natural tree order on a
subset of λ<ω. The isomorphism type of the model is determined by the
small submodels and this partial ordering. One more property of a theory,
which distinguishes between structure and nonstructure, depends on the
isomorphism types of trees associated with models of the theory. If one of
these trees is not well-founded, the theory is said to be deep and has 2λ

models in every uncountable power λ. If not, the theory is shallow and the
type of structure theory we have described exists. We are able to assign
to each such shallow theory a depth β corresponding to the rank of a
system of invariants, as discussed above, and to compute the spectrum
function of KI or K<2 in terms of that depth. Both the dimensional order
property and depth are properties which are independent of the stability
hierarchy. A good example of a deep u -stable theory which does not have
the dimensional order property is the theory of a single unary function such
that each element has infinitely many preimages.

There is a further subdivision of the shallow theories which do not have
the dimensional order property. This division is determined by the number
of 'bases' to which one can independently assign a dimension. Thus the
theory of an equivalence relation with two infinite classes is 2-dimensional
since to determine a model we must prescribe the number of elements in
each of two classes. Two important classes arise in this context. A theory
T is called bounded if there is a cardinal δ(T) such that every model of
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T can be determined by specifying less than 6(T) dimensions. T is called
unbounded or multidimensional, if no such δ(T) exists. If the theory T is
bounded then T has fewer than |α|2W strongly ω-saturated models in power
Nα. But if T is unbounded, T has at least 2α strongly α -saturated models
of power Nα, where, for simplicity, α > 2ω.

Shelah's solution of the problem for the class K3 requires the introduc-
tion of a number of new ideas which will be treated only peripherally here.
The one property necessary to state the final classification is the omitting
types order property. Again, a non-first order property is used to define
a linear ordering. The main gap becomes: If a superstable theory T does
not have the dimensional order property, is shallow, and does not have the
omitting types order property then /"(N^T) < 30(|α|) for some β less
than ω\.

The final solution of the spectrum problem can be summarised as fol-
lows. Shelah defines an extended logic LOO^C+(QD) where c = 2**° and QD
quantifies over dimensions of independent sets. In [Shelah 198?], Shelah
shows that if T is a countable superstable theory without either the di-
mensional order property or the omitting types order property then each
model of T is characterized up to isomorphism by a sentence of LOO,C+ (Qr>)
Since validity in this logic is invariant under changes of the set theoretic
universe which do not collapse cardinals and which fix the continuum, the
isomorphism classes of such a theory are fairly absolute. If T does not sat-
isfy these conditions, Shelah shows that one can extend the universe of sets
by a notion of forcing which preserves cardinals and the continuum yet
changes the isomorphism classes of T.

This completes our survey of the relation between the stability hierarchy
and the number of models in an uncountable power. We have said nothing
as yet about the impact of this theory on the problem of determining the
number of countable models of a theory.

Categoricity in power NO interacts with the stability hierarchy in an
interesting way. There are No-categorical theories which are unstable, for
example, dense linear order without endpoints. At the other extreme are
the theories which are totally categorical, that is, categorical in every in-
finite power. Theories in the latter class have a very rich structure which
has prompted some of the most sophisticated of the stability theoretic in-
vestigations. Every such theory is closely tied to either the theory of an
infinite set, the theory of infinite dimensional projective space over a fi-
nite field or the theory of infinite dimensional affine space over a finite
field. We will summarize this connection and provide more detailed refer-
ences in Chapter VIII. Lachlan [Lachlan 1974], and independently Shelah
[Shelah 1978], proved that a superstable No-categorical theory is ω-stable.
Lachlan's investigation of the stronger conjecture that every No-categorical
stable theory is ω-stable resulted in the definition of a pseudoplane and the
first introduction of geometry into the subject.

A second major consideration regarding countable models arose from
Vaught's conjecture that an NI-categorical theory has either 1 or N0 count-
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able models. Morley [Morley 1970] proved that such a theory has at most N0

countable models. Baldwin and Lachlan [Baldwin & Lachlan 1971] proved
this conjecture of Vaught and established that the dimension theory of
NI-categorical theories is extremely well behaved. Later Lachlan [Lach-
lan 1973] extended this result to superstable theories by proving that a
countable superstable theory is either No-categorical or has infinitely many
countable models. Lascar [Lascar 1976] and Shelah [Shelah 1978] provided
more conceptual proofs of this result. Finally, Pillay [Pillay 1983] gave the
simplest and most general version of the theorem. As before, the attempt to
extend the result from the superstable case to the stable, that is, to prove
that a countable stable theory can not have a finite number of countable
models, remains a major open question.

The third major question about countable models, Vaught's conjecture
that a first order theory has either 2**° or at most N0 countable models
has also been attacked by stability-theoretic means. The only result proved
for an arbitrary theory is Morley's theorem that any sentence of LW l > ω has
either NI or less countable models or exactly 2**° countable models. This
proof turns out to be a result in descriptive set theory. This has led to a
number of attempts to prove the conjecture itself by the methods of de-
scriptive set theory. So far, there has been no further success on this front.
There have been a number of solutions to the problem for special theories
such as linear orderings [Rubin 1974] and trees [Steel 1978]. The attempt to
solve the problem by breaking it down according to the stability hierarchy
has led to the following results. Vaught's conjecture is true for ω-stable
theories [Shelah, Harrington, & Makkai 1984]. It is also true for stable the-
ories with Skolem functions [Lascar 1981]. Finally, Vaught's conjecture is
true for linearly ordered models with Skolem functions [Shelah 1978a]. The
extension of the result in [Shelah, Harrington, & Makkai 1984] to super-
stable theories seems difficult. Even if it is managed, the usual problem of
stable but not superstable theories will remain.

This introduction, and the book as a whole, emphasizes the role of the
spectrum problem in the development of stability theory. This makes the
organization of the discussion simpler while obscuring some of the other
important contributions of the theory. In particular, the structure theory
itself may have been lost in this discussion of its application. Many of the
structure results in algebra are not actually stated in terms of assigning
invariants but rather as the the decomposition of an arbitrary member of
some class into a 'product' of known members of the class. The Wedderburn
theory is a nice example of this sort. Of course, such a result leads to an
assignment of invariants if the 'product' operation is sufficiently tight and
the factors are well enough known. We have such a decomposition here,
but the 'product' operation is extremely complicated because the factors
are partially ordered by a tree. We have chosen to treat this decomposition
as an 'internal direct sum'. In [Baldwin & Shelah 1985] it is treated as
an 'external direct sum'. That approach emphasizes the significance of the
structures \<ω and λω. These are the partially ordered sets of all finite
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sequences (respectively all countable sequences) from a cardinal λ. The
assertion that every sufficiently saturated model with power λ of a stable
(superstable) theory can be decomposed over a skeleton of the form λω

(λ<ω) means that the relation between any two elements in M depends on
only a countable amount of information even when λ is very large.

There have been major advances in applying these techniques to the
study of infinitary languages and languages with generalized quantifiers.
Although almost no mention of these matters is made here, the reason
for our general approach is the hope of eventually incorporating all these
seemingly diverse enterprises into a single framework.

The following table summarises the contents of this section and provides
an overview of the stability classification and its relation to the number of
countable models. The rows describe a place in the stability classification.
A theory belongs in a particular row if it satisfies the condition at the left
of the row and does not satisfy the condition in the previous row. The
columns indicate the number of countable models. An entry of ςx' means
there is no theory of this kind; an entry of '?' means the existence of such
a theory is unknown; a numeric entry refers to a theory witnessing that
property from the list of theories which follows the table. Many of these
examples are discussed in more detail in the text.

An Array of Stable Theories

i < μ < 2*° 2*°

x x
x 5
x 7
x 9
x 13

1. The theory of an infinite set. The theory of Z"k.
2. The theory of the integers with the successor function. The theory

of an algebraically closed field. The theory of (Q, +).
3. The theory of an equivalence relation with two infinite classes.
4. The theory of an equivalence relation with one class of cardinality

n for each positive integer n. The theory of an equivalence relation
with two classes and a copy of a theory of the second kind in each
class.

5. The theory of an equivalence relation with infinitely many classes
and a model of a theory of the second kind in each class.

6. The theory of the structure (2ω, £?», +) where + denotes coordinate-
wise addition and Ei(σ, τ) holds if σ\i = r\i.

7. The theory of (2ω,£<) with Ei defined as in type 6. The theory of

(*,+)•
8. The theory of (V, BI, #2, •)' where V is a vector space over a finite

field and the Bi are a decreasing sequence of subspaces such that

CLASS

!ι -categorical
ω-stable

superstable
stable

unstable

1

1
3
x
?

10

n < ω

x
x
x
?
11

No

2
4
6
8
12

NI

x
X

?
?
?
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[Bi : Bi+ι] = N0. (The countable models are determined by the di-
mension of Π^ )

9. The theory of (ωω,Ei) where Ei is defined as in type 6. The theory

10. The theory of dense linear order without endpoints. The theory of
atomless Boolean algebras.

11. The theory of the structure (Q, <, 0,1,...). All known examples are
variants of this one.

12. Any disjoint union of an No-categorical unstable theory with a theory
with NO countable models.

13. Any complete theory of linear orderings which is not No-categorical
[Rubin 1974]. The theory of (Z, +, <).

2. Basic Notions And Fundamental Conventions

In this section we fix our notation. We assume the reader is familiar with
such results as the compactness and Lόwenheim-Skolem theorems and such
notions as model completeness and quantifier elimination.

We use α,/?, 7 for ordinals and /c,μ, λ for cardinals. The notation λa

generally means the set of functions from α into λ and λ<α the set of
functions from initial segments of a into λ. This notation should cause little
confusion as we rarely use ordinal exponentiation. /cλ denotes ambiguously
the set of functions from λ into /c or the cardinality of that set of functions.

Throughout this book we will be considering models of a complete first
order theory T which has no finite models. We denote by \T\ the cardinal-
ity of T, that is, the number of relation symbols, constant symbols, and
function symbols in the language of T which we denote L(T) or just L. We
regard equality as a logical symbol and will always interpret it as identity.

We will write φ(x) for the first order formula 0(zι,..., xn) but will not
make the n explicit unless its value is crucial. We write M for the structure
(M; (Rf4 : Ri an L(T) - symbol)). We denote by a G M the assertion that
ά is a finite sequence of elements from M, again suppressing the length of
the sequence unless it is particuarly relevant. If it is relevant we denote
this length by lg(α). Technically, such a sequence is a function and we
should write rng(ά); however, we identify such a finite sequence with its
range except on those few occasions when confusion is rife. In particular,
we frequently write a U B to denote {αo,. ., an-ι} U B. If a is a function
from A to #, we write α(ά) to abbreviate (α(αι),..., α(αn)). For a G M,
we write M |= φ(a) to indicate that the sequence (αi,... ,αn) satisfies the
formula φ(x) in the structure M. Let φ(x',y] be an L-formula and let a
denote a sequence of elements from M. We denote by φ(M;a) the set
{m G M : \= φ(m]ά)}. If X = φ(M',a} we say X is definable over any
set which contains ά. For any structure M, we write Th(M) for the set of
L-sentences true in M. We denote by (M,£), the structure obtained by
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adding names for each element b G B C M. We write M |= (3\kx)φ(x) if
\φ(M)\ = k and M |= (3lx)φ(x) if \Φ(M)\ = 1.

We will be studying the relation between models M, T V , . . . of the theory
T. It is inconvenient if there is an embedding α of M into TV such that
M (= φ(m) but TV (= -ι0(α(ra)). Of course, this situation does not arise
when M is an elementary submodel of TV, written M X TV. Specifically,
this problem cannot arise if the theory T is model complete. We also deal
with substructures, A, B, C,... of models of T. Again, it is inconvenient
if the truth of φ(a) depends upon the particular embedding of a into a
model of T. These problems disappear if we assume that T is quantifier
eliminable. Fortunately, this is a harmless assumption in our context. For,
given any theory T in a language L, we first extend L to a language L# by
adding a relation symbol Rφ(χ)(x) for each formula φ(x). Now we extend
T to a theory T# in L# by adding the axioms (Vx)[φ(x) <->• Rφ^)(x)]. The

resulting theory T# is equivalent to T for the properties in which we are
interested but is quantifier eliminable. For example, for any /c, T and T#
have the same number of models of power K. Thus we make the following
fundamental convention.

2.1 Convention. The theory T is a complete quantifier eliminable theory
with no finite models.

While we hold to this convention when proving the general theorems
in the text, we will on occasion deal with specific examples of naturally
occurring theories that do not admit elimination of quantifiers. Thus it
will be essential, although never mentioned, to observe that the definitions
we make are preserved in the extension from T to T#.

We may apply any definition made for a theory (e.g. quantifier elim-
inable) to a structure M by saying M has the property if Th(M) does.

By means of the translation discussed before Convention 2.1 we are
at liberty to assume that all languages are relational. For simplicity of
expression we will formulate many examples in languages with function
symbols.

For the following exercises we write M Π TV for the intersection of two
structures only when the intersection is a common submodel of M and
TV. This detail will automatically be satisfied on the basis of Convention
2.1. These exercises either are direct translations of terms such as quanti-
fier eliminable or can be deduced from these concepts by the 'method of
diagrams'.

2.2 Exercise. If T admits elimination of quantifiers and a e M Π TV, where
M and TV are models of T, show that for any formula φ(x), M \= φ(a) if
and only if TV |= φ(a).

2.3 Exercise. Show that if T is complete then T has the joint embedding
property. That is, if MI and MI are models of T then there is a model TV
and elementary embeddings OL\ and #2 of MI and TV/2, respectively, into
N.
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2.4 Exercise. Show that if T is model complete then T has the amalga-
mation property. That is, if MI and M2 are models of T and MI Π M2 (= T
then there is a model N and elementary embeddings ot\ and α2 of MI and
M2, respectively, into TV which agree on MI Π M2.

2.5 Exercise. Show that if T admits elimination of quantifiers and if MI,
M2 are models of T with MI Π M2 = A, there is a model TV and elementary
embeddings ot\ and α2 of MI and M2, respectively, into TV so that αi and
α2 agree on A.

Many results in this book are assertions that a certain property holds
for all cardinals /c. The proofs given will seem to depend upon the cardinal
/c or even upon the existence of a 'well-behaved' model of power ACI which is
larger than /c. In fact, this dependence is illusory; the arguments are uniform
in /c. Rather than continually remark on this uniformity, we assume that
there is a well-behaved 'monster' model Λt whose cardinality is greater than
that of any object in our discussion. For the moment, we take well-behaved
to simply mean '.M is a model'. Thus our only use at the moment of this
artifice is to be able to write M \= φ or (= φ interchangeably rather than
have truth depend on particular models. We have already explained that
the assumption that T is quantifier eliminable justifies this simplification.
In order to further specify what is meant by well-behaved we recall a few
notions from basic model theory.

The Stone representation theorem (e.g. [Sikorski 1964]) associates with
each Boolean algebra B a totally disconnected Hausdorff space S(B), the
Stone space of B. When B is the Boolean algebra of formulas with param-
eters from a subset of a model of T, this space has a particularly important
interpretation. The analysis of this space is one of the key tools used in
this book. We do not prove the Stone representation theorem but we re-
view the principal ingredients of the proof in our context. We begin by
defining the Boolean algebra of definable subsets of M (or Xn). Then we
will discuss the natural interpretation of the Stone space of this Boolean
algebra. A formula over B C M is the result of substituting a sequence of
parameters b from B into an L-formula φ(x',y) to obtain φ(x',b). For any
A C Λl we write Diag(A) for (φ(a) : \= φ(a)}.

2.6 Definition. Fn(B) denotes the Boolean algebra of formulas with n
free variables having parameters from B. The Boolean operations in Fn(B]
are just the Boolean operations on formulas. Note that we identify formulas
up to equivalence in Th(M,β).

We write F(B) ambiguously for Fn(B) for any finite n and Fω(B) for
\J{Fn(B) :n <ω}. When we want to emphasize the dependence on T, we
write F(T) or Fn(T) for F(0) or Fn(0).

The type of a over B is a complete description of how a relates to the
set B. Formally,
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2.7 Definition. Let lg(α) = n. The (complete) type of a over B, denoted
£(α;B), is

{φ(x):\=φ(a)foτφeFn(B)}.

More generally an α-type p is a consistent set of formulas with α free
variables usually denoted (xi: i < ya). We denote by domp the domain of
p, that is, the smallest subset of M which contains all parameters which
occur in a formula in p. We say a type p is realized by α if |= φ(a) for each
φ(x) G p. For p a type, we let p(M) equal

{a(ΞM:\=φ(a),φep}.

If A is a set, by t(A', B) we mean £(α; B) where α is a fixed enumeration
of A. More detail on this convention occurs in Section II.2. The complete
type p is a principal type if there is a formula φ(x) G p such that for all
Ψ(x) € p, |= φ -+ ψ.

2.8 Definition. The (nth) Stone Space of B, denoted Sn(B), is the col-
lection of all complete n-types over B. We make Sn(B) into a topological
space by specifying the collection of sets Uφ = {p G Sn(B): φ G p} where
φ G Fn(B) as a basis of open sets.

2.9 Exercise. Show that each set Uφ is actually clopen. Conversely, show
that each clopen subset of Sn(B] is definable by a single formula with
parameters from B.

We write S(B) ambiguously for Sn(B) for any finite n and Sω(B) for
\J{Sn(B): n < ω}. We sometimes write S(T) for types over the empty set.

An n-type over A is a subset of an element of Sn(A). Thus types may
be incomplete but are always consistent. If p is a type over A and B C A
then p\B = {φ(x',b) : φ(x;b) G p and 0(z;5) G F(B)}. We could regard
two types p and q over possibly different domains as equal if they are
satisfied by the same elements of the monster model; that is, if p(M) = q(M).
However, this identification destroys the notion of domp and makes talk
of the cardinality of a type impossible. Thus, we formally view a type as a
collection of formulas which has a definite domain and cardinality. Abusing

notation we write the expression ί(α; A U d) = £(α'; A U a ) to mean there

is an automorphism of Λt which fixes A, maps a to a! and d to a .
For p(x) a type over A, we write p \- φ(x) if every realization of p

satisfies φ. Note that this is the same as saying that if L1 is formed by
adding new constants c to L then in L', Th(M,A) U p(c) implies φ(c).
It is tempting to assume that types are closed under logical consequence.
Unless this concept is suitably restricted, however, it makes nonsense of
the notion of the cardinality of the domain of p. That is, for every p and
for every α G M, α = a would be in p. We sometimes explicitly assume that
if domp is specified as A, φ(χ-, a) is over A and p |— φ(χ-, ά) then φ(x; α) G p.
Then, types are closed under conjunction.

There is a complete discussion of the impact of various kinds of closure
conditions on the definition of type in Chapter II of [Shelah 1978].
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2.10 Exercise. Let A C B. Show the restriction map is continuous from
S(B) onto S(A).

2.11 Exercise. Show that a point p G S(B) is isolated just if p is a prin-
cipal type.

2.12 Exercise. Let (Z, S) denote the integers under successor. Show that
|S'1(Z)| = NO and that it contains a unique non-isolated point. Note that if
we replace (Z, S) by (Z, <) then there are two non-isolated points.

2.13 Exercise. Let T be a countable theory. Show that if \S(A)\ = 2*°
for some finite A then T has 2**° countable models.

2.14 Exercise. Find an example showing the necessity of the assumption
that A is finite in the previous exercise.

Regarding S (A) as a topological space provides a certain insight into the
behavior of types. Moreover, it provides a very compact notation for some
operations which are model-theoretically important. We next summarize
some topological background which is useful in this context.

2.15 Topological Facts. Suppose A C B and r denotes the restriction
map from S(B) onto S(A). Since S(B) is compact, r is continuous, and
S(A) is Hausdorff, r is a closed map. Moreover, if X is a closed subset of
S(B) then r(X) is compact.

The following definition lists those properties we will need to specify the
'well-behaved' nature of the monster model.

2.16 Definition, i) The model M is λ-saturated if for every ACM with
\A\ < λ, every p G S(A) is realized by some b G M.

ii) The model M is λ-compact if for every p with domp C M and \p\ < λ,
p is realized in M.

iii) The model M is \-homogeneous if for any subsets A and B of M,
such that \A\, \B\ < λ and Th(M, A) = Th(M, jB), and for any m G M
there is an m' G M such that Th(M, A, m) = Th(M, B, ra').

iv) The structure M is X-universal if for every N = M with \N\ < λ,
there is an elementary embedding of N into M.

v) The structure M is compact, saturated, homogeneous if it is respec-
tively, |M|-compact, |M[-saturated, |M|-homogeneous.

The following exercises just list some of the basic properties of these
notions. They all occur in, for example, [Chang & Keisler 1973].

2.17 Exercise. Show that if Af is A-saturated then M is λ-homogeneous.

2.18 Exercise. Show that if M is homogeneous, ά and b are sequences
from M with cardinality less than \M|_and £(ά; 0) = t(b] 0) then there is an
automorphism of M which takes α to b.

2.19 Exercise. Show that any two saturated elementarily equivalent mod-
els with the same cardinality are isomorphic.
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2.20 Exercise. Show that any two elementarily equivalent, homogeneous
models of the same power which realize the same types (of finite sequences)
over the empty set are isomorphic. (This problem is more difficult than the
last; it needs to be done by induction on the cardinality of the structures.)

2.21 Exercise. Show that if λ > \T\ then λ-saturated and λ-compact are
equivalent.

2.22 Exercise. Show that a model M is saturated if and only if M is both
homogeneous and universal.

2.23 Exercise. Show every saturated model M is |M|+-universal.

2.24 Exercise. Show that any theory T has a κ+-saturated model of car-
dinality < 2*. (Hint: Choose any model of T with cardinality < 2" and
realize every type over each subset of M with cardinality < /c. Repeat this
procedure /c+ times and take the union of the chain of models constructed
in this way.)

Assuming the continuum hypothesis one can deduce from Exercise 2.24
that every theory has a saturated model of power NI. Our approach here
is to avoid such general set-theoretic hypotheses and search for conditions
on a theory which allow a specific model theoretic construction, e.g. a
saturated model of power NI. This particular problem is discussed fully in
Theorems II.2.20 and ΠI.4.37.

Now we can finish defining the concept of the monster model.

2.25 Convention. We assume that all models and sets that we deal with
are contained in a saturated model, called the monster model and denoted
M.

As we mentioned earlier, the existence of this model is only assumed as
a technical convenience. For those who prefer a more concrete characteri-
zation and who believe in large cardinals, we might take M as a saturated
model of power /c where /c is the first strongly inaccessible cardinal.

Items i) and ii) in the following definition are standard notation through-
out this book; item iii) fixes our notation for the remainder of this section.

2.26 Notation, i) If α is a partial automorphism of M and p is a type
with domp C domα then α(p), sometimes written αp, is the type
{φ(x',a(a)}:φ(x',a) Ep}.

ii) For A C M, Aut^(M) denotes the set of automorphisms of M which
fix A pointwise. We call an element of Aut^(M) an A-automorphism
ofM.

iii) Fix A C M C N and suppose M is saturated and \A\ < \M\. Let r
denote the projection map from S(M) onto S(A). Fix X C S'(M);
let P = r(X). Let XN denote {ή € N: t(n\ M) G X} and PN denote
{neN:t(ή;A)eP}.

Note that XN C PN.
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For any B, the elements of S(B) can be viewed either syntactically as
maximal consistent sets of formulas and thus topologically as elements of
the Stone space or semantically as equivalence classes of elements in the
monster model. The next series of results show the advantage of adopting
the right view at the right time. The following theorem shows that if a
subset of S(M) is definable in M but invariant under A-automorphisms of
M then, if M is sufficiently saturated, the subset is actually definable over
A. Its statement depends on the notation established in 2.26.

2.27 The Basic Definability Theorem. If X is clopen in S(M) and X
is invariant under Aut A (M) then XN = PN

Proof. Let \l)(x;m) define X. By assumption ^(af ra) must be invariant
under yl-automorphisms of M. Suppose PN — XN is not empty; then for
some p G X, q = p\A U {-*ψ(x',m)} is consistent. Let a in M realize q and
let b in M realize p\A U {ψ(x± m)}. Then there is an automorphism of M
which fixes A and takes a to b. This contradicts the invariance of ψ(χ-, m).

2.28 Corollary. Under the notation of 2.15 and the conditions of Theorem
2.27:

i) r~lr(X)=X.
ii) r(X) = P is clopen in S(A).

Proof, i) simply restates the conclusion of Theorem 2.27. ii) follows by an
immediate topological argument noting r(X)c — r(Xc).

2.29 Exercise. Prove Corollary 2.28 ii) by logical means (a 'double com-
pactness argument').

By taking M = N = M in Theorem 2.27 we obtain the following corollary
which is used extensively in Chapter IV.

2.30 Corollary. // X is a definable subset of M and X is fixed by every
A- automorphism of M then X is definable over A.

2.31 Historical Notes. The basic notions discussed at the beginning of
this section can be found hi such texts as [Chang & Keisler 1973], [Bridge
1977], [Hodges 198?], [Poizat 1985], [Shoenfield 1967], or [Sacks 1972]. The
more advanced material can also be found in [Chang & Keisler 1973] and
[Sacks 1972]. Morley pointed out that for the problems discussed here, one
could assume without loss of generality that the theory admits elimination
of quantifiers. The notion of a monster model was introduced by Shelah.

The vital role of types in model theory was recognized in the middle
1950's. Morley [Morley 1965] introduced the systematic study of Stone
spaces. The important role of the basic definability lemma first surfaced in
Poizat 's proof of the symmetry lemma for forking (cf. exercises III. 2. 26 and
IΠ.2.27.). Its general significance became evident during the 1980-81 model
theory year in Jerusalem. Thus, it plays an important role in [Harnik &
Harrington 1984]. The formulation here was suggested by Dale Myers.
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3. Categoricity Of Countable Theories

In this section we quickly survey the prehistory of stability theory by de-
scribing the main results known by 1965 about theories which are categor-
ical in some infinite power. Recall that a theory Γ is categorical in power K,
if all models of T which have cardinality /c are isomorphic. To organize this
survey we prove Morley's theorem that a countable theory is NI-categorical
if and only if it is categorical in every uncountable power. Since this result
will appear naturally when we develop the solution to the general spectrum
problem, the treatment here is more of an overview. There are several ex-
cellent accounts of the theorem in print [Morley 1965], [Chang & Keisler
1973], [Sacks 1972], [Baldwin & Lachlan 1971]; the proof here differs some-
what from all of these. We collect in this section those ingredients of the
proof which do not arise in the natural development of the general theory.
For other results we will refer to the place in this book where a proof is
given. Thus, this survey will provide a point of reference for the more ab-
stract developments later. We assume in this section that each theory has
a countable language.

Before giving this proof we state a full characterization of countable
theories which are No-categorical. A proof of this characterization can be
found in any of the general references cited above.

3.1 Theorem (Ryll-Nardzewski's Theorem). Let T be a countable com-
plete theory with no finite models. The following are equivalent:

i) T is #Q-categorical.

ii) For each n, Sn(T) is finite.

iii) For each n, Fn(T) is finite.

This proof of Morley's theorem falls into three parts. We first define
the concept of a strongly minimal theory. In a strongly minimal theory
we are able to directly generalize the notion of algebraic dependence from
the theory of vector spaces or fields. Thus, the proof that such a theory
is categorical in all uncountable powers just follows the usual argument
that the transcendence degree of an algebraically closed field determines
the field up to isomorphism. We then show that this result extends to any
theory T such that:

i) there is a strongly minimal formula, </>, in the language of T.
ii) if M is a model of T, then M is prime and minimal (Definition 3.16)

over φ(M).

It is easily seen that the second condition holds if φ is not a two-cardinal
formula (see Definition 3.19). Finally, we show that if T is categorical in
some uncountable power then it is possible to make a harmless extension
of T which satisfies conditions i) and ii). Thus, we can deduce Morley's
theorem.
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3.2 Definition, i) The formula φ(x\ a) is strongly minimalm T if φ(M; a)
is infinite and if for every formula ψ(x\ c) (with c from the monster
model M) either φ(Mf, α) n ψ(M',c) or φ(M]a) Π -*ψ(M', c) is finite,

ii) The theory T is strongly minimal if the formula x = x is strongly
minimal in T.

iii) The formula 0(x;ά) is minimal in M if for any formula ψ(x',c} with
parameters from M either <^(M α) Π ψ(M; c) or φ(M\ a) Π ->^(Mz; c)
is finite.

We call a set A strongly minimal when A = φ(M) for some strongly
minimal formula φ.

The first important property of a strongly minimal formula is that it
is possible to assign a dimension to the solution set of the formula in any
model. We do this by introducing a notion of dependence which is a direct
extension of the notion of an element of a field depending on several others.

3.3 Definition, i) The element a is in_the algebraic closure of the set B
if there is a_formula φ(x',b) with b G B such that φ(M,b) is finite
and |= 0(α,6).

ii) We denote the set of all elements in the algebraic closure of B by
cl(B). If a £ cl(B), we say £(α; B) is an algebraic type] all realizations
of such a type are in cl(B).

iii) A set E is algebraically independent if for every e G E, e & d(E — e).
iv) A set £ is a basis for a set F if E C F, £ is independent, and

cl(E) 2 F.

We may also describe this situation by saying a depends (algebraically)
on B. Note that this dependence notion has finite character. That is, if a
depends on B then α depends on a finite subset of B. In Lemma 3.6 we
show that within a strongly minimal set this notion of dependence satisfies
the axioms for vector space dependence. Chapter II is devoted to a full
discussion of the abstract notion of dependence.

3.4 Exercise. Show that if T is No-categorical and A is finite then d(A)
is finite.

3.5 Exercise. Show that if £(α; B) is algebraic then t(α; B) is principal.
Show the converse fails.

3.6 Lemma. Suppose φ(M) is strongly minimal and (aUBUC) C φ(M).

i) αGcl(α).
ii) // α G cl(B U C) and B C cl(C) then a G cl(C).

iii) // a G cl(C U b) and a <£ cl(C) then b G cl(C U α).
iv) If a G d(B) andBCC then a G cl(C).

All of these properties except iii) are easily verified by just chasing the
definitions. A direct proof of iii) is in [Baldwin & Lachlan 1971]. We will
see in Chapter III how to deduce iii) from the general properties of forking.
It is now routine to deduce as in linear algebra the invariance of dimension
for a strongly minimal set.
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3.7 Lemma. If $(M) is strongly minimal then all bases X for 4(M) have 
the same cardinality. 

The second important property of a strongly minimal set is that if 4(x; Ti) 
is strongly minimal, then for any set A with Ti E A there is a unique non- 
algebraic type p E S(A) with 4(x; Ti) E p. The next two exercises highlight 
the ideas needed to prove Theorem 3.10. 

3.8 Exercise. If X and Y are independent subsets of a strongly minimal 
set which have the same cardinality, then t(X; 0) = t (Y; 0). (Hint: Work by 
induction on 1x1, showing first that within a strongly minimal set there is 
a unique non-algebraic type.) 

3.9 Exercise. If X and Y realize the same type over the empty set then 
there is an isomorphism between cl(X) and cl(Y). (Hint: Apply Zorn's 
lemma.) 

3.10 Theorem. If T i s  a strongly minimal theory then T i s  categorical i n  
all uncountable powers. 

Proof. Let M and N be models of T and X ,  Y bases of M and N, respec- 
tively. By the first of the above exercises, there is an isomorphism between 
X and Y; by the second, it extends to an isomorphism between M and N. 

We have established the first part of our planned proof. The next step 
is to extend Theorem 3.10 from strongly minimal theories to those where 
the universe of each model is determined by the solution set of a strongly 
minimal formula. For example, the universe might be the algebraic closure 
of a strongly minimal set. In our outline of the proof we referred to harm- 
less extensions of a theory. The next definition makes precise the class of 
extensions to which we refer. The exercises show that these extensions are 
indeed harmless in our context. 

3.11 Definition. i) For any theory T, any M + T and any sequence 
iZ E M,  TI = Th(M, Zi) is an inessential extension of T. If Ti is finite, 
TI is a finite inessential eztension of T.  

ii) If the finite inessential extension TI of T is axiomatized by adding a 
single sentence to the axioms of T, then TI is a principal extension 
of T. 

iii) If some principal extension TI of T has a strongly minimal formula 
4 E L(T1) such that if M TI, M = cl(4(M)), the theory T is 
almost strongly minimal. 

3.12 Exercise. Show that for any tc with tc<P = tc and any countable 
theory T, T has a p-homogeneous model of cardinality tc. 

The previous exercise is needed for one implication in the following ex- 
ercise. 

3.13 Exercise. Let TI be a principal extension of the countable theory 
T. Show that for any uncountable tc, T is tc-categorical if and only if TI is 
tc-categorical. 
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3.14 Exercise. Show that if T is almost strongly minimal then T is cat- 
egorical in every uncountable power. 

3.15 Exercise. Show the theory of the Abelian group Z,W is categorical in 
every uncountable power but not almost strongly minimal. In particular, 
if M + T then M is not the closure of the elements of order 2. (Hint: This 
requires the results on quantifier eliminability of Abelian groups discussed 
in Section 4.) 

We need to extend the notion of a model being generated by a set. The 
first two notions in the following definition are plausible candidates for 
the 'model generated by A'. In general, however, if 'generated model' is 
defined by either of these conditions there is no guarantee that the model 
generated by A will, in fact, exist. The third notion provides a condition 
on T which implies that prime models in the sense of Definition 3.16 i) 
exist. We will see that if T is n-categorical for some uncountable n and 
if A is an infinite definable set, both kinds of model generated by A do 
exist. Chapter IX contains a detailed study of possible formalizations of 
the notion of generation. 

3.16 Definition. i) The model M is prime over A g M if every ele- 
mentary map of A into a model N of T extends to an elementary 
embedding of M into N. If A is empty we simply say M is a prime 
model of T. 

ii) The model M is minimal over A if A M and there is no proper 
elementary submodel N of M with A S N. 

iii) The theory T is n-stable if for every A M with IAl 5 n, IS(A) I 5 n. 
iv) The theory T is stable if it is n-stable for some n. 

Morley's definition of an w-stable theory began stability theory. We will 
see an important source of w-stable theories in Theorem 3.18 which shows 
that a countable theory which is categorical in some uncountable power is 
w-stable. 

The following result demonstrates the powerful effect of combining the 
existence of strongly minimal formulas and minimal prime models. The 
lemma generalizes the fact that if M = cl(X) then M is both prime and 
minimal over X. 

3.17 Lemma. If some principal extension T' of T has a strongly minimal 
formula $ such that each model M of T' is minimal and prime over $(M), 
then T is categorical i n  all uncountable powers. 

Proof. Let M and N be models of T with cardinality n > No Let $(x; g) 
be an L(T)-formula such that $ ( x ; ~ )  is strongly minimal in T' for any E 
which realizes the principal type p. Then we can choose E M and F2 E N 
to expand M and N respectively to models of T'. Then, if X and Y are 
bases for $(M; F1) and $(N; F2) respectively, 1x1 = (Y I = n. Since both fi 
and F2 realize p, this implies there is an isomorphism between X and Y 
which extends, as in the proof of Theorem 3.10, to an isomorphism between 
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-0(M;cι) and ψ(N',c<2). But since M is minimal and prime over
this isomorphism extends further to an isomorphism between M and N.

To complete our proof of Morley's theorem we need to show that if T
is categorical in some uncountable power then every model of T is prime
and minimal over the interpretation in it of a strongly minimal formula.
For 'prime', we quote the following theorem which is proved in Chapter IX.
The first part is fairly complicated; the second depends only on the Vaught
[Vaught 1961]characterization of prime models.

3.18 Theorem, i) IfT is ω-stable then for every A there i& a prime model
over A.

ii) If M is prime over 0 and m €ϊ M, then Th(M,m) is a principal
extension ofT.

To apply Lemma 3.17 we will show, in fact, that any uncountable model
of T, or of any inessential extension of T, is minimal over any infinite
definable subset. Moreover, we will find a principal extension of T which
has a strongly minimal formula. The next definition and following two
theorems accomplish the first aim.

M' \ ,
N

Fig. 1. A two cardinal model

3.19 Definition. (Fig. 1). The formula φ(x',a] is a two-cardinal formula
for T if there exist distinct models M C N with a G M, such that φ(M\a)
is infinite and φ(M',a) = φ(N',a). Sometimes (M, AT) is called a Vaughtian
pair.

The next theorem yields that every model of a theory which is categorical
in some power is prime and minimal over any definable subset.

3.20 Theorem. Suppose the countable theory T is categorical in some
power K, > N0

i) No finite inessential extension ofT has a two-cardinal formula.
ii) If M \= T and M is prime over φ(Mm, ά) then M is minimal over

φ(M a).
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Since we show below that a theory which is categorical in some uncount-
able power is ω-stable and since, in general, ω-stability implies stability
Theorem 3.20 i) is easily deduced from the following important result (the
two cardinal theorem)proved in Section IX. 5.

3.21 Theorem. If T is a countable stable theory and φ(x',a) is a two-
cardinal formula in T, then for every λ > K, > \T\ there is a model, M, of
T with cardinality λ and with |0(M;α)| = K.

Now, to derive Theorem 3.20i) from Theorem 3.21, suppose that T is
/c-categorical. If the finite inessential extension T' of T has a two-cardinal
formula, Theorem 3.21 implies there is a model M of T1 with cardinality K,
but with \φ(M',a}\ = NO- Clearly there is another model N of T of power
/c with \φ(N-,b)\ = K for every choice of the parameters b. Taking reducts
of these two models to the original language contradicts the κ>categoricity
ofT.

Theorem 3.20 ii) follows immediately from Theorem 3.20 i) and the def-
inition of a two-cardinal formula.

We have thus established condition ii) in our strategy for proving Mor-
ley's theorem proclaimed after Definition 3.1. In order to find the strongly
minimal formula, required by condition i) of the strategy, we must first
show that a theory which is categorical in some uncountable power is
ω-stable. This requires the introduction of another powerful technique,
the method of Ehrenfeucht-Mostowski models. Surprisingly, this method
will play no further role in our development of the positive structure the-
ory. As we indicate in Section 5, it is the principal tool in the construc-
tion of many non-isomorphic models. There are actually two ingredients to
Ehrenfeucht-Mostowski models, Skolem hulls and indiscernibles. For any
first order language L we define the Skolem language associated with L as
follows.

3.22 Definition, i) Let L° = L and for each i < ω, let L*+1 denote the
language obtained by adjoining to L1 the lg(^)-ary function sym-
bol F^Xφ for each L*-formula (3x)φ(x,y) in which y does not oc-
cur bound. Let Lsk, the Skolem language associated with L, denote

ii) For any L-theory T, the Skolem theory, Tsk, associated with T is
obtained by adding to T the Skolem axioms:

(^)(Bx)φ(x,y) ^ φ(F3xφ(y),y)

for each Lθfc-formula (5x)φ in which y does not occur bound.

iii) If T is an L- theory and M \= T, then a Skolem expansion, Msk, of
M is any model obtained by interpreting each of the new functions
so as to satisfy the Skolem axioms.

3.23 Exercise. For any T, Tsk admits elimination of quantifiers.
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The next result follows immediately from the previous exercise. Both
results are easily proved by induction on the complexity of formulas. See
[Chang & Keisler 1973].

3.24 Lemma. Let M be an L-structure, X C M and let Mj^ denotes
the closure of X under the Skolem functions as interpreted in Mθ/c, then
Msk χ Mskm We call Msk th

3.25 Definition. Let E C M be linearly ordered by <, which need not
be a definable relation in M. The ordered sequence (E, <) is a sequence
of order indiscernibles if for any φ(x) and any pair e, e' of finite sequences
from E, which are both in increasing order, (= φ(e) <-* φ(e').

The following result is proved using the compactness theorem and Ram-
sey's theorem.

3.26 Theorem (The Ehrenfeucht-Mostowski Theorem). If T is a theory
with infinite models then for every infinite cardinal AC, T has a model which
is the Skolem hull of a sequence of order indiscernibles with cardinality K.

3.27 Exercise. Prove Theorem 3.26. (Good accounts of this theorem ap-
pear in [Chang & Keisler 1973] and [Morley 1967].)

3.28 Exercise. Deduce from (the proof of) Theorem 3.26 that if T has
infinite models then for every infinite cardinal /c, T has a model which
contains a set of indiscernibles of order type K.

We deduce from Theorem 3.26, using the last exercise and the properties
of Skolem models, the following fundamental result.

3.29 Theorem. For any theory T and any cardinal K there is a model M
ofT with \M\ = /c such that for any subset A of M with \A\ < \T\, at most
\T\ types over A are realized in M.

Proof. Choose by the proof of the last exercise a model, M, of T which is
the Skolem hull of a well ordered set, Y , of length /c. Let A be a subset of
M with \A\ < \T\. Now each element m of M is determined by a Skolem
term tm(x) and a finite sequence ym from Y. For any b E M, t(b',A) is
determined by the term fa and the position of yb with respect to the \A\
tuples ya for α E A. But there are only |Λ| ways to interpolate a finite set in
a well-ordered set of cardinality K,. Thus, there are at most (|T| x \A\) < \T\
types over A realized in M.

Note that Theorem 3.29 does not depend on the countability of T.

3.30 Corollary. // a countable theory is categorical in some uncountable
power then it is ω -stable.

Proof. Let T be categorical in K, > NO- Suppose T is not ω-stable; then there
is a countable set A with |ί>(A)| > NO- By compactness there is a model
N of T with I TV I = /c, A C N and with uncountably many types over A
realized in N. But N must also be isomorphic to the model constructed in
Theorem 3.29. This contradiction yields the result.
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Many of the basic notions expounded in this book were developed by
Shelah in his work on the generalized Los conjecture: if a theory T is
T+ -categorical then it is categorical in all powers. The following exercise
shows that such a theory must be |T|-stable; in fact, it must be stable in
all A > |Γ|.

3.31 Exercise. Show that if the theory T (in a possibly uncountable lan-
guage) is categorical in some /c > |T| then T is |T|-stable.

We want now to combine 3.30 and 3.20 to show that if T is categorical
in some uncountable power we can find a principal extension of T with
a strongly minimal formula. We first draw a more precise syntactic con-
sequence of the hypothesis that no finite inessential extension of T has a
two-cardinal formula.

3.32 Lemma. // no finite inessential extension of T has a two-cardinal
formula then for every formula φ(x;y) there is an integer n such that for
every c, if\φ(M',c)\ > n then φ(M c) is infinite.

Proof. Expand L by adding a new predicate symbol U and new constant
symbols a. Let Γ be a set of sentences in the new language which assert:

i) U defines a proper L-elementary submodel of the universe.
ii) Every solution of φ(x',a) is in U.

iii) There are infinitely many solutions of </>(x; α) in U.

Since no finite inessential extension of T has a two-cardinal model, Γ is
inconsistent. But, if for arbitrarily large m < ω, there is a cm £ Λl such
that |0(Λt;cm)| = m, Γ is consistent. Thus, the required n must exist.

To guarantee condition i), denote the relativization of an L-sentence ψ to
the predicate U by ψu . Place in Γ the sentence ψu — > ψ for each L-sentence

Ψ

The following observation is a straightforward consequence of compact-
ness.

3.33 Lemma. The formula φ(x;a) is strongly minimal if and only if for
every formula ψ(x', y) there is a positive integer n such that the two formulas

and

are not both consistent.

One of the basic applications of u -stability is the construction of min-
imal sets. The proof is one of a number of variants on the proof that a
closed uncountable set of reals contains a perfect subset. A somewhat more
detailed explanation of this part of the next argument appears with The-
orem IΠ.1.7. We concentrate here on the fact that in the absence of a two
cardinal model we can require the set to be strongly minimal.
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3.34 Theorem. IfT is an ω-stable countable theory with no two-cardinal
formulas then there is a strongly minimal formula with parameters in the
prime model ofT.

Proof. Let M be a prime model of T. We can easily choose a formula φ(x\ α)
with parameters from M which is minimal in M (i.e which cannot be split
into two infinite parts by a formula with parameters from M . (If not, we
would construct an infinite binary tree and contradict ω-st ability.) If this
formula is not strongly minimal then, by Lemma 3.33 we can find a formula
V>(z;|7) and for each n G ω a dn such that both

and

hold in Λl. Now, for arbitrarily large n, either 0(x;α) Λ ψ(x',dn) is infinite
and φ(x\~a) Λ -»t/>(£;dn) is finite or vice versa. In the first case χ(x y) =
φ(x\y) Λ -"^(x;!7) contradicts Lemma 3.32 and the second case is similar.

Now, given a theory T which is categorical in some uncountable power,
we can choose by Theorem 3.34 and Theorem 3.20 ii) a principal extension
T' which satisfies the hypothesis of Theorem 3.17 and thus is categorical
in all uncountable powers. As observed in the Exercises 3.12 and 3.13, this
implies T is categorical in all uncountable powers and we have established
Morley's theorem.

3.35 Theorem (Morley's Categoricity Theorem). Let T be a countable
first order theory. Then T is categorical in one uncountable power if and
only ifT is categorical in all uncountable powers.

The most subtle point of this argument is the choice of the additional
parameters for the strongly minimal formula. Let T be an NI -categorical
theory. As we noticed in Lemmas 3.6 and 3.7 it is rather easy to see that if
φ(x) is strongly minimal in T then the dependence relation defined by alge-
braic closure allows us to assign a dimension to the strongly minimal set. If
T is not No-categorical, it is easy to conclude that infinitely many distinct
finite dimensions are possible. Thus when φ contains no parameters one
concludes that T has NO countable models. Thus, by Theorem 3.34, some
finite inessential extension of every NI but not N0-categorical theory has
infinitely many countable models. To prove that T itself has infinitely many
models is much more difficult. It may be that different instances of φ(x;y)
give rise to different dimensions so we cannot assign a dimension to each
model. We will establish in Chapter XIII that not only every NI -categorical
but every superstable countable theory which is not No-categorical has N0

countable models.

3.36 Historical Notes. The characterization of No-categorical theories is
due independently to Ryll-Nardzewski [Ryll-Nardzewski 1959], Svenonius
[Svenonius 1959], and Engeler [Engeler 1959].
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There are at least three fairly distinct proofs in print of Morley's the-
orem; the one given here is a variant on one of them. The first proof by
Morley [Morley 1965] makes substantial use of the rank of types, for exam-
ple, in the construction of sequences of indiscernibles. The proof in [Chang
& Keisler 1973] avoids the use of rank but depends, as does Morley's, on
the isomorphism of elementarily equivalent saturated models with the same
power. The proof here is closely based on that in [Baldwin & Lachlan 1971]
but substitutes the two-cardinal theorem for stable theories (Theorem 3.21)
for an ad hoc argument in that paper. The one feature which all the proofs
have in common is Corollary 3.30, which was first proved by Morley, draw-
ing on the fundamental paper [Ehrenfeucht & Mostowski 1956]. The notion
of a strongly minimal set was introduced by Marsh [Marsh 1966]. The same
concept was known to Morley as a rank 1 degree 1 set.

The fact that an ω-stable theory with no two-cardinal model has a
strongly minimal formula is closely related to the finite cover property.
This intriguing notion is explored in [Keisler 1967], Chapter II.4 of [She-
lah 1978], [Poizat 1983], [Poizat 1984], [Hrushovski 1986], and [Baldwin &
Kueker 1980].

4. Introduction to the Model Theory of Modules

One of the major examples used to illustrate the concepts introduced in
this book is the theory of modules. In this section we explain the basic facts
about the theory of modules which are needed below. Many of the proofs
are sketchy; for details see [Ziegler 1984] or [Prest 198?]. By the 'theory of
modules' we actually mean the theory of left β-modules for any specified
ring R. The following definition makes this precise.

4.1 Definition. The language, LR, for the theory of β-modules consists
of a binary function symbol +, a constant symbol 0, and for each element
of the fixed ring R a unary function symbol fr.

The axioms assert that a structure (M +, 0, { f r : r G R}) is a unitary R-
module. That is, (M; +, 0) is an Abelian group, each fr is an endomorphism
of this group, and /i is the identity map. We often abbreviate fr(y) as ry
and (3w)rw = y by r\y. We denote the theory of all Λ-modules by TR.

4.2 Examples. The two most important examples are vector spaces over a
division ring and modules over the ring of integers Z which are, of course,
just Abelian groups. For many of our uses the reader will not suffer by
restricting himself to these cases.

4.3 Positive Primitive Formulas. A formula φ is a positive primitive
(p.p.) formula if it is equivalent in TR to an existential quantification of a
conjunction of atomic formulas. In LR, φ is positive primitive just if φ has
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(or is equivalent to a formula with) the form:

( Σ α<j0j + Σ bikXk = o)
k<n

for some m, ra,p < ω. Thus, a positive primitive formula asserts the solv-
ability of a finite system of linear equations. If we write A for the matrix
of coefficients (α^ ) and B for the matrix of coefficients (6^) and think of y
and x as column vectors, we can rewrite this p.p. formula as an existentially
quantified matrix equation:

This allows one to simplify the expression even further when R is a principal
ideal domain and, in particular, when R = Z and we are speaking of the
integers. We require the following fact found in most graduate algebra texts.

4.4 Theorem. Suppose H is a square matrix over the principal ideal do-
main R. Then there are invertible matrices X and Y such that XHY is a
diagonal matrix.

Using this fact it is straightforward to deduce the following normal form
for p.p. formulas over a principal ideal domain. Remember that the usual
definition of a prime number makes sense in any principal ideal domain.

4.5 Corollary. // R is a principal ideal domain then every p.p. formula
φ(v) is equivalent in TR to a conjunction of formulas of the form pk\t(v) or
of the form t(v) = 0 where t(ϋ) denotes an R-linear combination of variables
from v, p is a prime and k a natural number.

The following exercises outline a proof from Theorem 4.4 of Corol-
lary 4.5.

4.6 Exercise. Show using Theorem 4.4 that the expression

can be transformed to

where D is a diagonal matrix.

4.7 Exercise. Note that (*) is equivalent to a conjunction of formulas of
the form r\t(v) or of the form t(v) = 0. Factor the elements r to obtain the
form in Corollary 4.5.

Note that the collection of p.p. formulas is closed under existential quan-
tification and conjunction. Moreover, the standard preservation theorems
imply that the set of solutions of a p.p. formula is preserved under exten-
sion, product and homomorphism of models.

Even more importantly any p.p. formula φ(x) with no parameters defines
a subgroup of Mn (where n = lg(z)). A p.p. formula φ(x',a) defines either 0
or a coset of the subgroup defined by φ(x'fl) where 0 defines a sequence of
O's of appropriate length. To see that φ(xmfl) defines a subgroup, note that
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M \= 0(0;0) and if M (= 0(α; 0) Λ 0(6; 0) then M_f= 0(α + 6; 0). (We write
ά + 6 to denote the coordinatewise sum of α and 6.) Summing up, we have:

4.8 Lemma. If φ(x;y) is a p.p. formula then for any a such that φ(x',a)
is consistent there is ab so that 0(M; α) = b + φ(M\ 0).

4.9 Exercise. Verify Lemma 4.8.

Note that these results imply that any p.p. formula φ(ά\y] is either
equivalent to a p.p. formula of the form 0(0; 6 — y) or is inconsistent.

4.10 Exercise. Show that if R is commutative and φ(x) is a p.p. formula
without parameters then φ(M) is a submodule of Mn.

The p.p. formulas determine the lattice of p.p. definable subgroups where
the meet of two such subgroups is their intersection and the join is defined
by (φ + ψ)(v) = (3w)φ(w) Λ ψ(v — w).

The following exercise is crucial to our development.

4.11 Exercise. For any p.p. formula φ and any α, 6, either 0(z;α) and
0(x;6) are equivalent or they are contradictory.

Here is the main theorem of this section.

4.12 Theorem. Fix an R- module M. For every formula φ(x) there is a
formula 0*(x) which is a Boolean combination of p.p. formulas such that
M\=φ(x)^φ*(x).

The proof of this result depends on one algebraic result and one easy
combinatorial lemma.

4.13 Lemma ([Neumann 1954]). Suppose Hi for i < I with I < ω are
Abelian groups. Fix k < I such that for each i < k, [Ho : HQ Π Hi] is finite
while for k < i < /, [Ho : HQ Π Hi] is infinite. If HQ + αo <Ξ Ui</^ + ai for

some sequence (αz : i < /}, then HQ + αo C \Ji<kHi + α^.

4.14 Exercise (A combinatorial lemma). Let A and AQ, . . . , An-\ be fi-
nite sets. Show A C (Ji<nAi iff

ΔCn z'€Δ

Proof of Theorem 4>12 We will proceed by induction on quantifiers. Thus,
consider the formula (Vy)^(^ y) and suppose by induction that ψ is a
Boolean combination of p.p. formulas. Since universal quantification dis-
tributes over conjunction and p.p. formulas are closed under conjunction
we may assume ψ has the form:

0o (z;y)-» V Φί&y)

where each φi is p.p. For each i < n, let Hi denote the subgroup 0;(0;M).
Then for any 6, ^(6; y) is equivalent (by the remark after Lemma 4.13) to

HQ + α0 <Ξ U
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for appropriate choice of the α^. Note that some of the Hi + α^ may be
empty. If we reorder the α* so that [H0 : HQ Π Hi] < ω iff i < k then apply
Lemma 4.8, we see that ^(α; y) is equivalent to:

HQ + CLQ C \JHi + ai. (*)
i<k

Now the key fact is that the truth of (*) can be expressed by a formula
which does not mention the α^. To see this let H denote ^\{Hi :i <k} and
let for Δ C k - {0}

zEΔ

Let m — [HQ : H]. Then HQ + αo is the union of m cosets of H. For each i, if
(Hi + cLi) Π (HQ -f αo) = Bi is not empty then Bt contains n^ = [HQ Γ\Hi'.H]
cosets of H. Thus HQ + αo C \Ji<kHi + α^ if the number of distinct cosets
of H which occur in \J{Bi : i < k} is greater than m. The number of
these cosets is not Σ nt (since this counts various cosets more than once)
but must be computed using the NΔ and the combinatorial lemma. That
is, if Ai is the collection of cosets of H m Bi, then (*) is equivalent to
A) Q A\ U A<2 U . . . U Ak-ι. By the combinatorial lemma, (*) is equivalent
to

ΔCΓ(α)

where Γ(α) = {i <E k - {0} : B^0}.
Now to remove the apparent dependence of Γ(ά) on α, note that Γ(α) is

a subset of k — {0} and the statement

Σ (-I) |Δ|ΛΓΔ = O
ΔCΓ(ά)

depends not on α but only on this subset. Let A be the collection of subsets

Γ of 2fc-<°> such that: ΣΔCΓ(-I)]^NΔ = ° Let

φτ = (3y)φQ(x',y) Λ Λ Φifay)-
;<ΞΔ
Δ€Γ

Then (Vy)ψ(x',y) is equivalent to

Λ </>r Λ Λ -̂ r
ΓEΛ Γ^Λ

which is a Boolean combination of p.p. formulas.

Note that the definition of the Boolean combination of p.p. formulas
which is equivalent to ψ depends only on the JVΆ and these numbers are
the same for elementarily equivalent models. Conversely, if for each Δ,
N&(M) = NΔ(N) then M and TV are elementarily equivalent. With some
further notation we rephrase this result in a more elegant form.

4.15 Notation. If φ and *φ are p.p. formulas without parameters and N
is a module let n(φ/ψ] N] = [φ(N] : φ(N) Π ψ(N)]. Note that n(φ/ψ; N) is
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a natural number or oo.
For every φ, ψ and n, there is a sentence χφ,ψ,n such that for any module

TV, N \= χφ^n if and only if n(φ/ψ; TV) > n. Following [Prest 198?], we call
any sentence which expresses these invariants of a module an invariants
sentence.

4.16 Corollary. Suppose N and M are R-modules and for each pair of
p.p. formulas without parameters, φ and ψ, n(φ/'φ^M) = n(φ/ψ-,N), then
M = N.

4.17 Exercise. Write out the general form of an invariants sentence. No-
tice that it is in AE form. Conclude that if M and TV are modules and
M =AE TV then M ΞΞ TV.

A standard compactness argument solves the following exercise ([Prest
198?]).

4.18 Exercise. Show that for any ring R and any formula χ(x) there is a
p.p. formula θ(x) and an invariants sentence σ such that

4.19 Pure Submodules. The submodule M of TV is pure in TV if every
p.p. formula with parameters from M which is satisfiable in TV is satisfiable
in M. Of course, this is a weakening of the notion of elementary submodel
but in the light of Theorem 4.13 it is not a very great weakening. In fact,
it is easy to see:

4.20 Lemma. If M C TV and M = TV then M -< TV iff M is pure in TV.

4.21 Exercise. Show that if M is a direct factor of TV then M is pure in
TV.

Derive the next exercise from the last one.

4.22 Exercise. Show that every subspace of a vector space is a pure sub-
module.

4.23 Purity in Abelian Groups. For Abelian groups or, more gener-
ally, modules over principal ideal domains, the notion of purity can be
simplified: M is pure in TV just if

TV \= (3y)ry = m implies M \= (5y)ry = m

for any integer r and any m £ M.

4.24 Exercise. Derive the remark in 4.23 from Corollary 4.5.

We denote by M <κ the direct sum of K, copies of M and by Mκ the
direct product of /c copies of M.

4.25 Lemma. For p.p. formulas without parameters, φ and ψ, and any
module TV, ifκ<ω and n(φ/ψ',N} < ω then n(φ/ψ;Nκ} = (n(φ/φ]N)κ).
Ifκ > ω, n(0/^;TVK) = oo or n(φ/ψ',Nκ) = 0. The analogous results hold
for direct sums.
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Proof. For any p.p. formula φ, φ(Nκ) = φ(N)κ.

4.26 Corollary. For any module M and any /c, M<κ -< Mκ.

4.27 Historical Notes. The logical analysis of the theory of modules be-
gins with Szmielew's quantifier elimination theorem for Abelian groups
([Szmielew 1955]). The work of Eklof, Fisher, and Sabbagh ([Eklof & Fisher
1972], [Eklof & Sabbagh 1970/71], [Baur 1976]) took a more model theo-
retic turn. The p.p.-elimination theorem was proved at about the same
time but independently by Baur, Garavaglia, and Monk; Garavaglia ([Gar-
avaglia 1979], [Garavaglia 1980]) realized its significance for stability theory.
The connections between stability theory and the theory of modules were
first pointed out by Shelah ([Shelah 1975]). The exposition here generally
follows [Ziegler 1984]. We also rely on [Prest 198?].

5. Non-Structure Theory

The bulk of this book is concerned with the development of structure the-
orems for stable theories. In this section we place that development in
context by reciting some of the non-structure theorems and briefly outlin-
ing the method of proof. These proofs fall into two parts. The first shows
if a theory T is not well behaved then some kind of ordering is definable
within the monster model. Second there is a combinatorial argument show-
ing that there are 2λ of these 'orderings' with power λ for each uncountable
λ. In fact, the combinatorial conclusion must be somewhat stronger. The
structures constructed must be sufficiently unlike one another that even the
Skolem hull of two of the nonisomorphic orderings cannot be isomorphic.

The first result of this kind was Shelah's proof for unstable theories.

5.1 Theorem. An unstable countable first order theory has 2λ nonisomor-
phic models in every uncountable power, λ.

In this theorem, for example, the required orderings are indeed linear
orderings and the first part of the proof depends on showing that every
unstable theory contains a formula which linearly orders an infinite set of
ra-tuples.

A later and stronger result is:

5.2 Theorem. An unsuperstable countable theory has 2λ models in every
uncountable power.

This result is proved in Chapter VIII of [Shelah 1978]. The full proof re-
quires a considerable combinatorial arsenal and breaks into cases depending
on properties of the cardinal λ. We give a simpler proof for regular λ in
Section IX.6 by using more of the forking machinery.

A similar difference occurs between the proof in [Shelah 1982] and the
one in [Harrington & Makkai 1985] for showing a theory with the dimen-
sional order property has 2λ models in every uncountable power. Shelah's
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proof continues the theme mentioned above of showing an ordering is de-
finable, this time using the language Lωijω, and then closing under Skolem
functions. The more ad hoc argument given here has the advantage that
the distinct models can be distinguished in the original language rather
than being imposed from without.

5.3 Historical Notes. In addition to Shelah see [Hodges 1983], [Hodges
198?] and [Pillay 1981] for accounts of this technique. The techniques de-
scribed in this section have been elaborated in several directions. There
are two major lines in the study of first order theories. One is the refine-
ment of the sufficient condition to apply the technique. Thus, unstability
[Shelah 1971a] is replaced by unsuperstability [Shelah 1975b] and then by
the omitting types order property [Shelah 198?]. Alternatively, the con-
clusion is strengthened to find models which are not only not isomorphic
but are mutually non-embeddable. These arguments are of an even more
set-theoretic nature [Shelah 1982b], [Shelah 198?d], [Shelah 1983]. In par-
ticular, independence results arise in this context [Shelah 1982b].

A further strengthening arises if the non-isomorphic models are required
to be elementarily equivalent in various infinitary languages (see for exam-
ple [Grossberg & Shelah]). Still another generalization considers infinitary
conditions in the defining of the trees; here there is considerable work by
both Shelah and Grossberg.






