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1. Introduction* The object of the present note is to indicate
how the ergodic theorem of W. Hurewicz [3] and E. Hopf [2] can be
extended to theorems involving two operators. While for a finite
measure space, the Hopf theorem for two operators is readily seen to
be the consequence of the theorem for one operator and the Birkhoff
ergodic theorem, in the general case the theorem for two operators is
established via the extended form of the Hurewicz theorem. An ap-
plication is made to the theory of Markov chains in § 4.

Let (S, Ω, μ) be a fixed measure space which is assumed to be a-
finite unless otherwise stated. Capital letters are reserved for elements
of ί2. For a measure ξ and for point functions we write f(x)=g{x)[ξ]
for equality almost everywhere [f].

We consider two one-to-one transformations of S onto itself, t
and u} each of which is measurable in the sense that for v=t and
v=u, MeΩ, implies vMeΩ, and v W eΩ, and if μ(M)=0 then μ(v-1M)=0.
We suppose throughout that neither t nor u has wandering sets of posi-
tive measure, that is,

(1) For v=t and v=u, if Af\vkA=0, k=l, 2, •••, then μ(A) = 0.

2* The Hurewicz theorem. For any finite valued countably addi-
tive set function φ defined on O and absolutely continuous with respect
to μ, form the set functions

(2) <Pn(X)=t<P(tkX), n-0, 1, . . . ,
k-o

and

(3) vn{X)^±μ(tkX)9 n=0, 1, . . . .

Then φn and vn are countably additive set functions and <pn is absolutely
continuous with respect to vn so admits the representation

( 4) φn(X) = \z9n(x)μn(dx), n=0, 1, .

The Hurewicz theorem then asserts that gn(x) has a limit at all points
except for a nullset with respect to t, that is for all points except a
^-invariant set of μ measure zero.
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To formulate the theorem for two operators we introduce

(5)

The set function μn is countably additive but <pn is no longer automati-
cally absolutely continuous with respect to μn. In order to have this
absolute continuity for any countable additive set function ψ absolutely
continuous with respect to μ with the consequent representation

( 6 ) Ψn(X)-\/n{x)μn{dx), n=0, 1,

it is necessary for vn to be absolutely continuous with respect to μn.
To see this simply take φ = μ, whence φn=vn. We therefore take as a
basic hypothesis

(7) ϊn is absolutely continuous with respect to μn

with the consequent representation

( 8 ) Vn(X) = \χCn{x)μn(dx), w=0, 1, .

We also assume that the operators t and u satisfy the Birkhoff ergodic
theorem, that is,

n

(9) For v=t and v=u, if f(χ)e D(S), lim ^f(vkx)jn exists almost

everywhere [μ].

THEOREM 1. Let t and u be one-to-one measurable transformations
of S onto itself which have no wandering sets of positive measure. Let
ψ be a finite valued countably additive set function defined on 12 and ab-
solutely continuous with respect to μ. If (7) and (9) are satisfied, then
the "averaging sequence" fn(x) of point functions defined by (2), (5)
and (6) converges everywhere except for the union of a t- and u-nullset
as

Proof. We suppose first that /*(S)<co. From the representations
(4) and (8) we deduce that

φn(X)=\ gn(x)cn(x)μn(dx).

The comparison with (6) yields fn(x)=gn(z)cn(x)[μn]. The Hurewicz
theorem implies that gn(x) has a finite limit except for a ί-nullset. A
result of C. Ryll-Nardzewski [4] shows that the hypothesis (9) that t
satisfies the Birkhoff ergodic theorem implies the existence of a
countably additive measure a with the additional properties:
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(10.1)

(10.2) If X=t-ιX, then a(X)=μ(X).

(10.3) a(t~ιX)=a{X).

Likewise, since u satisfies (9), there is a countably additive measure
with the additional properties :

(11.1)

(11.2) // X=u-ίX, then β{X)=μ{X)

(11.3) β(u-'X)=β(X) .

From (10.1) we note that a is absolutely continuous with respect to μ.
Hence if

(12) an{X)^^a(tkX), n=Q, 1, . . .
fc = 0

then an is absolutely continuous with respect to vn and we may write

(13) an(X) = \ dn(xK(dx), n=0, 1, .

Likewise if

(14) βn{X)= Σ β^X), w=0, 1, ,
fc = 0

βn is absolutely continuous with respect to μn and

(15)

If β(A) = 0, then (11.3) implies β( \J % * i ) = 0 , and since 0 ukA is
\ -oβ / -oβ

-invariant (11.2) implies μ( 0 ukA j = 0 and thus μ(A) = 0. Hence we

also have the representation

(16) μn(X) = \ bn(x)βn(dx) , ^ = 0 , 1,

If we combine (13), (8) and (16) we obtain

(17) ctn(X)= [ an(x)Cn(x)bn(x)βn(dx).

By the use of (10.3) and (11.3), (17) simplifies to

(18) a(X) = ̂ an(x)cn(x)bn(x)β(dx), rc=0, 1,

Since co(x) = l[μ], we find that
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(19) an(x)cn(x)bn(x)=a0(x)b0(x)[μ], w=0, 1,

Since we are supposing at present that μ(S)<C^> the Hurewicz
theorem can be applied to (13) and (16), and thus an(x) has a limit a(x)
as w->c», except for a ί-nullset and bn(x) has a limit b(x) as n-*oo,
except for a ^-nullset. By a further conclusion of the Hurewicz theorem,
not already stated, we know that a(x) is ^-invariant and that

I a(x)μ(dx)=\ ad(x)μ(dx)

for every invariant set X Hence for Z== {x\a(x)=0}> a(Z) = 0 and
since Z is ^-invariant, μ(Z)==0 by (10.2). The identical argument shows
that b(x) is not zero except for a ^-nullset. If we also observe that
the sets where a0(x) = oo and bQ(x) = oo are t- and ^-nullsets respectively,
as are the sets where aQ(χ) = 0 and bQ(x) = Q, we conclude that for all x
except the union of a t- and w-nullset cn(x) has a finite limit as n->cv.
Thus fn(x) has a finite limit excepting the union of a t- and u-nullset.

If the measure space (S, ί2, μ) is ^-finite, let k(x) be a bounded
positive function integrable over S. Let

λ(X)=[ k(x)μ(dx)

and form

The measure space (S, Ω, /I) is a finite measure space, and φ is absolutely
continuous with respect to λ. Hence by the first part of the proof, if

φn(X)=[ hn{x)λn(dx),

then hn{x) has a finite limit at all points other then the union of a t-
and w-nullset in the λ measure and hence also in the μ measure. Thus
if we let

(20)

we have

φn(X)=\ hn(x)kn{x)μn(dx) ,
Jx

and consequently fn(x)=hn(x)kn(x)[μn~\. The Hurewicz theorem applied
to (20) asserts that kn(x) has a finite limit except for a ^-nullset, which
implies the conclusion of the theorem.
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THEOREM 2. // in addition to the hypotheses of Theorem 1 μ(S)<oo
and t and u commute, then /(#)=lim fn(x) has the properties

(i) f(tx)=f{x)

(ii) \ f(x)μ(dx) = \ fo(%)μ(dx) for any t-invariant set X.

Proof. We use the same notation as in the proof of Theorem 1.
From (10.1) we see that any function integrable with respect to a is
also integrable with respect to μ. Hence the counterpart of (9) is
satisfied with v=u and μ replaced by a. By a further use of the
results of C. Ryll-Nardzewski we find the existence of a countably
additive measure γ, defined as a Banach-Mazur limit

n + l J=O

and having the additional properties:

(21.1)

(21.2) // X=u-ιX,

(21.3)

Since a is ί-invariant and t and u commute we have a(u~JtX) =
a(u-jX), and thus the definition of γ{X) shows

(2.14)

We similarly obtain a countably additive measure with the properties:

(22.1)

(22.2) // X=t-'X, then δ{X)=β(X)

(22.3)

(22.4)

From (21.1) we obtain

(23) r(X) = [ m(x)a(dx).

An earlier argument showed that δ(X) = 0 implies β(X) = 0, hence

(24) β(X)=\ n(x)δ(dx).

The combination of (23), (18), (19) and (24) then yields

γ(X)=\ m(x)aΰ(x)b0(x)n(x)δ(dx) .
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Since γ and δ are both t- and ̂ -invariant, the integrand must be both
t- and ̂ -invariant. With the aid of (10.2), (11.2), (21.2) and (22.2) it
is then seen that m(x)ao(x)bo(x)n(x) = l[δ~].

Likewise the ί-invariance of γ and a shows that m(x) = l[ά], and
the u-invariance of β and δ shows that n(x) = l[β~]. Since a set of
measure zero in any of the measures α, β, δ, and μ is also of measure
zero in any of the other measure, we conclude that ao(x)bo(x) = l[μ}.

The Hurewicz theorem, applied to (13), implies that for any t-
invariant set X, if we let a(x)=\iman(x)

n-*oo

(25) ί a(x)μ(dx) = [ ao(x)μ(dx)=a(X).

If we combine (10.2) with (25) we find

) = 1 a(x)μ(dx).
J

The ί-invariance of a(x) then yields a(x) = l[μ]. A repetition of the
argument shows that \imbn(x) = l[μ], consequently \imcn(x) = l[μ]. The

conclusions of the theorem now follow from the corresponding conclu-
sions of the Hurewicz theorem applied to (4).

3. The Hopf theorem*

THEOREM 3. Let t and u be one-to-one measure preserving trans-
formations of S onto itself. Let f(x)eD(S) and #(#)>0, then for
almost all x the quotient

t ( ) / t
has a limit as n->oo.

Proof. Let

λ(X) = ( g(x)μ(dx), λn{X) = Σ WX), Pn(X) = Σ
Jx j=o j-o

Then pn is absolutely continuous with respect to λn and

is a finite valued countably additive set function absolutely continuous
with respect to λ. We form fn(x) according to (4) and (5) with μ re-
placed by λ. Now

j - o
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SO

φn(X)=[ fn \

But by definition

Thus

fn(x)= ,_o

and the conclusion follows from Theorem 1.

4 An application. In a recent note [1] T. E. Harris and Herbert
Robbins used the Hopf ergodic theorem to obtain results concerning
Markov chains admitting an infinite invariant measure. We indicate
below the corresponding results that are obtainable by the use of
Theorem 3.

Consider the real valued Markov chain •••, x-u xOf xlf ••• with a
stationary transition probability function

h(u, £)=prob (xn+L e B\xn=u).

It is assumed that there is a measure 11 on the real Borel sets, which
does not vanish identically, is finite for bounded Borel sets and satisfies

= Γ h{u, B)U(du).

Let Φ be the class of real Borel sets, S the space of sequences of
real numbers #=(•••, x~l9 x0, xl9 •••) and 12 the Borel extension of the
cylinder sets, in S. If AeΩ, is determined by the coordinates xkJ xJc+u

•••, xr then q(A\xk=u) will denote the probability of A relative to the
Markov chain starting with xk=u, as specified by h.

A measure is established [1] in 12 by the relation

= \ xj=u) II (du)

for cylinder sets determined by xk, , xr.
We shall apply Theorem 3, with t the αth shift transformation,

(tx)i=xι+at and u the δth shift transformation. If ΓeΦ, let RΓ be the
event that xneΓ infinitely often. The assumption

(26) If ΓeΦ, then q(RΓ\x0=tc) = 1[U],

then yields [1] that t and it are m measure preserving and that neither
t nor u has wandering sets of positive measure.
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THEOREM 4. // (26) is satisfied, h(u) is II summable and
then for almost all

lim h(

exists with probability one.

THEOREM 5. Let yιy y2, -"be independent random variables with a
common distribution function. Suppose that for any interval I

prob (& + 2/α+cH + ym+G € / infinitely often) = 1

and

prob (yd-\-yb+a+ +2/n&+« € / infinitely often) = 1.

/o r Λ(w) Lebesgue integrable k(u)^>0 and almost all m

exists with probability one.
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