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1. Introduction and proof of the main theorem. A result of S.
Bernstein [4] is the following.

THEOREM A. // p(z) is a polynomial of degree n such that
[max \p(z)\, \z\ = ΐ\ = l, then

(1) [max|p(s)|, \z\=R>Y\<R\

with equality only for p(z) = λzn, where U| = l.

We propose to show here that if we restrict ourselves to poly-
nomials of degree n having no zero within the unit circle the right
hand member of (1) can be made smaller. In particular we have the
following result.

THEOREM 1. // p(z) is a polynomial of degree n such that
[max|p(£)|, |2| = 1] = 1, and p(z) has no zero within the unit circle, then

with equality only for p(z) = (λ + μzn)j2, where \χ\ = \μ\ = \.

In order to prove Theorem 1 we use a conjecture of Erdos first
proved by Lax [2] (See also [1]).

THEOREM B. If p(z) is a polynomial of degree n such that
[max 130(2)I, |2| = 1] = 1, and p(z) has no zero within the unit circle, then

Turning now to Theorem 1, let us assume that p(z) does not have
the form (λ-\-μzn)l2. In view of Theorem B

(2) \pf{e^)\^n

o , 0<^<2ττ,
Li

from which we may deduce that
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(3) | p ' ( r ^ V

by applying Theorem A to the polynomial pr{z)j(nj2) and observing that
we have the strict inequality in (3) because p(z) does not have the form
(λ + μzn)/2. But for each φ, 0 ^ < 2 τ r , we have

p(Retφ)-p(eiφ)= Γeiφpf\reiφ)dr .

Hence

R \p'(re^)\dr<^ Γr^dr = ̂ A ,
Ji 2 Ji 2

and

Finally, if p(2;) = (/ί + 1ί/2M)/2, U|==l, then

As a corollary of Theorem 1 we may deduce

THEOREM 2. 7/ p(z) is α polynomial of degree n ivith real co-
efficients having all zeros of nonpositive real part and if for some

2

k a nonnegative integer, then p(z) has at least (&4-1) zeros in

Proof. Suppose p(z) has m zeros in | z | < l and m^fc. Let

P(Z) = (Z-Z1) •(z-3OT)(3-S,n+i) -(Z-Zn) ,

and suppose | ^ j | < l , O ' = l , - - ^ m ) . P u t

flf(2)==(2-2i) (j2J-2TO)

and

The polynomials p(^), g(z) and ^(z) have positive coefficients, hence for
all
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and

according to Theorems A and 1 respectively.
Thus

2

a contradiction, establishing Theorem 2.

2 The converse problem. The converse of Theorem 1 is false as
the simple example p(z) = (z-\-i)(z-i-3) shows. However, the following
result in the converse direction is valid.

THEOREM 3. // p(z) is a polynomial of degree n such that

and

for 0<7?—1<C^> where δ is any positive number, then p(z) does not have
all its roots within the unit circle.

For the proof we need the following

LEMMA. If

ivhere | Z J | < 1 , O'=l, β , ^ ) , then if \a\ = l we have

q'{a) ^ m
q(a) 2

Proof. According to Laguerre's Theorem [3, p. 38]

q'{a) ^ m
q{a) a-w '

where | ^ | < 1 , hence \a — ιv\<^2 and

We turn now to the proof of Theorem 3. Suppose p(z) has all its

zeros in M < 1 . Let
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p(z)=ao-ha1zA Λ-anz
n ,

put

p(z)=ao-ha1z-] Λ-anz
n

and consider the polynomial g(z)=p(z)p(z) of degree 2n. g(z) is real for
real z,

[msix\g(z)\, \z\ = ΐ]=g(l)=l ,

)
2/

and g(z) has all its zeros in |s|<[l. Now g'(l) is not only real but
positive. This is so since, given any ^>0, we have g(l — ̂ )<^(1). Hence

Now #'(l)=£0, as all of the roots of g(z)==0 are inside the unit cir-
cle, hence, by Lucas' Theorem all roots of g'(z)=0 are within the convex
closure of the unit circle namely the unit circle itself.

Given any ε>0, sufficiently small,

or

\g(l + e)-g(l)\<ne + O(e>) , as ε->0

and ^ ( l ) ^ ^ . Therefore ^/(1)/^(1)^^ contradicting the lemma. Theorem
3 is established.
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