THE STRICT DETERMINATENESS OF CERTAIN INFINITE GAMES

PHILIP WOLFE

1. Introduction. Gale and Stewart [1] have discussed an infinite two-person game in extensive form which is the generalization of a game as defined by Kuhn [3] obtained by deleting the requirement of finiteness of the game tree and regarding as plays all unicursal paths of maximal length originating in the distinguished vertex x_0 . In a winlose game the set S of all plays is divided into two sets S_I and S_{II} such that player I wins the play s if $s \in S_I$ and player II wins it if $s \in S_{II}$. Gale and Stewart have shown that a two-person infinite win-lose game of perfect information with no chance moves (called a GS game here) is strictly determined if S_I belongs to the smallest Boolean algebra containing the open sets of a certain topology for S. Here we answer affirmatively the question posed by them: Is a GS game strictly determined if S_I is a G_{δ} (or, equivalently, an F_{σ})? The notation and results of [1] are used throughout, as well as the partial ordering of X given by: x > y if $f^n(x) = y$ for some $n \ge 1$.

2. Alternative description of S_I . Let Γ be the game $(x_0, X_I, X_{II}, X, f, S, S_I, S_{II})$, where

$$S_I = \bigwedge_{n=1}^{\infty} E_n$$
 ,

 $E_1 \supseteq E_2 \supseteq \cdots$, and E_n is open. Following [3], let the rank rk(x), for $x \in X$, be the unique k such that $f^k(x) = x_0$. As in [1], $\mathfrak{U}(x)$ is the set of all plays passing through x (the topology for S is that in which $\mathfrak{U}(x)$ is a neighborhood of each play in it). Then for each n,

$$E_n = \bigcup \{ \mathfrak{U}(y) : \mathfrak{U}(y) \subseteq E_n \};$$

and since for any $y \in X$ we have

$$\mathfrak{U}(y) = \bigcup \{\mathfrak{U}(z) : f(z) = y\},\$$

with

$$rk(z) = 1 + rk(y)$$
,

Received October 3, 1953. The work in this paper was done during the author's tenure of an Atomic Energy Commission Predoctoral Fellowship.

there exists for each n a subset Y_n of X such that rk(y) > n for all $y \in Y_n$ and

$$E_n = \bigcup \{\mathfrak{U}(y) : y \in Y_n\}$$
.

Furthermore, since of any two neighborhoods having a non-void intersection, one is contained in the other, each Y_n may be chosen so that $\mathfrak{U}(y)$, $\mathfrak{U}(y')$ are disjoint for different y, y' in Y_n .

Since $s \in S_i$ if and only if $s \in E_n$ for an infinite number of values of n, we have: $s \in S_i$ if and only if for infinitely many n there exists i (dependent on n) such that $s(i) \in Y_n$. Thus, since on the one hand i = rk(s(i)) > n, and on the other for any n there is at most one i such that $s(i) \in Y_n$, letting

$$Y = \bigcup_{n=1}^{\infty} Y_n$$

we have: $s \in S_I$ if and only if $s(i) \in Y$ for infinitely many *i*.

3. Lemmas. LEMMA 1. If Γ is a GS game with

 $\sum_{II}^{W}(\Gamma) = \Lambda$

and

$$T = S - \bigcup \{ \mathfrak{U}(x) : \sum_{II}^{\mathsf{w}}(\Gamma_x) \cong A \} ,$$

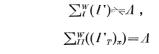
then

$$I_{T} = (x_{0}, X_{I}^{T}, X_{II}^{T}, X^{T}, f^{T}, T, S_{I}^{T}, S_{II}^{T})$$

is a subgame of Γ ,

 $\sum_{I}^{W}(\Gamma_{T}) \cong \Lambda$

implies



and

for all $x \in X^T$.

Proof. Since T is a closed nonempty subset of S, Γ_T is a subgame of Γ by Theorem 5 of [1]. The second statement follows from assertion B [1, p. 260]. Finally suppose that

$$\sum_{II}^{W}((\Gamma_{T})_{x}) \cong A$$

for some $x \in X^T$. Letting, in assertion A [1, p. 260],

$$F = \mathfrak{U}(x) \cap T$$
,

and noting that F is closed and nonempty and that

$$(\varGamma_T)_x = (\varGamma_x)_F$$
,

we have

$$\sum_{II}^{W}(I_x) \cong A$$
,

which is impossible in view of the construction of T.

We assume hereafter that Γ is a GS game with S_r described in terms of $Y \subseteq X$ as in §2, and that

$$\sum_{II}^{W}(\Gamma) = \Lambda$$
,

whence

$$\sum_{II}^{W}(\Gamma_{T}) = \Lambda$$

by Lemma 1. The strict determinateness of Γ will follow from Lemma 1 and the fact that

$$\sum_{I}^{W}(\Gamma_{T}) \cong \Lambda$$
,

proved in §4. LEMMA 2. For $x \in X^T$, we have

 $s \in S_I^{Tx}$

if and only if

 $s \in S^{Tx}$ and $s(i) \in Y$

for infinitely many i. LEMMA 3. For $x \in X^T$ there exists

 $\sigma_x \in \sum_I ((\Gamma_T)_x)$

such that for any

 $\tau \in \sum_{II} ((I'_{\mathbf{T}})_x)$

we have

 $\langle \sigma_x, \tau \rangle (i) \in Y$

for some i > rk(x).

Proof. Let Y_x be the set of all

 $y \in Y \cap X^r$

such that y > x and no members of Y fall between x and y. Let Γ' be the game

843

P. WOLFE

$$(x_0, X_I^{Tx}, X_{II}^{Tx}, X^{Tx}, f^{Tx}, S^{Tx}, S_I^{'}, S_I^{'})$$
,

where

$$S_I' = S^{Tx} \cap \bigcup \{\mathfrak{ll}(y) : y \in Y_x\}$$

and

 $S_{II}' = S^{Tx} - S_{I}'$

(that is, the game in which I wins if the play passes through any member of Y following x). Noting that

 $S_I^{Tx} \subseteq S_I'$,

we have

 $S'_{II} \subseteq S^{T_{x}}_{II}$

and hence

$$\sum_{II}^{W}(I') = \Lambda$$
.

But S'_{I} is open in S^{Tx} and so I'' is strictly determined by Corollary 10 of [1], whence there exists

$$\sigma_x \in \sum_I^W (\varGamma')$$
 ,

which satisfies the conclusion of the lemma.

4. Winning I_{T} . Let

$$Y' = (Y \cap X^T) \bigcup \{x_0\} .$$

For each $x \in Y'$ let σ_x be as given by Lemma 3, and let σ'_x be the restriction of σ_x to the set of all z in X^T such that $x \ll z$ and that there exists no y in Y' with $x \ll y \ll z$. We show that the domains of the σ'_x cover X^T and are disjoint: First, if $x_0 \in X_I^T$, then x_0 belongs to the domain of σ_{x_0} . For

$$z \in X_I^{ \mathrm{\scriptscriptstyle T}} - \{x_{\scriptscriptstyle 0}\}$$
 ,

let

$$x = \max\{z' : z' \in Y' \& z' < z\}$$
.

Then $x \in Y'$ and z belongs to the domain of σ'_x ; thus the domains of the σ'_x cover X_1^T . Now suppose that $x_1, x_2 \in Y'$, $x_1 \rightleftharpoons x_2$, and that there exists x_3 common to the domains of σ'_{x_1} and σ'_{x_2} ; then $x_1 \triangleleft x_3$ and $x_2 \triangleleft x_3$, so that either $x_1 \triangleleft x_2 \triangleleft x_3$ or $x_2 \triangleleft x_1 \triangleleft x_3$, which is impossible in view of the restriction imposed upon σ_x in obtaining σ'_x .

Since the domains of the σ'_x cover X_I^T and are disjoint, they have

844

a common extension σ^* , which necessarily maps the elements of X_I^r on their immediate successors, and thus belongs to $\sum_{I} (\Gamma_T)$.

We show that σ^* wins Γ_T . Let

$$\tau \in \sum_{II} (\Gamma_T)$$
 .

For this τ and any x in Y', let i(x) be the least i such that $\langle \sigma_x, \tau \rangle(i) \in Y'$, whose existence is given by Lemma 3. Define $\{x_n\}$ inductively by

$$x_{n+1} = \langle \sigma^*, \tau \rangle (i(x_n))$$
 $n = 0, 1, \cdots$

 $(x_0$ is the distinguished vertex). Since

$$rk(x_{n+1}) = i(x_n) > rk(x_n)$$
,

and x_n, x_{n+1} are on a common path, we have $x_{n+1} > x_n$ for all n, and so if $x_n \in Y'$ then

$$x_{n+1} = \langle \sigma^*, \tau
angle (i(x_n)) = \langle \sigma_{x_n}, \tau_{x_n}
angle (i(x_n)) \in Y'$$
 ,

where

 $\tau_{x_n} \in \sum_{II} ((\Gamma_r)_{x_n})$

is the restriction of τ to $X_{II}^{Tx_n}$. Thus by induction $x_n \in Y'$ for all n, and hence

 $\langle \sigma^*, \tau \rangle (i) \in Y$

for infinitely many values of i, so that

$$\langle \sigma^*, au
angle \in S^{ \mathrm{\scriptscriptstyle T} }_I$$
 .

Since τ is arbitrary,

 $\sigma^* \in \sum_I^W (arGamma_T)$,

so that by Lemma 1, we have

$$\sum_{I}^{W}(\Gamma) \cong \Lambda$$
.

As this is the consequence of the sole fact that

$$\sum_{II}^{W}(\Gamma) = \Lambda$$
,

 Γ is strictly determined.

Reversing the roles of the players in the above gives the result that a GS game is strictly determined if S_I is an F_{σ} .

The strict determinateness of a two-person zero-sum game with G payoff having *chance moves* can be shown. The proof is more complicated, but uses the same ideas [4].

5. An application. Let

$$\Gamma = (x_0, X_I, X_{II}, X, f, S, \varphi)$$

845

be a zero-sum two-person infinite game of perfect information with no chance moves having payoff ϕ such that there exists a real function h on $X(|h(x)| < K < \infty)$ with

$$arPhi(s) = \limsup_{i o \infty} h(s(i)) \quad ext{for all} \quad s \in S \; .$$

 Γ is the result of an attempt to reduce the following situation to a game: The tree K of a GS game and a function h as above are given; the two players make choices in K in the belief that every play will terminate in some unknown, but distant, vertex x, at which time player I will receive the amount h(x) from player II. A payoff function φ is sought such that $\varphi(s)$ $(-\varphi(s))$ expresses the utility to player I (II) of a play s in K.

The payoff \mathcal{P} defined above arises from ascription to players *I* and *II* respectively of "optimistic" and "pessimistic" behaviors in this way: Player *I* assumes that the play *s* will terminate in some "distant" vertex s(i) at which *h* assumes nearly its supremum on all "distant" vertices of *s*; he thus makes his choices so as to maximize the expression

$$\limsup_{i\to\infty} h(s(i)) = \Phi(s) ;$$

and player II supposes that s will terminate in some "distant" vertex at which his gain -h(s(i)) assumes nearly its infimum for all such vertices, and thus seeks to maximize

$$\liminf_{i\to\infty} -h(s(i)) = -\varphi(s) ,$$

that is, to minimize ϕ . The derived game is thus zero-sum. Ascription, however, of such "optimistic" or "pessimistic" payoffs to both players yields, in general, a non-zero sum game.

We show now that the game Γ of this section is strictly determined, using the method of Theorem 15 of [1] which asserts the strict determinateness of Γ for the more special case of continuous φ . (Gillette [2] has shown the strict determinateness of an infinite game of perfect information with chance moves which consists in repeated play from a finite set of finite games and has payoff

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^n g_n(s)$$
 ,

where $g_n(s)$ is the gain from the *n*th game played.)

First, as a converse to the equivalence of §2, let $Y \subseteq X$, and denote by Y_n the set of all members of Y having rank greater than n. Then

$$\{s: s(i) \in Y \text{ for infinitely many } i\} = \bigcap_n \{s: s(i) \in Y_n \text{ for some } i\}$$

 $= \bigcap_n \bigcup \{\mathfrak{ll}(y); y \in Y_n\}$,

which is a G_{δ} .

Now in Γ , for t real, let

 $S_I^t = \{s : h(s(i)) > t \text{ for infinitely many } i\}$,

and $S_{II}^{t} = S - S_{I}^{t}$. Then S_{I}^{t} is a G_{δ} , and thus the GS game

 $\Gamma_t = (x_0, X_I, X_{II}, X, f, S, S_I^t, S_{II}^t)$

is strictly determined. Let

$$v = \sup \{t : \sum_{I}^{W}(\Gamma_{t}) \ge A\}$$
.

Since $S_{I}^{\kappa} = A$, $S_{I}^{-\kappa} = S$, and S_{I}^{ι} is a decreasing function of t, we have

$$-K \leqslant v \leqslant K$$
, $\sum_{I}^{W} (\Gamma_{t}) \rightleftharpoons A$ if $t < v$

and

 $\sum_{II}^{W}(\Gamma_t) \cong \Lambda$ if t > v.

Given $\varepsilon > 0$, choose

 $\sigma_0 \in \sum_{I}^{W}(\Gamma_{v-\varepsilon})$ and $\tau_0 \in \sum_{II}^{W}(\Gamma_{v+\varepsilon})$.

Then for any

 $\sigma \in \sum_{I}(\Gamma)$, $\tau \in \sum_{II}(\Gamma)$,

we have

 $h(\langle \sigma_0, \tau \rangle(i)) > v - \epsilon$ for infinitely many i

and do not have

 $h(\langle \sigma, \tau_0 \rangle(i)) > v + \epsilon$ for infinitely many *i*;

so that

Hence

$$v - \varepsilon \leqslant \sup_{\sigma} \inf_{\tau} \Phi(\langle \sigma, \tau \rangle) \leqslant \inf_{\tau} \sup_{\sigma} \Phi(\langle \sigma, \tau \rangle) \leqslant v + 2\varepsilon$$
;

thus Γ is strictly determined, and has value v.

References

 David Gale and F. M. Stewart, *Infinite Games with Perfect Information*. Ann. of Math. Studies **28** (Contributions to the Theory of Games II), 245-266. Princeton, 1953.
 Dean Gillette, *Representable Infinite Games*. Thesis, University of California, Berkeley, June 1953.

3. H. W. Kuhn, *Extensive Games and the Problem of Information*. Ann. of Math. Studies **28**, 193-216.

4. Philip Wolfe, Games of Infinite Length. Thesis, University of California (1954).

UNIVERSITY OF CALIFORNIA, BERKELEY