APPLICATIONS OF THE RAYLEIGH RITZ METHOD
TO VARIATIONAL PROBLEMS

J. INDRITZ

Introduction. Let R be a bounded either simply or multiply con-
nected plane region with boundary I, consisting of a finite number of
non-intersecting simply closed regular arcs of class ¢*. A plane curve
is a regular arc if the defining functions x(¢), y(t), a<<t<<b have con-
tinuous derivatives with ’(¢)*+y'(¢)’><0 on a<<¢t<{b. A regular arc is
of class ¢* if the defining functions xz(s), y(s), s being are length, have
continuous derivatives of order k. We shall say a function Z(x, y)
defined on R=R+ 1" is of class ¢* if the partial derivatives of % of
order r, 0<{r<k exist in R and have limits on I" so as to define fune-
tions continuous on R. Let g(x, y) be a given function of class ¢t on
R. The main problem considered is that of finding the function ¢,
which yields minimum value to the functional

191~ (| @2+ b+ o+ 279)da dy

defined over the admissible class of functions ¢ which are of class ¢*
on R and assume the values of ¢ on /.

We shall assume a(z, y)>0, b(x, ¥)>0, ¢(z, ¥)=>0 on B; a, b, ¢
bounded and integrable in R; f(x, y) integrable in R. In the sequel,
unless otherwise specified, integrations will be taken over R and the
symbol R omitted.

Let G(x, y) be of class ¢* on R, vanishing on I°, positive in R,
with normal derivative 3G/3v on I" different from 0. We show that,
if k>3, every admissible function ¢ has a uniformly convergent ex-

pansion on R

9=g+ b i@, 1)

where f; are obtained by a Gram-Schmidt process from the functions
{Gaty’} 4,7=0, 1, 2,--- and b, are generalized Fourier coefficients con-
nected with the quadratic functional

DIy~ ((ags+bg3+ erazay
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766 J. INDRITZ

In fact, b,=D[¢—g, fi] where

Dle, y]=Sg(a £, 7 tbE, 7, +ctn)dz dy.

An estimate of the error obtained by using for ¢ only the first n
terms of the expansion is given in terms of n and k. Sufficient condi-
tions are obtained for the convergence of

17[9 + ébﬁ]

to p¢ and an estimate is given for the rate of convergence.
In particular, if ¢, is an admissible function minimizing I[¢], then
the expansion

dv=g+ ig{azﬁ

yields an explicit solution for ¢, since the coefficients a; are given, in
this case, by

aiz_ggfﬁdwdy—l)[g, fil

which are independent of ¢, .

The problem of minimizing the functional I[¢], with ¢g=0, has
been studied by Kryloff and Bogoliubov [4] and by Kantorovitch [2],
both obtaining estimates for convergence to ¢, of functions obtainable
by the Rayleigh Ritz method. The first paper deals with convex
regions R, the second with regions R bounded by z=0, x=1, y=g¢g(x),
y=h(x); h>>g on 0<{x<{1. Neither obtains an explicit solution for ¢,
nor studies the convergence of the derivatives.

In the final section of this paper, we assume the existence of a
funetion ¢, yielding minimum value, for p=1, to

pigl=(| @i+bgieepydndy, g=g on T

and obtain an estimate for the rate of convergence to ¢, of functions
obtained by the Rayleigh Ritz method.

§ 1. Preliminary Considerations. A variation v shall mean a funec-
tion of class ¢* on R vanishing on /. Form the Hilbert space H by
completing the linear manifold V of variations v using the positive
definite quadratic form D[v] as the square of the norm of a variation.
If e H, we represent the norm of 2 by 2. If & and 7 are varia-
tions, the inner product will be

& »)=DI¢, 1].
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Let f; be any complete orthonormal set of variations in H. If ¢ is
admissible, then ¢—g¢g is a variation and thus expressible in H as
¢"g==2;baﬂ

with b=D[¢—g, f].
If ¢, is an admissible function yielding a minimum value to I[¢],
if 2 is real, and v is a variation, then ¢,+ v is admissible, and

I[PI<I[¢,+ Ww]=I[¢o] + 2A2D[¢y, v]+ “2 fvdzx dy)+2D[v] .

This implies that the coefficient of 1 must vanish so that

Dids, v]—— ngv de dy
and

I[go+ 2w]=1I[¢o] + 2*D[v]
for every variation v.
The first relation shows that the Fourier coefficients of ¢,—g,

@.=Dl¢o—g, fl=D[¢, fi—Dlg, fil= — SSfﬁ dz dy—DIg, fi]

are independent of ¢,.
The second relation implies that if ¢ is admissible,

I[P1=1¢o+ ¢ —dl=1[d]+ D¢ — 0] -

Thus if
Pn=g + iz=1 a’i.fi ’
then
0=lim | ¢, —(g+ 3 )| =lim Dlgo—p,]=Tim Ii,1~I[41]

so that ¢, is a minimizing sequence.
Moreover,

is & minimum when ¢;=q, implying that ¢, are chosen to yield mini-
mum value to I[¢,]—I[¢,] and hence to I[¢,] in the class of functions

Sbn:g"“ i;ciﬁ .

Thus ¢, may be obtained by the Rayleigh Ritz process applied to the
functional I[¢].
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We will prove, in Theorem 1, that the class of functions {G P}
where P is a polynomial in » and v, is dense in H. This class is the
linear manifold determined by the set {G x‘y’}, a set linearly indepen-
dent in H. For, if

m N 3 .
=35, G o'y,

i=1i=1

then D[v]=0 implies «,;=0.
It follows that we can obtain an orthonormal set f; complete in H
by orthonormalizing the set {G «'¢’}. Let

v, =G 2"y’

v,=Gx'y, v,=G2°y
Vkars1y 44 =Gy, .-, Vkcks1y | 44 =G a"y".
2 2
n=1
vn—jzlﬁ(vn ’ .fj)
T
lo=S A0 |

(vy, vl)"’(vl, ’Un-l) (%

|

| (’l)], ’U]) E—”?
a o
i (vn—l ’ vn—l) l 1 ('U" ’ vn)

(?)u Ul) i—l/z
(’l)n,' vl) et (vn; vn—l) Un 1 i

The function f, is of the form GP,, where the degree of the
polynomial P, is that of v,/G. If v,=G «"y° with r+s=Fk, then

k(k;—l) +1gn§_k(k; 1)

+k+1
so that k2<k(k+1)<<2n—2 and the degree k of P, is less than 1/2n—2.
Similarly % is greater than V2n—2.

§ 2. The Minimizing sequence. We shall use certain approxima-
tion theorems which can be derived by methods used by Mickelson [5].
To simplify the notation, let

w=(x1,- . 'ws) ’

D= (20, + 20 ,

1 For detailed proofs of Lemmas 1, 2 see J. Indritz ¢ Applications of the Rayleigh Ritz
method to the solutions of partial differential equations” Ph. D. Thesis, U. of Minnesota,
1953.
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_f‘(x)"—"f‘(ilh,"' ’ ms) ’

[E XTEE N

(@)= o Lf@, .- 2],

0X, "1 <0xys

(20— | = S (@ — 2.

i=1

The modulus of continuity for a function f defined over a closed set
A —1<e,<1 (i=1,---,8) is

Q8, f)=sup |f(a®)— f(@®)

for all points o™, #® in A with ja®—2® | <. The uniform modulus
of continuity of a finite number of functions fi,---,f is the largest of
the moduli of each f, for each 0.

LEMMA 1. Let F(6) be a continuous periodic function of period 2m in
each 0, and of class ¢*. Let «(d) be the uniform modulus of continuity
of the partial derivatives of F' of order 1 to k for é<mz\' s. Let j<k.
Then, corresponding to every set m, «--, m, of positive integers, there is
a trigonometric sum T™ of order at most m,; in 0; such that

(—L> for 0<ri4.-+7rJ
m;

- OI<K (S L) S

i=1 m i1

where K, is a constant independent of F, s, m; .
If the partial derivatives of order 1 to k satisfy

|F(09) = F.09)\ < L( 3 00— 0]

then

5.1 \k-itl .
(0~ TH <L K3, ) 0+ eoe 1y
=1 m,

where K, 18 also a constant independent of F, s, m;.
If F' is even in each 0, separately, T contains only cosine terms.

LEMMA 2. Let f(x) be of class c* in the set A: —1<wx,<1 (i=1,---,8).
Let M be the maximum of the absolute values of the derivatives of order
1 to k, and Q(0) the uniform modulus of continuity of the derivatives
of order k. Let B denote a closed set interior to A. Let j<<k. Then,
for every set of positive integers my,---, m, with m,=>k there is a poly-
nomial P™ of order at most m,; in x; such that
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i) —Pr@<k( S L) S0 7}& )

=1 m i=1

for x in B and 0<ri+--+7r,<j. Here K, is a constant independent of
f and m;.

If also, the k-th partial derivatives of f(x) satisfy a Lipschitz con-
dition with parameter 2, then, for x in B,

S k=j+1
F@-Pr@I<K(S L) for 0y,
1m;

i=

and where K, is a constant independent of f and m;.

To apply the lemmas to a function defined over the region R, we
shall extend the domain of definition of the function. The ques-
tion arises whether the differentiability properties of the function are
maintained under the extension. The answer depends upon the pro-
perties of the boundary I of R. For example, Hirschfeld [1] has
shown that even a cusp in the complementary region may prevent c'
extension of a function of class ¢ on a closed set through a continu-
ous boundary arc. Whitney [6] has given a different definition for a
function to be of class ¢* in a closed set 4. If f is of Whitney class
¢® in A, then there exists an extension F to the whole plane E, which
is of class ¢* in the ordinary sense on E, and is analytic in E,— A.
The derivatives of F' of order <k coincide with those of f at any
interior point of A. Moreover Whitney [7] has shown the following :
Let (a) f be of class ¢* on R+ 1I', where R is a region, I" its bound-
ary, in the sense we have defined in the introduction, and (b) R have
the property ‘“ P’’, that any two points P, P, in R, whose linear
distance apart may be represented by ' P,—P., can be joined by a
rectifiable curve in R of length L, with L//P,—P) bounded uniformly
with respect to P, and P.; then f is also of Whitney class ¢* and thus
can be extended to E, to be of class ¢* on E,.

For our purposes we assume R to be a bounded region with bound-
ary I consisting of a finite number of non-intersecting simply closed
regular ares /°; and we will show R has property ‘“ P’

Choose, for each I';,, a §>0 such that no two tangents to /7, on
any portion of arc length <0 make with each other an angle greater
than 5°. We may choose ¢ independent of 7 and smaller than one-
fourth the distance between any two I',. Now fix 4, and let P,, P,
be points on I'; on a subare of length <79. There is a point @ on that
subarc between P, and P, such that the tangent line at @ is parallel
to the chord P, P,. Set up an (x, y) coordinate system at @, using the
tangent line as wx-axis, the normal as y-axis, and note that the subarc
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considered has an equation y=y(x) of class ¢ in view of the implicit
function theorems. Let P, =(z, ), P, =(x, ¥.), |Pi—P,|=distance

between P, and P, HE—R |=length of the subarc joining P, to P..
Then | P,—P, =|a;—a,| and ly'(@)|<1 so that

N

(1) | P—P,|<|P P, =

S Vi1ty*da
zy
<V'2w—a,| =12 | P—P,|.

Moreover, since tan5°<(1/10, the mean value theorem shows that
sup ly(@)| <] A — P, |/10.

We shall also use the well known property that if I", is a regular
arc, there is an «,>>0 such that for any subarc joining points P;, P,

on I';, we have I}EFR I/| Ps— P, |<w,. w, can be chosen independent
of 7.

Now suppose S;, S, are any two points interior to the region R.
If the segment S;S, is interior to R, we of course have (l/S:S'z(
[IS;—S,|=1 by using the segment as the arc. Otherwise, let @ be
the first intersection of the directed line S; S, with the boundary, say
with ;. Let Q! be a point on S,Q; in R. Let @, be the first point of
intersection of the directed line S,.S, with /", and @; a point in R on
S.Q, such that the open interval @Q,Q: is also in B. Note that @, and
Q. may coincide. If Q.S, is not in R, let @, be the first point of in-
tersection of the directed line @S, with the boundary, say with 7,
and @} in R and on QQ,. Let Q, be the first point of intersection of
the directed line S,Q: with I', and Q! a point in R, on @.S,, with the
open interval @,Q; in R. Continuing in this way, after at most n
steps, we form a finite sequence of points @=S,, @, Q-+, Q%n, @bns:
=S, such that Q,-, and Q,, are on the same regular arc, and the lines
joining Q. to Qi..., £=0,---,m are in R. If we can show there is an

>0, independent of the points, and ares 4, in B joining consecutive

S~
points @} to Q}.; such that |Q} Q). |<w|Qi—Q}.: |, then we can attain

the desired results by addition. It suffices to show that @! and @} and

an arc A joining Q! to @) and in B may be chosen so that ]\Q}/—@|
<w|@Qi—@Q:|. Suppose first that @, and @. coincide. A sufficiently
small circle with @, as center will have one of the ares cut off by S.S,
entirely in R and we may choose @' and @ as the intersections of
S.S, with this circle. In this case

| Q= 9 |Qi—Q:] .

Otherwise, let L be the length of an arc on /', joining @, to Q..
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Divide this arc into N equal segments of length f=L/N where N is
sufficiently large so that f<¢. Draw circles of radius r=p/1”2 about
each of the division points and the end points. We first show that
consecutive cireles intersect. If R, and R, are two consecutive centers,
(1) implies

|R—R,|<p<V'2 |R—R.|
so that
|Bi=Bs| A R=B| B p

2 Ve TV2 —Eal,

and the circles must intersect.

Moreover, since r>>|R,—R,[/1” 2, the semi-length r of the common
chord is

_ Sy I BB [ BB
T ‘/7 e 4 —_>_ 2 ’

whereas the arc joining R, to R, has distance <|R,—R,[/10 from the
chord. Hence the arc lies entirely within the circles.

Now let @' be an intersection of S,S, with the circle whose center
is @, and Q! an intersection of S, S, with the circle whose center is @,,
the points being chosen to lie in R and have the desired properties.
Starting from @} we may proceed to @} via the circumferences of the
circles. The total length of the curve thus formed will be less than

N+1 271' .
N+1)2z P <A
N+ = N V2

and

I Qle H L L - 47 L L 47
| Qi— Q‘U—V.? Q- T V'2 | Q— 1@-Q.] V2 o
This concludes the proof that R has property ‘“P’’.

We will be particularly interested in extending a function of the
form v(z, ¥)/G(z, y) where G(z, ¥)>0 in R, 3G/3» >0 on I', G=v=0 on
I and we seek differentiability conditions on » and G which insure
that »/G is of class ¢* on R+ /. Here again the nature of the bound-
ary is of importance. The next two lemmas deal with this problem.
The letter P will refer to a point in R and @ to a point on /', the
boundary of R. By a neighborhood N(Q) in R+ /" we will mean a set
of points S in R+ /7" such that for some sufficiently small circle with
center at @, every point of the circle which lies in R+ /" also lies in
S.
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LEMMA 3. a) Let R be a region bounded by 1, a finite number of clos-
ed Jordan curves, no two having a point in common. Let v be a regqu-
lar subare of ', and Q, an interior point of y. Let N be the normal
to v at Q.. Then there is a mneighborhood N(Q,) in R+ such that
through each point P in RN(Q,), the line parallel to N cuts 1,=7N(Q,)
in one and only one point @, PQ lies in N(Q,), and Q ranges over 7,.

b) Let J(z, y) be of class c¢' in RN(Q,) and suppose ¢, ¢., ¢, have
continuous limits on 1,. Define (0¢/0s)(P) to be the derivative at Pe
RN(Q,) in the direction of the tangent at the corresponding point € on 7, .
The derivative (2¢/0s)(P) has continuous limits on 7y, which we will
denote by (3¢[3s)(Q).

If ¢=0 on r,, then (3¢/35)(Q)=0 for Q on r,.

Proof. Let y be given by a(t), y(t) and @, defined by the parameter
value ¢,. Let (& 7) be rectangular axes along the tangent and normal
at Q,. In a suitable neighborhood of ¢, #<t<t, defining an arc 1,
containing @, v admits a representation 7=7(£). We may assume 4,
so small that no two tangents to it make with each other an angle
greater than 5°. There is a positive distance d between /I'— 4, and
the arc 4, defined by the parameter range (¢, +t,)/2<¢t<(¢t,+t,)/2. Take

o<<minfd, [§(ts)—&((to+12:)/2), 1€(ts) —&((¢o+11)/2)[]

N

and draw a square 7' of side ¢ with sides parallel to the (& 7) axes
and center at @, Let 7,=yT, the projection of RT on 7 by lines
parallel to N, and let y, be the arecs formed by displacing 7, a distance
% parallel to itself into R along N. For A<, sufficiently small, 7,7
The regular arc 7, may be given a representation x=a(s), y=uy(s),
0<s<L, in terms of arc length s, where L is the length of y,. Then
7, 1s given by

r=u(s)+hcos a, y=y(s)+h cos j3,

where cos a, cos 8 are the direction cosines of the line N directed in-
ward into B. The neighborhood N(Q,) may be chosen as given by
these equations with 0<s< L. 0<h<lh, .

It is clear that

of_2¢ dx 3¢ dy
9s dx ds Odyds

has continuous limits on y,. Write

P (w(s)+h cos a, y(s)+hcos {)=F(s, ).

o¢ 2
(P) =
as( ) 08
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If 2 is any closed subarc of y,, we have

lim (s, 1) =2%(@)

uniformly in s.
Along 7, we have

¢(P,) ~¢(ﬂ)=§f F(s, h) ds

where P, and P, are points on 7, corresponding to points @; and @, on
2 with parameter values s, and s,. As % approaches 0, the limits on
the integral remain fixed. Since ¢=0 on 2, we find, by letting 2—0,

0=[* %@ ds

s, 08

for arbitrary s, s..

Thus (3¢/3s)(@)=0 on 1 and hence on 7, .

LEMMA 4. Let R, 7, @y N(Q,), N, 1, be defined as itn Lemma 3. Let
v(x, y) and Gz, y) be of class ¢ on N(Q,) and of class ¢' on N(Qy)[E + Q).
Let v=G=0 on 7, G>0 in RNQ), BG[2v)(Q)=<0. Then there
exists I;né v(P)/G(P) for PeR.

—%

If v is of class ¢"*' on N(Q,) and v, G are of class c* in N(Q,) and
of class ' on N(Q)[R+Q,], then v|G is of class ¢® on N(Q)[E+Q,].

Proof. Denote differentiation along a line parallel to N by 9/0k. By
the mean value theorem one finds that (3G/ov)(Q,) is the limiting value
of (0G/3h)(P) as Pe RN(Q,) approaches @, along the normal at @, and
hence (3G/ov)(Q,) is the limiting value of (0G/3h)(P) as P approaches €,
by any approach in RN(Q,). A similar statement is true for (9v/ov)(Q,).

Let P, be any sequence of points in RN(Q,) converging to @, and
let @, be the points on 7, associated, by projection along N, with P, .
By the generalized mean value theorem,

U(B) _ o(P)—v(@) _(9v[3R)(Pr)

GP,) GP)—G@Q,) (3G[eh)(Pr)
where P, is interior to the line segment P,Q, .
Thus

v _ (20]2)(Q)
7, G(P)  (0G[)(Q)
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It is clear from the construction of N(Q,) that the equations
x=X(s, h)=wx(s)+hcosa, y=Y(s, h)=y(s)+hcosp

yield a one to one transformation of N(Q, into N*(Q,): 0<r<h,,
0<s<L and 7, into y,*: h=0, 0<(s<L and @, into Q,*: =0, s=s,. In
fact, in view of the restriction on the slope of the tangent to r,, the
Jacobian of the transformation is

J=a'(s) cos B—1y’(s) cos a=<0 .

If x(s), y(s) are of class ¢*** on 0<s<'L then so are X(s, 4), Y(s, ) in
N*(Qs)—7,*. Any partial derivative of X(s, 2), Y(s, ) of order r<C
k+1 converges, as 2—0, uniformly on any closed subinterval of 7,* and
thus this derivative has a continuous limit on y*. By the implicit
function theorems, the inverse functions s=S(x, y), ~=H(x, y) are of
class ¢**' in RN(Q,). Moreover, the partial derivatives of S, H of
order »<<k+1 have continuous limits on 7, for the relationships

12X 25 23X 9k
ds dx Oh o

=x’(s)§§- + cosa Ch
ox ox

dY 0s ,9Y dh___,,.\08 oh
0= ésmam-*— oh aw——y (S)éw + cos ox
can be solved for 3s/ox, 2h/owx, 3s/dy, dh/3y and the resulting equations
indicate that these derivatives and their derivatives of order <k have
continuous limits on 7,.

Under this transformation wv(x, y) becomes v*(s, £) and G(z, y)
becomes G*(s, k). It is sufficient to show v*/G* is of class c¢* at Q,*
since any partial derivative of order <k of v(x, ¥)/G(x, y) is a poly-
nomial in the derivatives of v*/G* and in the derivatives of s and %
with respect to # and y of -order <r.

By the hypothesis and comments above, v*(s, A) and G*(s, &) are
of class ¢® on N*(Q) and of class ¢**' on (N*(Q)—7,*)+&* . In view
of the continuity of 9G/oh at Q,. there is a neighborhcod of @, where
(3G[oh)(P)>>0>>0, It is no loss of generality to assume (3G/2k)>5>0
in N(Q, and we shall do so. By Lemma 3, 2v/ds and 3G/[ds vanish on
70. By repeated application of Lemma 3, 0v/2s” and o'G[os” (0<r<k)
vanish on 7,. ,

The proof is greatly facilitated by an auxiliary transformation.
Let t=s, 2=G*(s, k) carrying Q,* into Q,**, 7.* into 7,**, N*(Q, into
N**(Q,). For eachs, z is a monotone increasing function of % and the
inverse function A=H*(¢, 2) is a monotone increasing function of z for
each t. As above, we see that v*(s, k)=v**(¢, z) is of class ¢* on
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N**(Q,) and of class ¢**' on (N**(Q,) —ro**) + (Q,**). Moreover, it suf-
fices to prove that v**(¢, z)/z is of class ¢* at Q,**. For notational
simplicity, let w({, 2z)=v**({, z). Note that N**(Q,) is the set 0
z<G(t, hy), 0<t<L.

By induction, we verify

il () 7"(__1)’<w G

2w 4 aw
*A,..;_ et 1)~ )
o7 2t oz 2! 2z (=17

r! oz

for 0<r<k when z>0.
For t fixed, w(t, 2) has a Taylor expansion of the form

w(t, =w(, 2)+ ow @, 2)(E—2)+-+ 8’w(t’ ?) (C—2)
0z oz !
" lw (s
o & O

for 0<<r<k, where 0<¢<(&(t, z, ¢, r)<z so that, when ¢=0,

O—w(t, 0)—=w(t, 2)—2"2(t, )+ - + (I
oz 7!

z’—z—zfi(t, 2)
<

rHlgrel  grely,
(= s VAN W,

(r+1)! -

Hence

3,(@")____1__3_‘ ¢
2 r+1az’“w( &)

which has a limit as the point (¢, z) approaches Q,**.
We have thus shown that the partial derivatives of w/z, with
respect to z alone, of order <k have limits at Q,**.
We next show that the partial derivatives of w/z with respect to
t alone have limits at @,**. First note that the derivatives of w with
respect to ¢ alone vanish at z=0. For, w(t, 2)=v*(s, ) so that
dv_ov*_ow  dwdr odw 3w G

s 9s ot 0dz09s ot oz os

and, as we have seen, 2v/3s and 3G/ds vanish at z=0. Thus dw/3at=0
at z=0. Similarly, successive differentiation shows 9"w/ot"=0 on r** ,
0<r<k.

We apply Taylor’s theorem to obtain

a<w> Low(t, 2) _ [a*w(t s)] 3 dw(t, &)
ot \ z z ot" az ot”

’

oz ot”
0<€(z, 1)<z
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and conclude that (37/at")(w/z2) has a limit at @Q,** for 0<lr<k,
Finally, any mixed derivative may be written as

a71,+771 (’[U) , 7l+m=7‘§_k

derot™ 2
and this may be written as °. {,13 w)
o2 Lot |

where 9™w/dt™ vanishes on 7,** and is of class ¢*=™ on N**(Q,) and of
class ¢! on (N**(Q,)—r,**) +Q,**. By the first results for deriva-
tives with respect to 2z, the mixed derivatives have the desired
property.

THEOREM 1. Let R be a bounded region whose boundary I’ consists of
a finite number of non-intersecting simply closed regular arcs of class
ct, (k=>2). Let G(z, y) be a function of class ¢* on R+1", vanishing on
I', positive in R, with 3G[3v=>6>0 on I.

Let H be the Hilbert space formed by completing the linear wvector
space V of variations—functions of class ¢ on R and vanishing on 1'—,
using the functional

Dig] = SS(aEi +bE2+ce)dx dy

for £eV as the square of the norm, where a, b, ¢ are bounded and in-
tegrable, >0, >0, ¢=0 in R+1".

Thew the set of functions Gr, where t is a polynomial in x and vy,
is dense in H. The set {f,} obtained by orthonormalizing the set {Ga'y’}
is complete n H.

If g(z, y) is a function of class ¢ on R and ¥ is the set of func-
tions ¢ of class ¢* on R, assuming the values of g(x, y) on I', and if
for any ¢ € ¥ we define b=D[Y—g, fi], then

[ 4—g= 201,

§2=D [Sl’-g— i bif@]< O(H)

= ket
where lim 8(n)=0, 0 depending on ¢—g.

N—»c0

In particular, iof f is integrable,

I[¢]= Sg(a¢i+ b:+ e +2f $)dz dy ,

and there exists an admissible function ¢, which minimizes I[¢] for
de¥, and we define
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;= — SSfﬁ dx dy—Dlyg, fil, d.=g+ :Zlaifi ,
then
0(n)

A—.',

” S!}O - ¢n ”2=D[¢U ¢n] <

where lim 6(n)=0 .

N—>00

Proof. 1f v is a variation, we show there is a sequence Q; of poly-
nomials such that

lim | v—G Q, '~lim SS[a(v—G Q)2 +b(v—G Q):+c(w—G Q)] dz dy=0.

In view of Lemma 4, v/G is of class ¢*-' on R and it is thus pos-
sible to extend the definition of #/G over the entire plane so that it
is of class ¢*~' over the entire plane. Let Q(é) be the uniform modu-
lus of continuity of the (k—1)st partial derivatives of v/G over a
rectangle with sides parallel to the axes containing R in its interior.

By Lemma 2, with s=2, j=1, m;=m,=j there is a sequence @, of
polynomials of degiee 2j in x and y such that, for (x, %) in R,

s-0l (G0 mi [(5), -0 e of 1, o(2)

(v—GQ,)‘i{( Q)6 |, [(G Q)e+(——QJ)Gt]

(- a)ere(y o) mi(s-0) |2 -

~o(ut, [0

A similar result is true for (v—GQ;)? and (v—G Q,)* Thus JIH.? Llw
-G Q;]=0 for k=>2.

It has thus been proved that the linear manifold formed by {Ga'y’}
is dense in V and thus in H. By the previous discussion the set {fi}
is complete in H.

Now let v in the above be the particular variation ¢—g and let
[N] represent the largest integer <N. For fixed n, let j=[(V/ n [2)—1]
and (¢, ¥)=Q,x, y). Thus there is a ‘sequence r, of degree at most

2 jg[fz(Vé?? —~ 1)]:[1/ 2n—2]
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such that

r-s-cma-of Lo, 5,)

Now En,bt fi=Gp, where p, is a polynomial of degree greater than
i=1
V'2n —2, and it is known that

P—g=2 cfi
is a minimum when ¢;=(¢—g¢, fi)=0b;. Thus

D[sl’—g— S0 |- 0(,r,0). limo=0.

In particular, if ¢, minimizes I[¢], then we have seen that

Dig—g, £~ || sr.dway-Dlo, 5.

Thus, in this case, the Fourier coefficients depend only on known
quantities.

COROLLARY b,,=0( a(n) ) .
ey

Proof. =Dl 1=D (y—g-Sb.5) = (4-0-3 bt )|
<0[v-g-S b ]+2(D [0S 1]
plo=o= o))"+ Dly-o-Zous]= o)

§ 3. Expansion Theorems. We use the notations in Theorem 1 and
seek conditions which insure that convergence in H yields uniform

convergence in R.

THEOREM 2_ Let R be a bounded region with boundary 1. Let ¢, ¢, be
continuous on R, absolutely continuous on each line in R and all taking
on the same values on I'. Let D[J]<co, D[¢,]<co. If hm D[¢—¢,]

=0, then a necessary and sufficient- condition that lim ¢,= ¢ umfo'rmly
Y J— n—>oco
on R is that ¢, be equicontinuous on R. If lim D[¢n—¢,]=0 then «

y M~>c0

necessary and sufficient condition that lim ¢, emsts uniformly on R is

n-reoo

that ¢, be equicontinuous on R .

Proof. The necessity is clear since a sequence of continuous functions
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which converge uniformly are equicontinuous.

Let u(z, y) be a function with the continuity properties of ¢(x, y)
and vanishing on I'. Let P, be a point interior to R. Place polar
coordinates at P,. If a ray from P, meets the circle S, of radius p<d,
d being the diameter of R, with P, as center, before it meets /', label
P, the first intersection point with S, and @ the first intersection
with I". Otherwise both P, and @ will refer to the first intersection
point of the ray and /.

27 2 27 ” 27" (*Q a 2
21,1{80 | (P)] da} _<,So u-(P[)dOZSO U ;:'dr] 6
wrre 1 B S IR
_ d]d ,<__Sl S (2 dr do
S [Sll‘[/q Vir or ! 0 0 o8 P 1’1?<3’r) -t

<log - Sg(n +udde dy<a log - D[u]

where a=1/min (a, b), since
R+ ¥

SS(a;u?; + 0w + cw)dx dy—=min(a, b)“(ufc +ud)dzr dy .

Apply this result to the functions u,=¢—¢, (or 10 Upm =¢n — L)
which are equicontinuous on R+ /" and thus have a uniform modulus
of continuity «(8), which approaches 0 with ¢.

Since P, is on or interior to the circle of radius p, we have
[, (Pr) —un(Po)| <o(p), whence |u,(P)|=|u,(P)| —w(p) and

27l Ju,(Po)| — o(p)]<V 27 log dfp Dlu,] .
Thus

By 2Dl tog & +otp),

which is true even if P, is on /.
Now, for ¢>0, choose p=p; so small that w(p,)<¢/2 and then choose
N so large that

5" “ Dlu,] 10g <

for n=>N. Hence
>0 N(e) 30> N-: | (Py) — (P |< e

LEMMA 5. Let R be a bounded region with boundary I and diameter d.
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Let u(x, y) be continuous on R+ 1", absolutely continuous on each line in
R+1", and vanish on I', and let 0<_D[u]< . Let «=1/min (a, b). Let
R+
PoeR+1I'. If there exists 6 >0, K=>0 and
lw(P) —u(P)| <K | P=P, |’
Jor all points P such that the ray P,P is in R+ 1", then

aDlul . &K
(P)I<y/ ¢ Dl 1og ot 4Dk

where 4 is any number >0, and
loga of a>1
log =
0 if a<l.

Proof. If P, is interior to R, and p<<d, then as in Theorem 2

o A Pyl do} < atog dip D1,

where P, is a point which is the first intersection of a ray from P,
with either 7" or the circle of radius p<{d about P, as center.
Since P, is on or interior to the circle of radius p, we have

e (Pr) —u(Po) <KP*,  [u(P)|=lu(Po) — Kp®,
2n[u(P,) — Kp¥1<<\V 2na log d/p Dlu],

IZ‘(P0)|»‘<‘~‘/§D[ZL] log Z + K¢,

which holds even if P, is on [I'.

Let 4>0. If
AD[u] \'°
( K ) <d,
choose
— ,41,?.[%1)”3
P ( K
to obtain

w(BYIy/ Dl log SoK Dl

Otherwise,

4 Dlu] \° 4 Dlu]
( o ) zd, k<Ol
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and we may replace K to obtain

Py 2Dl log i +4 D0 s,

Choose p=d to obtain |u(F,)|<<4 D[u].

COROLLARY 1. A sufficient condition that a sequence u.,, absolutely con-
tinuous on each line in R, vanishing on I, continuous on R, and having
lim D[u,]=0, converge to 0 at P, is that 36>>0 and a sequence K,, with

n—>00

lim D[u,] log K,=0 such that

n—>co

(D) — 2P <K, | P— P, |°

for all P with ray P,P in R. If 8, K, are independent of P, the con-
vergence is uniform. In any case,

K. 44, Dl
4, Dlu,]

n n

S R
a1/ Db, log
for any 4,>0.

LEMMA 6. Let R be a bounded domain with boundary I'. Let
P,e R and suppose there is a circle of radius ¢ lying in R and contain-
ing Py. Place polar coordinates (v, 0) at P, Let u(x, y) be of class c'
in R and suppose that there exist 1>0, >0 such that

luAP)—uPo)|<o | P—P, [

for all points P such that the ray P,P is in R.
Then

A A+ GA+3)[(A+
PRI DLy o )2 gy 4 8 DT
n. (o)

e A

Proof. AP < |, (P)|+ o7

Integrating over a circle S, of radius p<e¢ which contains P,, S,C
S,, we obtain

SS \w,(Pyr dr 6 gz“ w(P)r drr df+ 2“ v dr df)
SP "SP SP

We may assume that the polar axis lies in the direction of pu(P,).
Hence . (P)=|pu(P,)|cos ¢ and

SS lpu(Py)*(cos® O)r dr d0<2a D[u]+2+*(2p)"np* .

“p
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We will show that the minimum value of Sg (cos By drdf is /4.
S

Suppose first that the pole O is interior to S, . Lpet 7(0) be the equa-
tion of the circle relative to the pole O. Let @ be the point (»(6), 6)
and Q' the point (r(0+=), 0+7). @ and
Q' are thus the intersections of a ray
through O with the circle. Let O’ be the
center of the circle and suppose the co-
ordinates of O’ relative to O are (¢, ¢).
Then the angle between 0Q and 0O’ is
¢—0. Drop a perpendicular from O’ to
Q0Q' hitting the latter at T, the length
of OT being |ccos(¢p—0)]. Thus one of
the lengths [[OQ|, |OQ"|| is m+|ccos(p—0) and the other is m—
lc cos (p—0)| where 2m is the length of QQ’, and the product |0Q’|
| 0Q |=m*—¢* cos*(p—6). Also, if OO" meets the circle in points A4,
A’ it is easily seen that |04’ [OA4|=[0Q]| |0Q’ | so that (p+c)(p—c)
=m*—c*cos’(p —0) and m*=p*—c*+¢* cos’(p—6). Hence

10QF+] 0Q" [F=[m +|c cos(¢—0)|F +[m —[c cos(¢p— )]
=2m” + 2¢* cos*(p — 0) =2p* — 2¢* + 4¢* cos*(¢p —0).

We note that

([, ooy aras=1 (" @ycost 0.a0 = |71 0 +10Q Preost 9 a0
8, 0 0
=; Y [2p* —2¢* +4¢* cos*(p— 0)] cos* 0 A6 .
0

Moreover this formula holds even if O is a point on the circumference
for in this case

Y+
¥

SS (cos? 0) 1 dr da=1/2§ "y (B)cos* 0 dB
Sp

where 7 is the angle between the polar axis and the tangent to the
circle at O in that direction which has the area to the left of the
tangent line. Here r*=[2pcos(p—0)] and since the square of the
cosine has period =, the integral reduces to

; Sﬂ 40” cos*(p—0)cos* 6 db .
1]

Thus, in any case,
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SS (cos® O)r dr df= S [2p% —2¢* + 4¢* cos*(p— 6)] cos® 6 df
l"

1

1
2
_1 Tt — = 7rc“+"02[1+200s"¢].
) 2 4

For fixed ¢, the minimum is obtained when ¢= g, and is ’T‘Uz—i et .
The absolute minimum is obtained when c¢=p and is =p*/4.
It follows from this result, that

O ()< 2aDl + 252

PP <<

8 D] _givos o
p

Consider the function y=A/p*+ Bp*™ where A=8« D[u]/m, B=2"*%".
The minimum value is

Ymn= AMO\.H)B”()"H)(A -+ 1)1—)~/(?\+1)

(2 s @\ (5A+3)/(A+1)
(a*D[u]M) ; (A+1)2
7

obtained when

{):< A »)1/(21“\ __:< « Dl_lf] )1/(2A+2)

B2 ina®2%
If
aD[u] 1/(2A+2)
() ==
choose
_< « D[u] )1/(2)\4-2)
NP RS
and have
A+
[172¢(P0)P_§(02 D[u])\)U(AH)(g) 2(."):\+3)/()+1)(2 + 1)
However, if
aD[u] 1/(2A+2)
(o)
we have
A< a D[u]

22)\2 e?}\-(-"
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and integrating over S,, as in the beginning of this proof, we find
that

I, veceorr aran ;\;25& w Py di df+2. 2(;?{2&‘“(25)*, =,

”j \Pu(PYP< 2aDin] + 2% D W

\Pu(Py)P< 78a D[ul 8{( D[uj_:<1 1 11 )5{(1)[2&] )

Ame? e’

Thus, in any case,

(Vu(Po)lzg(azp[u:r\)um(f )“‘““zw)/wa i (G
T

e’ A

LEMMA 7. Let R be a bounded region with boundary I and diameter
d and let R have the property that there exists an >0 such that every
point of B+ 1" is within some circle of radius e lying in R+1".

Let u(x, y)=Gr+ H where r is o polynomial of degree m, G and H
are of class ¢' on R+ 1" and vanish on 1", G>-0 in R, |pG|=6>0 on I'.
Let |G|<G,, |HI<LH, pGI<G,, \[PHI<H, for constants G,, G,, H;, H..

Suppose also that

|GA(P) = Go(P)<Go | P-F|, |G(P)~Gy(P)<Gy | P—P, ],

|HAP)~ H(P)I<H, | P—F, |, |H(P)-H(P)I<H,|P~P,| for constants
G,, H,, whenever P, P, are points in R such that the line P,P is in R.
Let A be an upper bound for Dlu] and D[u]log m.

Then there exists a constant B, depending only on «, A, G,, G, G,, H,,
H,, H, 8, ¢, d, G but not on m or r, such that for P,eR.

WPy 2 Dluyog | T+ BU DL (DLD)™

for any 4>0. (m to be replaced by 1 4f it is 0). 3
Proof. We may assume D[u]>0 for otherwise u==0 in R.
Let L=max |r{. By a theorem of Kellogg [3], |pe(P)|<Lm*le for

Pe R. ! B
If P and P, are on a straight line in R, then

oP) =Pl ||, i< P,

|H(P)—HP)<H.| P-PF,|, |GP)—GPER)<G|P-P,
[ (P) —u(PY<IGP)e(P) = G(P)e(Po) |+ [G(P)e(Py) = G(P)z(Fy) + | H(P) — H(P,)|
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< (GLm + LG, +H)>]P P|=K|P-P,|.

€

By Lemma 5, with 4=D[u]-'?

(2) [W(P)I<) & Dpu] log Vo

Also, z,, 7, are polynomials of degree m and absolute value less
than or equal to Lm?*e, so that |pr,|<<(Lm?/e)(m’[e,) and

leu(P) — E(P0)|<§ |I7T~c|d7'<lin’~hp P

Thus

Ipe(P)~ VT(Po)|<2L-m | P—P,|.

Then
Ipu(P)—pu(Py)|
<IGP)z(P)—G(P)prz(Py) + [e(P)pG(P) — «(P)r G(Py)| + [p H(P) — p H(Fy)|
<UG(P)(P) —G(P)pz(Po)|l+| G(P)p(Po) — G(Po)yz(Py)
+ (P G(P) —o(P)pG(Py)| + | «(P)rG(Py) — t(P)p G(F,)
+|H(P)— HAPy) +| H(P)— H,(P)|

<(G12 Lm' L o o I, 2G,+G.E™

€

" 128H,)| P~Py|=a| P=Py|.
Whence Lemma 6 yields

(3) ru(BY<y @Dppy( ) "2+ 160 D0
s TE

By use of inequalities (2) and (3) we now find a bound for L.

Either L<1 or else there exist constants ¢, ¢, such that K<
elLm?, 6<e,Lm* where the factor m is to be omitted if it is zero, and
¢, ¢, depend only on ¢, Gy, G,, H,, H, G,.

Assume L>1. Since |pG|=<0 on I, there exists a continuous
curve (or curves) r dividing R into two closed sets R, and R, such
that R,R,=7, R, being a boundary set where |pG|>>§/2>>0, and R, the
set separated from /” by y. There is a constant ¢; such that G(P)
>¢;,>0 for PeR,.

Suppose first that || assumes its maximum L at a point P,eR..
Then, by (2),

| G(P)=(P,) + H(P)| g/ é‘ip[u] log* f/cbe%” +v/ D[]
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or,

(4) L= [H Y “D[u] log* (li/qD[ ]-l-l/D[u]J

Since D[u]log m and D[u] are bounded by A, equation (4) implies

the existence of a constant ¢, depending on ¢, ¢, d, A4, «, H, such
that L<e;.

On the other hand, if |r| assumes its maximum L at a point P e
R,, write

ru=Gpr+pG+pH TpG=rpu—upr+ Hyr—rpH,
Gl <|c||pul+|u| |pr|+|H| |pr|+|z| [pH|

< L‘/(C§ LzmeDru])uz( ) 32 16a D[u]

e?

+W~(}/ Dlu] log* dcb££’%+l/l)[u])+ﬂl L’ | Ln, .

Therefore,

(5) L< ‘3 {/32 (¢t Lm? D[u])" (‘7‘[ )”11.69 Dlu]

~2
Te

R T )

This inequality, which is of the form
L<K + K;m*+ K;m*V log L + Km*V'L
shows that

VL < VKL +~1’%‘ + Am/ 10gL,,L + K< K, + Kym?+ Kym* + Kon?,
since L >>1, whence L<c;m' for some constant c¢;.

Thus, in any case, there is a constant ¢, such that L<lesm!, where
the factor m is to be omitted if it is zero. From this one can con-
clude that K<(e, c; m*. However, we may obtain a better estimate by
noticing that K merely serves as a number such that |u(P)—u(P,)|
<K||P—P,|| whenever P and P, are on a straight line in R. Hence
K may be replaced by sup |pu .

R

The inequality o<le,Lm'*<c.esm® and formula (3) yield

|Vu(P0)lg,/ W;;ép['ujln(,, ) 324 10aDLI“DIUT™ _ o by

e
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since D[u]<A. Thus we may replace K by ¢ D[u]*m' and substitute
in Lemma 5 to obtain

Py § Db toge ST s

Let 4=dc,4:D[u]*"* and B=dec; to obtain the conclusion.

LEMMA 8. Let R, G, have the properties in Lemma 7 and let u=
Gt where © is a polynomial of degree m.

Then D[u]>>cplu(Py)*/log m where ¢, >0 is a constant depending only
om Gy, Gy, Gy, d, e, «, 8, G. The factor log m is to be omitted if m=0
or 1.

Proof. Whether L<C1 or not, the formulas for K, s show that
K<e,.Lm?, o<c,Lm*. Moreover, either formula (4) or (5) holds, with
H,=0, H=0. If (4) holds, we have

Let w=L/V'D[u]- The above inequality is then of the form w <<
K V'log wm*+ K, whence Ljv/D[u]<c; log m for some constant ¢;, depend-
ing on «a, ¢, d, ¢,. Here the factor log m is to be omitted if m=0 or
1. On the other hand, if (5) holds, we have

’l/zg[u]gg‘{l/é”’* Vllj;[uj (%)U 32+ lﬁa

+ ’f(/ 2;[log deon® 1/D[u] 1)}

from which we conclude L/V/Du]<cym'logm (m and log m to be omit-
ted if m=0 or 1).

Thus, in any case, there is a constant ¢, such that L/1/D[u]<
com® . Therefore

K o ¢, Lm?
V' Dlu] V' Dlu]

<ceomt .
Substituting in equation (2), we have
(Pyi<y/ £ Dl log* deseym’+V/ D)</ log mv/Dlu
T

m to be omitted if it is 0 or 1.
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THEOREM 3. Let K be a bounded region whose boundary I’ consists
of a finite number of stmply closed regular ares of class ¢*, k=3. Let
G(x, y) be a function of class ¢* on R+ 1", vanishing on I', positive in
R, with 3G[0y=>0>0 on I'. Let f, be the set obtained by orthonormaliz-
ing the set {Ga'y’} using the functional

Dle]— “R (a2 + b2 + ce)da dy

as the square of the norm, where a, b, ¢ are bounded and integrable,
a>0, b>0, ¢c=0 on R+1I". Let g(x, y) be any function of class ¢ on
R+I'. Let ¢(x,y) be any function of class ¢* on R+1" assuming the
values of g(x, y) on I'. Define b,=D[y—g, fil-

Then

berm St (P )

where

D g—g- Lo <

with lim 0(n)=0, 0 depending on ¢—g, and where N is any fixed constant

n—>oc0

>0. Moreover, if k=10, then

sl g0

Finally, if S is any closed domain in R, k=7, then for points P in S,
& 1 14
\V¢—V<g+ Zbifi)]:O([g(@l_og_ﬁ] ) .
| i=1 i n

Proof. Let u,=¢—g— be, Then wu, is of the form Gr,+H
where the degree m, of r, 1s less than v'2n—2 and greater than /92
—2. By Theorem 1, D[u,]<0(n)/n*-*, k=3, where lim0(r)=0 so that
Dlu,] log m,<<A for some constant 4 independent O%M;. By Lemma 7,

By % Dl tog* | e |+ B D]

for any 4,>0.

Iuni<1/ 2% Dl log* jgz["n]+B(AnD[un])“D[un]”‘-
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There is a constant E, depending on N, such that 1/n<E/(logn)"e,
n=>3. Then

D[, ]<0(n) O(n)E*>  2n 1/2n
P (log n)¥&-2 " gb=24 " ¢4,

if

1/2n(10g ,n)N(Ic 2)
"= 0mE

The function « log (1/2n/4x) is monotone increasing for 0<<x<{1/2n/ed so
that we may replace D[u,] by 6(n)/n*~* to obtain

iy 2 O g OB
n -2 (log In)N(k 2)0(’)’&) /n

- k-2

6()E*> w2/ \n*

_ o(/ V0 (’n)_» (log%ni)f‘;) .

In the proof of Lemma 7, we saw that L<legm' and o<le,LM*<
c.cem®.  Hence by equation (3) of Lemma 7,

i <y e (00 ) () 52 265000

2 n_el nk-—z

(V20w )bl ("r(m)m

Since m,<1/2n, we obtain the statement of the theorem regarding
uniform convergence in R of |pu,| for k>10.

Next, let S be any closed domain in R. We may suppose the
boundary I of S is sufficiently smooth so that a circle of radius ¢
may be rolled around /" while lying in S. Let L, =sup|z,| and P§»

S
be the point in S where L, =|r,(P§®|. As in the proof of Lemma 7,

. 16D, ]

P (PYI<y/ GiDIw (_[ )" 824 for Pye S

7Te”
where

G G, 2L L gy 170G, + GLa yog,
15

o8 €

Using Gz, as the function « of Lemma 8 defined over R and remember-

ing that Gr,=— ibifi, we obtain
i=1
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G L2y B{g}ﬂi&g@/ o -
In S, |G(P)>c.>0. Also
D] Sufi]= S o< Se-DlY—al.

Therefore L,<lciq/logn , a»<_cin'1/log n , and

R GO RGO
0 ([q('f%;l?f‘ n ]1/4> .

THEOREM 4. Let R, I', G, [, be defined as in Theorem 3. Then
there is a constant ¢, such that whenever P,e R, then

S )< eglogn .

The theorem is true if F, is a point where f,,.--, f, all vanish, in
particular on /*. Let P, be a point in B where not all f, K=1, -
n vanish. Consider the problem of minimizing D[u], where u is of the

form u= nzcx fx, under the condition u(P)=T=<0. Now
K =1
Dlul=D| Sexfi |= Sk,
K=1 K=1
so that we must minimize z‘jc} under the condition icx Fx(Po)=T.
K=1 K=1

By Lagrange multipliers we find a necessary conditicn for a minimum
to be

e TIRP)
; Si(Po)
and the function }": S« satisfies

D=1 33 fx(P).
This is actually a minimum value, for, if u= éc,\.f,i, then
K=1

=[S e (PIPS 3 6k 3 F(P)
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SO

T <Se—Dh.
S ey

Now # is of the form G r, where r, has the degree of f, and this
degree is less than /2, -2 .
By Lemma 8, we have D[#]>c,,T?%/log 1/2n—2 .

Hence
R I
S /3P o8V 22

K}_"‘lf?c(Po)ﬁcl log 1/9n =2 .
= 12

4, An Associated Problem. As in the previous sections, let R be a
bounded region whose boundary I consists of a finite number of simply
closed regular arcs of class ¢*, k==3; G(x, y) be a function of eclass ¢*
on R+ 1", vanishing on I, positive in R, with 0G/0,=>0>>0 on I"; g(x, y)
be any function of class ¢ on R+17"; a variation be a function of class
¢* on R+ 17" vanishing on /.

Let

Dg]— S SR (@& + b2 + ceyda dy

where a¢>0, >0, ¢=0 on R+1"; a, b, and ¢ are bounded and integr-

able on R; p is a real number greater than or equal to 1.

Assuming the existence of a function ¢,, yielding minimum value
to D?[¢] in the set of admissible funetions of class ¢* on R+/7, which
take the value of g on /', can we obtain ¢, by the Rayleigh Ritz
method ? This question is answered in the affirmative and an estimate
is obtained for the rate of convergence.

Let | ¢l=(D*[£])'*?, for &in the set of functions of class ¢ on R+ 1.
This functional has the properties |£|=>0, [a¢|=|a||é&| for real a,
le+nl<lel+]7l-

The functional [|£]| is a true norm in the linear space V of varia-
tions. Let H be the Banach space formed by completing V with respect
to this norm. As in the proof of Theorem 1, we see that the set of
functions Gr, where r is a polynomial in « and y, is dense in H.
Moreover, if ¢ is admissible, there exists a sequence of polynomials
Q; of degree at most j such that
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I sb-—g—(%Qf'N=D”[s"—g——GQﬂlzu=(}( 73 ) ,
J

where 6 depends on ¢—g¢ and lim 6(5)=0.
Joroo

There exists inf D?[¢|>>0 for admissible ¢». Let z; be a polynominal
of degree at most j which makes D"[g+ Gz;]<D'[¢g+GQ,] for all poly-
nomials @, of degree at most j.

That such a polynomial r; exists can be seen as follows. The class of
all functions GQ; where @, is a polynominal of degree at most j is also
the linear manifold determined by f:=GT;, the orthonormal sequence
of Theorem 1, whose polynomial factor T, is of degree at most 5. As

stated in the introduction, 1<+< \y<7 ;_ 1) +j4+1=06 so that we may

write GQ,=”Zcif{. Now let @ be any fixed Q;,, We may restrict
=1
ourselves to those Q; such that D’[g+ GQ;]<D"[G+GQ;]. For such @,
we have
lol+1g+GQi | =] gl+|9+GQ;| =GR, .

Since D[£|<D*[£]'"?|R[* where (1/p)+(1/¢)=1, |R|=area of R, we
find that

IR gl +] g+ GQ; [F=DIGQ,]= E[ Cff] =8

Thus the permissible ¢; lie in a bounded closed set S in s-dimensional
space. Since

Dlg+6Q1=D g+ Seif

is a continuous function of ¢; in S, it attains its minimum in S.
Since D![¢g+Gr;] is a decreasing function of j, we have

%im g+ Gr,|<lim inf g+ GQ;| .
—> 00 J—eo

Let ¢ be admissible and choose Q, so that lim D*[¢— g—GQ;]=0. Then

lg+GQ,I<|¢|+|¢—9g—GQ;l implies that hm inf|lg+GQ,|I<|¢| . Tt
follows that hm [g+Gz; <] g!'t‘ for every admlssxble ¢ and thus g¢g+Gv;

is a m1n1m1z1ng sequence.

If ¢>0 in a set of positive measure in R, the functional |£] is a
true norm in the linear space (¢*) of functions of class ¢* on R+ 1. If
¢=0, a.e. in R, this is still true provided we identify functions differ-
ing by a constant. In either case we will complete the space (¢*) to
form a Banach space B.
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A set S in a normed linear space is uniformly convex if there
exists a continuous monotone increasing function g(¢), 0<e<1, with
lim g()=0, such that whenever ¢, 7 are in Sand [£|=]7l=1, |(¢+79)/2]

g~>00

Z1—e¢, then [§—7[<g(e).
We shall show (¢*) is uniformly convex. It is easily verified that

Sa? 4 P2l a + P+ la — 17,

Apply the inequality to the integrand below, where we assume ¢
and ¢ are in (¢"), l¢|=]¢ =1, [(p+¢)/2]|=1—c.

Jofe(43 )3 )3T
SR R IR

< §[(a¢q F bt + e¢?) + (ag? + g2 + cg?)Pda dy

2
op

<

[«
)

* S S lad, . +b,p,¢,+ copd|da dy
{ (SS(WI)‘ +bg;, + cd)‘)vdmdy) (SS(W/@ b+ S/,cz)l,dxdy)l/p}p
|

e [(vagt + v+ e age v g ya dy

<2+ ‘/gg(aqb‘ + bl + ed? )”dxdy‘/gg(ay + by + ef?) da dy=3

Hence

] G R A R R

and

» 1/20
=9 1=] [{(atw—02: + 00— 9), +cl9—97) dy |
<2(3[1— (1— )] <T2(8*")(2pe) " = g(e)
for ¢<1, since the function y=[1—(1—2a)*]—2pa vanishes at 0 and is

a decreasing function of x for 0<lx<1.

LEMMA 9. Let B be a Banach space, Y a set en B with the property
that if o, v, are in Y, then so is (y+y.)/2. Let the linear manifold
spanned by Y be a uniformly convex set in B. Let
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p=inf |y| >0,
VEY
let y, be a sequence in Y with
Iq}m “ Yn ||=Pv pn=” Yn ” .

Then there exists a unique x in B such that |x|=p and we have
T H<P9(‘D" >+pn -,

where g(e) is the function in the deﬁmtzon of uniform convexity. If p==
inf |y |[=0, and lim |y, |=p, then there is a unique x in B such that
YeY N—>00 X

lzll=p, and we have |x—y, |=p.—p-

Proof. Let z,=y.[p. so that |z,|=1. Write

Znt 2 ,L(%d'}i@)____ yy(L _1 ) n ym< 11 )
2 P 2 2\p, p 2\pw p

el g (- 1)l

>1 .p_&(v 1 _1,)_&&(«__1__1;)=1_(Pn —P)+(Pu—p)
P 2\p pd 2\p pu 2p

2yt zm yn_'t'_?i@

Hence

” Zn—2m “<g((&‘: p_)a. T (p"":,_p)> for P —B_-*__HW'LT_‘O <1 .
" — 2p 2p
Thus there exists z=limz, in B. Let x=pz= 11m pz,=lim pz,=limy, .

n—>oco Nn—oo N—>oc0

Then ||w\|—}b1j£ |nl=p. Also ||z,—z|<g((pn— p)/2p) implies

|z—=val=lp2=prza[<l p2—p2 | +1 P2 = pr n<py(p"2p P2=E) 1 p,—p

To show « is unique, suppose also y,€Y, 1:3.1° lon|=p, "€ B, |z’ |=p,

&'=limy,. Then form the sequence {y,}=w1, ¥, Y» Y, ete. of ele-

—>00

ments of Y with limy,=p. As above, gz’ € B with a2’/ =limy, =

n—>o0 n—>o0

lim yn—hm Y». The last part of the lemma is obvious, since only ||0=0.

N—>oc0 —> 00

To apply the lemma, let B be the completion of (¢*), Y the set of
admissible functions,

—g+Gr,, p=inf DY,

for admissible ¢. By the lemma, there is a unique x such that |z |=
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p. Assuming that x=¢, is in Y, we can choose polynomials @, of degree
at most 5 such that

[$0—9—GQ, ||=o(%§.{.?_,) ,
Then
—p=lg+Ge;| =1 |< g+ GQ; I~ o]
=g+ GQ;— ¢+l =l I<| %-—g—GQ,]\:o(ggZ) _

By the lemma,

> — 1/2p 0 1/2p
ns!«,—g—Grjllgzp(ep)w@;épﬁ) +py—p= (yg? ,

a better result, O(6(5)/5%-*), is obtained in the case p=0.
Since
Dlu]<(D*"[u])""|RI"" ,
where |R| is the area of R and (1/p)+(1/q)=1, we find

Dieg<(%2)"

where ]1m 0(3)=0, when we take u;,=¢,—g—Gr;,. A proof similar to
that of Theorem 3 can now be constructed for the following result.

THEOREM 5. Let R be a bounded region whose boundary I" consists
of a finite number of simply closed regular arcs of class ¢, k=>3. Let
G(x, y) be a function of class ¢* on R+ I, vanishing on I", positive in R, with
3G[o0v=0">0 on I'. Let a, b, ¢ be bounded and integrable on B, and

a>0, >0, ¢c>0 on R. Let g(x, y) be any function of class ¢* on R+1T.
Choose polynomials t; minimizing D*[g+ GQ;] in the set of all polynomials
Q; of degree at most j. Then, if ¢, yields minimum value to D”[$] for
¢ in the set of functions of class ¢ on R+ 1" assuming the values of g on
I', we have

—g=Ge)= 0/ (VID " 10g T ),
Wo=g=Grs (‘/< jis ) % (logy)”)
where N 1is any fixed positive constant, 0(j) depends on ¢y—g and

lim 6(5)=0.

J—o
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If k=>16p+2, then

it =rg+Geyl=o([ 19,1,

k-3~ 16p
)
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