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The theory of linear inequalities has come into prominence anew
in recent years because of its importance in the solution of linear
programming problems. In this note we present a simple algebraic
proof of an interesting theorem on alternatives for pairs of matrices.
This problem was suggested by A. W. Tucker.

Let A and B be matrices, n by m and n by p, respectively, and
let x, y, u be column vectors of dimensions ra, p, n, respectively.

STATEMENT I. Either Afu>Q, B'lQtO for some u or Ax 4-By=0 for
some #>0, y^>0.ι

STATEMENT II. Either A'u>0, B'ύ^Ofor some u or Ax-\-By=0 for
some x>0, y^>0. [7].

We shall prove the following theorem.
THEOREM. Statement I implies, and is implied by, Statement II.
Note that for the special case when A=— a (column vector) State-

ment I (or II) reduces to a result of Farkas [2]. If B=0, then State-
ments I and II are two theorems of Stiemke [6]. More importantly,
if the matrix [B, C, — C] is substituted for B, where C is a n by q

matrix, and y is replaced by the vector then Statement I gives
V%)

the well-known transposition theorem of Motzkin [4, 5]. We refer to
[4] for several proofs and further references.

Before proving our theorem, let us make the following preliminary
observations. Define the matrix M=[Af B] and the column vector

z= \x , and consider the system of equations Mz=Q. Assume that

the vectors su s2, •• ,sfc span the linear manifold S^oΐ solutions of
this system. Then every solution z can be written in the form z=S'c
where S/==[slf s2, , sfc] and c is a ^-dimensional (column) vector.
Observe that the rows of the matrix M span the orthogonal complement
^ * of £f, that is, every solution of the system Ss* = 0 can be rep-
resented as z^^M'd where d is a ^-dimensional (column) vector.

It will be convenient to write S=[Slf S2~] where Sλ and S z are the
k by m and k by p matrices, respectively, into which S can be parti-
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tioned accordingly, we introduce two column vectors v, iv with ra and

p components, respectively, and write z* = 1^ .

Clearly, the alternatives in each Statement are mutually exclusive
as can be seen by multiplying Ax-\-By=0 on the left by uf. To prove
the theorem suppose, at first, that AΊί>Q, B'C>0 for no u and
Ax -f- By=0 has no solution #>0, ?/2>0. Then there exists no c such
that

Hence, by Statement I, the system S1v-hS2w=0 must be satisfied for
some v^>0, W^>LO. Since every solution of

is of the form z*=M'd, there must exist a vector d such that A'd>0,
B'C>0, which is a contradiction. Thus Statement I implies Statement
II. Conversely, if A'u>0, BfιQ>$ for no u and Ax-}-By=0 has no solution
#>0, y^>0, then there exists no c such that SK>0, S^c^O. Hence, by
Statement II, the system SιV + S2w=0 must be satisfied for some v>0,
w!>0, that is, there must exist a vector d such that A'dyQ, B'd^>S);
but this is a contradiction. Thus Statement II implies Statement I.

For applications to linear programming Statements I and II are
modified by adjoining in them the inequality u^>0 to B'u^S), that is,
by replacing the matrix B by \B> /] in this form they can be used to
prove the duality theorem, [1, 3].
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