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ON THE PROJECTIONS OF A CONVEX POLYTOPE

ROLF SCHNEIDER

It is shown that in the class of all centrally symmetric
convex bodies in Ed a polytope is uniquely determined, up to
a translation, by its brightness (or certain similar f unctionals)
in a suitable, though "arbitrarily small", set of directions.

It is well known that a centrally symmetric convex body (com-
pact, convex set with interior points) in eZ-dimensional Euclidean space
Ed(d ^ 3) is, up to a translation, uniquely determined by its brightness
function. To formulate a more general result, let S**1: ={x e Ed: \\x\\ = l}
be the unit sphere in Ed; for a convex body KaEd and a unit vector
u e Sd~ι let K(u) be the convex set that arises by orthogonal projection
of K on to the (d — l)-dimensional linear subspace orthogonal to u.
For pe {0, 1, , d — 2} let vp(K, u) denote the p-th cross-section
measure (Quermassintegral; for a definition see Bonnesen-Fenchel [2,
p. 49], or Hadwiger [5, p. 209]) of dimension d — 1 of the set K(u).
Thus, e.g., vo(K, u) is the brightness of K in the direction u, and
vd_2(K, u) is, up to a factor depending only on d, the mean width of
K(u). The following theorem has been proved by A. D. Aleksandrov
[1]:

// K, Kc Ed are centrally symmetric convex bodies satisfying
vp(K, u) = vp(K, u) for each u e Sd~ι and for some p e {0,1, , d — 2},
then K is a translate of K.

For another proof and a generalization see Chakerian [3].

One might ask whether in Aleksandrov ?s theorem it is really
necessary to assume the equality vp(K, n) — vp(K, u) for the set of all
directions u or whether some nondense subset thereof might suffice.
The latter is, however, not true in general. In fact, given a centrally
symmetric convex body KaEd with sufficiently smooth boundary and
a symmetric subset A c S ^ 1 which is not dense in Sd~\ there exists
a centrally symmetric convex body KczEd, not a translate of K,
which satisfies vo(K9 n) = vo(K, u) for each u e A. Examples to this
effect have been constructed in [7, §4]. The object of the present
note is to exhibit a contrary situation: In case K is a centrally
symmetric polytope, there exist sets AczS^1 of arbitrarily small
(positive) measure such that the assumption

vp(K, u) — vp(K, u) for each u e A
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forces the centrally symmetric convex body K to be a translate of
K. More precisely, we shall prove the following

THEOREM. Let KaEd be a centrally symmetric convex polytope.
Let p G {0, 1, , d — 2}, and let A c S^1 be an open set which con-
tains, corresponding to each (d — 1 — p)-dimensional face of K, a
vector which is parallel to that face. If K(zEd is a centrally
symmetric convex body which satisfies

vp(K, u) = vp(K, u) for each ueA,

then K is a translate of K.

For p <: d — 3 there exist universal sets A with the properties
demanded in the theorem. For instance, if A is a neighborhood of
an "equator sphere" of Sd~\ then A contains, corresponding to any
(d — 1 — #>)-face F of any convex polytope, a vector which is parallel
to F.

The following remarks are preparatory to the proof of the theorem.
For a convex body K(zEd let μp(K, -), p = 1, , d — 1, be its p-ih
surface area function; thus μp is a positive Borel measure on S^1

which may be characterized by the fact that

(1) V(K, K, y , g , B, ...,B) = j-\sdιh(v)μp(K, dv)

p d—l—p

for every convex body KcEd (see Fenchel-Jessen [4]); here the left
side is a mixed volume, B is the ball bounded by Sd~\ and h is the
support function of K. As a special case of (1) we have the re-
presentation

( 2 ) vp(K, tt) = i ( IO, vyI μd+p(K, dv) , u e S^1 .

For a convex polytope PaEd and p e {1, , d - 1} let σp(P)dSd~ι

be the spherical image of the p-faces of P, thus, by definition, u e σp(P)
if and only if the supporting hyperplane of P with exterior normal
vector u contains a p-face of P. We assert that the measure μp(P, )
is concentrated on σp(P). In fact, if ω e S^1 is a Borel set having
empty intersection with σp(P)> then μp(P, co) — 0 as may be seen from
the last formula of Fenchel-Jessen [4] and an easy estimate of the
measure of the "brush set" corresponding to a).

We shall need two lemmas concerning expressions of the type
occurring in (2). Let μ be a positive Borel measure on Sd~1 which is
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symmetric (i.e., attains the same value at antipodal sets). Then

(3) H(x): - ί \<x,v>\μ(dv)
JSd'~ί

is, for x e Ed, a (symmetric) convex function. Let Hr(x; y) for y e Ed\{0}
denote the directional derivative (see Bonnesen-Fenchel [2, p. 19]) of H
at x in the direction y.

LEMMA 1. If H is given by (3) with symmetric μ, then

H'(x; y)• = 2 [ <y, v>μ(dv) +\ \<y,v>\μ(dv)

where

S.: = {veSd-l:<x,v>>0},

ωx: = {ve S*-1: <x, v} = 0} .

For the easy computation, see [6, Lemma 6.1].

LEMMA 2. If μ is a symmetric signed Borel measure on S*"1

which satisfies

I \ζu, vy\ μ(dv) = 0 for each u e S*-1 ,

then μ = 0.

Essentially, this has been proved by Aleksandrov [1, §8]. In
proving his theorem quoted in the introduction, he showed the asser-
tion of Lemma 2 to be true in the case where μ is a difference of
two (d — 1 — p)-th surface area functions of convex bodies; but this
assumption is not needed in the proof. To be sure, this is not a
special case, since from the well known existence theorem of Minkowski,
Aleksandrov, and Fenchel-Jessen [4, p. 16], it follows that every sym-
metric Borel measure on S*-1 is the difference of the (d — l)-st surface
area functions of two appropriate centrally symmetric convex bodies;
hence Lemma 2 follows also directly from Aleksandrov's theorem cited
earlier. For further references and a generalization of Lemma 2, see
[6].

We proceed now to the proof of the theorem. It is convenient
to write d — 1 — p = q. The assumptions of the theorem together
with formula (2) give

( 4) j ^ I<μ, vy I μq(K, dv) = j ^ | <u, v>\ μq{K, dv)
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for each ueA. Let F be a g-dimensional face of the polytope K.
We have assumed that the set A contains a vector / which is parallel
to F. Since A is an open set it contains a neighborhood of /. If
equation (4) holds for a unit vector u, it holds also for every an,
a > 0; thus there is an open set U of Ed containing / such that (4)
holds for each ue U. Therefore the convex functions which are defined
by the left and the right side of (4), respectively, must have equal
directional derivatives at / with respect to every direction y. Then
Lemma 1 yields

2 ( <V, v>μq{K, dv)+\ IO, v> I μq(K, dv)
JSf Jωf

= 2 ( <2/, v>μ,(K, dv) + ί |<y, «>| μq{K, dv)
JSf Jωf

for each y eEd. If we replace y by -y and add the resulting equation
to the former one we see that

( 5 ) ί | O , v>\ μq(K, dv) = ( |<j/, v>\μq(K, dv) .
Jωf Jωf

Since K and K are centrally symmetric, the measures μq(K, •) and
μq(K, •) are symmetric. We can now apply Lemma 2 with the di-
mension d replaced by d — 1, with S**1 replaced by ωf, and with μ
replaced by the restriction of μq(K, •) — μq(K, •) to ωf. We deduce
that

( 6) μq(K, ωf]cθf) = μq(K, ω Π ω/)

for every Borel set ω of S^"1. Now observe that the vector / has
been chosen parallel to the g-face F. Thus every unit vector which
is orthogonal to F is contained in ωf, hence ωf contains the spherical
image of the face F. Therefore equation (6) is especially true if ωf is
replaced by the spherical image of F. Now F is an arbitrary g-face
of K> hence the the additivity of the measures allows us to further
replace the spherical image of F by the union of the spherical images
of the tf-faces of K:

( 7 ) μq(K, ω ΓΊ σq(K)) = μq{K, ω n σq(K)) .

It has already been noticed that the measure μq(K, •) is concentrated
on oq{K), therefore to intersect ω with σq(K) on the left side of (7)
is indeed superfluous; we have

( 8 ) μq(K, ω) = μq(K, ω Π σq(K))

for every Borel set ω on Sd~\ Write
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v(ω): = μq{K, ω) - μq{K, ω) ,

then (8) gives

v{ω) = μq{K, ω Π [S*-\σg(K)])

so that v is still a positive measure. Hence the function

H(x):= \ \<x,v>\v(dv),

defined for xeEd, is the support function of a compact convex set C
By (4) we have H(u) = 0 for each ue A, where A is an open set on
Sd~\ and since H is even, we have also H{u) = 0 for each u in the
set antipodal to A. Thus C cannot contain a point different from 0.
This gives H(x) = 0 for each x e Ed, and another application of Lemma
2 shows that v, being symmetric, must vanish identically. We have
proved that the convex bodies K and K have the same #-th surface
area function, hence they differ at most by a translation (Aleksandrov
[1], Fenchel-Jessen [4]).
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