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GENERALIZED SYLOW TOWER GROUPS

J. B. DERR

A well-known theorem of P. Hall states that a finite group
G is solvable if, and only if G possesses a complete set of
permutable Sylow subgroups. Our goal here is to investigate
finite (solvable) groups whose Sylow subgroups are related by
a normalizer condition (TV). The presence of property (JV) for
a group G implies that G has structure similar to a Sylow
tower group.

Some well-known classes of finite groups can be described in terms
of Sylow structure. For example, a finite nilpotent group is charac-
terized by the property that distinct Sylow subgroups centralize one
another. And P. Hall [3] has shown that a finite solvable group is
characterized by the existence of a complete set of pairwise permuta-
ble Sylow subgroups. More recently, Huppert [6] has investigated
groups with property (V): any pair of Sylow subgroups having coprime
orders permute as subgroups.

This work investigates groups in connection with the following
normalizer condition (N). If S^ is a collection of subgroups of a finite
group, we say £^ satisfies (N) provided: for any pair of subgroups
in £f having coprime orders, at least one of the subgroups normalizes
the other. The known structures of solvable and nilpotent groups
motivate our choices for the set S^ The main results are listed as
1.7 - 1.8, 2.5 and 3.1.

All groups considered here are finite and the following notation
is used: If G is a group then

π(G) is the number of prime divisors of the order of G,
l(G) is the nilpotent (Fitting) length of G,
Z(G) is the center of G,
Φ(G) is the Frattini subgroup of G.

If H is a subgroup of G then
NG(H) is the normalizer of H in G,
CG(H) is the centralizer of H in G.

If p is a prime, Gp denotes a Sylow p-subgroup of G.

1* Generalized Sylow tower groups* Let G be a group with
order pi1 pa

r

r, where p19 , pr are distinct primes and a19 , ar

are positive integers. For i = 1, , r let G, denote a Sylow ^-subgroup
of G. The collection of subgroups S? = {Gly , Gr) is called a com-
plete set of Sylow subgroups of G. If the subgroups of Sf are pair-
wise permutable as subgroups (that is, if GιG5 = Gβ{, 1 5* i, j ^ r),
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S? is called a Sylow basis of G. The collection of 2r subgroups of G
formed by all products of subgroups in a Sylow basis of G is a Sylow
system of G.

If a complete set Sf of Sylow subgroups of G satisfies (N), we
call G a generalized Sylow tower group (GSTG). In this case, £f is
a Sylow basis of G and hence G is solvable. On the other hand, one
can easily show that every Sylow tower group is necessarily a GSTG.

LEMMA 1.1. If G is a GSTG, then every Sylow basis of G satis-
fies (N).

Proof. Let £f = {G19 * — ,Gr} be a Sylow basis of G satisfying
(N) and J7~ any Sylow basis of G. By [4, p. 320], there exists an
element geG with jT~ = {(??, . ••,(??}. Then jT~ clearly satisfies (N)
since Sf does.

Let G be a generalized Sylow tower group and S? a Sylow basis
of G which satisfies (N). If R is a relation on the set of all primes
and if the Sylow p-subgroup of G in &* normalizes the Sylow g-subgroup
of G in £f whenever pRq, then we call G a generalized Sylow tower
group of complexion R. The preceding lemma shows that the com-
plexion of G is independent of the Sylow basis chosen. It should be
noted that a given GSTG may have many complexions.

In the sequel, R denotes a relation on the set of all primes.

PROPOSITION 1.2. Let G be a GSTG of complexion R. If K is a
subgroup of G, then K is also a GSTG of complexion R.

Proof. Let S? = {G1? , Gr) be a Sylow basis of G which satis-
fies (N). If K is a Hall subgroup of G, then K is conjugate to the
subgroup of G formed by the product of those subgroups in Sf whose
orders divide \K\. Suppose then K = (Gh Gi%)9, some geG. Clearly
{G9

iχ1 , GlJ is a Sylow basis of K satisfying (N) and K has com-
plexion R.

If π(K) < π(G), the assertion follows by induction. Suppose now
that π(K) = π(G) and let 3T = {K19 , Kr) be any Sylow basis of K.
By a result of P. Hall [4, p. 321], there is an element xeG such that
Ki = KΠ G for i = 1, , r. It is now clear that SΓ satisfies (N)
and K has complexion R.

PROPOSITION 1.3. A homomorphic image of a GSTG with com-
plexion R is again a GSTG of complexion R.

Proof. Let {Gly , Gr) be any Sylow basis of G. Let τ be a
homomorphism of G onto H and denote the image of Gι under τ by
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Hi (for i — 1, « , r) . Then the collection of the nontrivial Hi is a
Sylow basis of H which satisfies (N). Clearly H has the same nor-
malizing structure as G.

Let A be the symmetric group of degree 4 and B the normal sub-
group of A having order 4. Then both B and A/B are GSTG's of the
same complexion. But A is clearly not a GSTG since π(A) = 2 and A
has no normal Sylow subgroup. In this respect, a GSTG has struc-
ture similar to a nilpotent group.

PROPOSITION 1.4. Let Z^ denote the hyper center of a group G.
If G/Z^ is a GSTG, then G is a GSTG.

Proof. Let Z denote the center of G and show that G is a GSTG
whenever the factor group G/Z is a GSTG. Suppose G/Z is a GSTG
and S^ = {(?i, , Gr) is a complete set of Sylow subgroups of G chosen
so that ^ * = {G,Z/Z, •••, GrZ/Z} satisfies (N). For integers i and j
with 1 ̂  ΐ, j <L r, let G{Z/Z normalize G5Z/Z. Then (?; normalizes Gά

and it follows that 6^ satisfies (N).
It is easy to see that G need not have the same complexion as

G/Z^. The importance of the complexion of a GSTG arises in con-
nection with the direct product of GSTG's. If the direct product of
groups A and B is a GSTG of complexion R, 1.2 shows that both A
and B are GSTG's of complexion R. The converse is the following.

PROPOSITION 1.5. If H and K are GSTG's of {the same) com-
plexion R, the direct product HxK is also a GSTG of complexion R.

Proof. Let <§ίf and 5$T be (resp.) Sylow bases of H and of K.
Construct a complete set of Sylow subgroups of HxK, say ^ by
forming the appropriate products of subgroups from J%f and ̂ T Then
3ί satisfies (N) and HxK is a GSTG of complexion R.

PROPOSITION 1.6. Let H and K be normal subgroups of G. If
the factor groups GjH and G/K are both GSTG's of complexion R,
then G/H Γ) K is a GSTG of complexion R.

Proof. This follows immediately since G/H Π K is isomorphic to
a subgroup of G/H x G/K.

If R is any relation on the set of all primes, then 1.3 and 1.6
together show that the class of all GSTG's with complexion R is a
formation in the sense of Gaschiitz. However, since the direct pro-
duct of GSTG's need be a GSTG, the class of all GSTG's is not a
formation.
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An interesting property of GSTG's and a connection between
GSTG's and Sylow tower groups may now be shown.

THEOREM 1.7. Let G be a GSTG. Then the nilpotent length of
G is at most ττ(G), the number of distinct prime divisors of the order
of G.

Proof. If π(G) ̂  2, G has a normal Sylow subgroup and clearly
l(G) ^ π(G). Suppose π(G) = k :> 3 and let 3^ be a Sylow basis of G
which satisfies (N). We proceed by induction on \G\.

Suppose first that G has a nontrivial, normal Sylow subgroup T.
By induction, the factor G/T then has nilpotent length at most k — 1.
Hence G has nilpotent length at most k = π(G).

Assume now that G has no nontrivial, normal Sylow subgroup.
Since G is solvable, G has a nontrivial normal p-subgroup for some
prime p. Let P denote the maximal normal p-subgroup of G and Gp

the Sylow p-subgroup of G belonging to S< Since Gp φ G, there is
a prime q, q Φ p, and Sylow g-subgroup Gq belonging to £s for which
Gp normalizes Gq. Consequently Gq <Ξ GG(P) and so π(CG(P)) 2S 2.

Let Po = CG(P) D P, the maximal normal p-subgroup of CG(P),
and let F/Po denote a nontrivial normal subgroup of CG(P)IP0 of prime
power order ra (r some prime). By the maximality of Po, r Φ p. If
TF/P0 denotes the maximal normal r-subgroup of CG(P)/P09 then W/Po

is characteristic in CG(P)/P0 and hence T ^ ^ G . Since W^CG(P) and
IF/Po is an r-group, W has normal Sylow r-subgroup R. Then i? is
characteristic in W, hence normal in G.

By induction, the factors G/P and G/JS both have nilp. length at
most k. Since P Π i? = 1, G is isomorphic to a subgroup of the direct
product G/PxG/R. Therefore l(G) ̂  max {l(G/P), l(G/R)} ^k = π(G).

THEOREM 1.8. If G is a GSTG and l(G) - π(G), then G is a
Sylow tower group.

For the proof of this, the following lemma is helpful.

LEMMA. Let G be a Sylow tower group with l(G) = π(G). If S
and T are distinct Sylow subgroups of G, then S and T do not cen-
tralize one another.

Proof. Suppose the assertion false and let G be a counterexample
of minimal order. Then G is a Sylow tower group with 1{G) — π(G) —
n ^ 3. Let

1 < S, < SA < • < SnSn^ S, = G
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be a Sylow tower of G, where St denotes a Sylow prsubgroup of G
for i = 1, 2, « ,w. The factor group G/fî  is a Sylow tower group
with liG/SJ = w - 1 = πiG/SJ. Therefore, by the minimality of | G |,
no distinct Sylow subgroups of G/SL centralize one another.

By assumption, some Sylow £>rsubgroup T of G centralizes some
Sylow ^-subgroup V of G (for some j , k distinct). Then TSJSι cen-
tralizes VSί/Sι and consequently one of these Sylow subgroups of G/S1

is trivial. Suppose TS1/Sι is trivial. Then j — 1 and it follows that
Sk centralizes S^ Choose m > 1 to be the smallest integer for which
pm divides | G^SJ | and put R = Sm-Sm^ S, Π C^SJ. Then i? is
normal in G and has order pΐpί. If TΓ denotes the Sylow pm-subgroup
of R, then W is characteristic in R and normal in G.

We may assume W is not a Sylow subgroup of G. Otherwise
TΓSi is a normal nilpotent subgroup of G and l(G) ^ w — 1, which is
a contradiction. Hence SkW/W is a nontrivial Sylow ^-subgroup of
G/W which centralizes SίW/W. Since π(G/W) = n, the minimality of
G implies l(G/W)<n.

Since Wn Ŝ  = 1, G is isomorphic to a subgroup of G/W x G/SΊ.
Therefore Z(G) ̂  max {liG/SJ, l(G/W)} < n, which is the desired con-
tradiction.

Proof of 1.8. Let G be a GSTG with l(G) = π(G). If π(G) ^ 2r

G has a normal Sylow subgroup and clearly G is a Sylow tower group»
Take l(G) = τr(G) = w ̂  3 and proceed by induction.

Suppose first that G has a nontrivial normal Sylow subgroup K.
Then G/K is a GSTG with l(G/K) = n - 1 = π(G/JBΓ) and induction
implies G/K is a Sylow tower group. Then G is also a Sylow tower
group as asserted. Now assume G has no nontrivial normal Sylow
subgroup. As in the proof of 1.7, G then has nontrivial normal sub-
groups Mx and M2 with | Mλ | = pa, \ M2 \ = qβ for p, q distinct primes.
If both G/M1 and G/M2 have nilpotent length less than n, then l(G) < n,
a contradiction. Therefore we may assume l(G/Mj) — n. Since π(
is also n, induction shows G/M1 is a Sylow tower group. Let

ϊ - MJM, < SM/M, < SJS.MJM, < < Sn S^/JlfL =

be a Sylow tower of G/Λflf where Ŝ  is a Sylow prsubgroup of G for
i = 1, 2, •••, w. In addition, choose Sn to be the Sylow ^-subgroup
of G belonging to S^9 where S^ is a Sylow basis of G which satisfies
(N) and contains Sx.

We first show that Mγ <£ Sn. If this were not the case, then
Mx <Ξ Sλ for some k <n. Then ί ί — Sfc S A is a normal Hall sub-
group of G and, by induction, H is a Sylow tower group. Therefore
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H has a normal Sylow subgroup K. But then if is a normal Sylow
subgroup of G, which contradicts our assumption about G.

By our choice of S, and Sn, either S, ^ NG(Sn) or Sn ^ iV^SJ.
If Sn ^ NβiS,), [Sλ1 ΛΓJ = 1 and consequently S, <\ G - which is im-
possible. Therefore we may assume S1 <; NG(Sn). Then the Sylow pr

subgroup SLMJML of GjMι centralizes the Sylow ^-subgroup SJM1 of
G\Mγ, which contradicts the lemma. Therefore G must have a normal
Sylow subgroup and the theorem is proved.

The following construction shows the existence of a GSTG G with
nilpotent length n and π(G) = m + n, where m and n are arbitrary
nonnegative integers and n Φ 0. This shows in particular that the
inequality of Theorem 1.7 cannot be improved.

If A and B are groups, let A or B denote the wreath product
of A by B. For nonnegative integers m and n with n Φ 0, choose
distinct primes pίy , p w + 1 , gx, , gft_L. Let D be the cyclic group
of order p1 p m + 1 and Ĉ  the cyclic group of order q5 (for j —
1, , n — 1). Then the repeated wreath product

G = [ ({D wr Q w r Q ] wr CΛ_X

is a GSTG with Z(G) = 7t and π(G) = m + ^.

2* Λ^-groups. In the preceding section groups for which some
complete set of Sylow subgroups satisfies (N) were examined. Now
we examine groups with the property that every complete set of Sylow
subgroups satisfies (N). This is equivalent to demanding that the
collection of all Sylow subgroups of a group satisfies (N). We call
such groups iV-groups.

Any nilpotent group extended by a p-group is an ΛΓ-group. And
clearly every ΛΓ-group is a GSTG and hence solvable. An JV-group
need not be a Sylow tower group however, as the following example
shows. For m and n any positive integers, let wr (m, n) denote the
wreath product of a cyclic group of order m by a cyclic group of
order n. Let plf p2 and pd be distinct primes and put A = wr (plf p2),
B = wr (p3, pλ) and C = wr (p2, ps). Then the direct product of A, B
and C is an iV-group which is not a Sylow tower group.

Since any two Sylow bases of a solvable group are conjugate [4,
p. 321], the following holds.

PROPOSITION 2.1. If G is an N-group and some Sylow p-subgroup
of G normalizes some Sylow q-subgroup of G, then every Sylow p-
subgroup of G normalizes every Sylow q-subgroup of G (p and q
distinct primes).
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In many respects iV-groups behave like GSTG's. Define an N-
group G to have complexion R when G considered as a GSTG has
complexion R. Then 1.2-1.6 remain valid when " G S T G " is replaced
by "iV-group". Therefore the class of all iV-groups having com-
plexion R is a formation. This formation will not necessarily be
saturated, since G need not be an JV-group whenever G/φ(G) is an
iV-group (see [6, p. 265]).

Although G need not be an AΓ-group whenever G/φ(G) is an N-
group, the following holds.

PROPOSITION 2.2. If G is a group of order paqβ, where p and q
are primes, and G/φ(G) is an N-group, then G is an N-group.

Proof. We may assume that G/φ(G) has normal Sylow p-subgroup
Gpφ(G)/φ(G), where Gp is any Sylow p-subgroup of G. Let W be the
normalizer of Gp in G. If W = G, Gp is normal in G and G is an N-
group. Otherwise W lies in some maximal subgroup M of G. Let x
be an element of G not in M. Since

Gpφ(G)/φ(G) < G/φ(G), G; ^ G;φ(G) rg M

and there is an element y e M with G% = G%. Then x e M, which is
impossible.

A similar argument establishes the following.

PROPOSITION 2.3. // G/φ(G) is an N-group and all maximal sub-
groups of G are N-groups, then G is an N-group.

Unlike GSTG's, every iV-group necessarily satisfies property (V)
of Huppert. This observation leads to an upper bound for the nilpo-
tent length of an JV-group.

PROPOSITION 2.4. // G is an N-group, then l(G) ̂  2.

Proof. Since G satisfies property (F), Satz 2 [6, p. 253] shows
that G/φ(G) is isomorphic to a subgroup, if (say), of a direct product
of groups Tί9 •••, Tn1 where | Γ, | = p^ql* with pt and qt primes. For
each integer fc, 1 <Ξ k ^ n, define the homomorphism πk of H into Tk

b y τzk(tι tn) = tk;t1 tne H a n d t{ e Ti for e a c h i. N o w πk(H) is
an iV-group, being a homomorphic image of G. And since τιk(H) is a
subgroup of Tk1 the nilpotent length of πk{H) is at most 2. There-
fore 1{G) = l(H) < max {l(πk(H))} ^ 2.

iV-groups may now be described relative to property (V).
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THEOREM 2.5. Let G satisfy (V). Then G is an N-group if, and
only if

( i ) G is a partially complemented extension of a nilpotent group
H by a nilpotent group if, and

(ii) for distinct primes p and q, the Sylow p-subgroup Hp of
H normalizes the Sylow q-subgroup Kq of K or the Sylow q-subgroup
Hq of H normalizes the Sylow p-subgroup Kp of K.

Proof. Let G be an JV-group with nilpotent length 2. Then [5,
p. 211] there exist nilpotent subgroups H and K of G with G = HK,
H <]G. To verify (ii), let p and q be any distinct prime divisors of
(I if I, \G/H\). L, = HpKpKq is an N-group of order paqβ and hence
Kq rg NG(HPKP) or HPKP ^ NG(Kq). We may assume Kq ^ NG(HPKP)

and HPKP S NG{Kq). Since Lι and G have the same complexion, this
means HqKq normalizes HPKP. Similarly, considering L2 ~ HqKqKp we
may assume HPKP normalizes HqKq. Therefore HPKP and HqKq cen-
tralize one another and we have established (ii).

For the converse, let G satisfy (V) and both (i) and (ii). If G is
a paqβ group, it easily follows that G must be an iV-group.

Suppose now that τc(G) ~ k ^ 3 and let p and q be prime factors
of the order of G. Let Gp and Gq be any Sylow p- and ^-subgroups
of G (respectively). Then by Sylow arguments

Gp = HPKP for some x e G

Gq = HqKξ for some y e G .

Since G satisfies (V), L = (HpK^iH.K^'1) is a subgroup of G. L satis-
fies both (i) and (ii) and hence, by induction, is an iV-group. Therefore
HPKP < NG{HqKΓ~ι) or HqK

y

q

x~λ ^ NG(HPKP). Then Gp normalizes Gq

or Gq normalizes Gp and we have shown G is an JV-group.

In the previous theorem, if all Sylow subgroups of G are abelian,
then "partial complement" can be replaced by "complement". An
example can be given to show that "partial complement" cannot be
improved to "complement" in general.

3* Strongly Sylow towered groups* Since every finite solvable
group possesses Sylow systems, it seems worth-while to consider pro-
perty (N) in connection with these collections of subgroups. If G is
a solvable group and some Sylow system of G satisfies (N), we call
G a strongly Sylow towered group (SSTG). It is easily shown that
every SSTG is necessarily a Sylow tower group. However a SSTG
need not be an iV-group. For example, the holomorph of the cyclic
group of order 7 is an SSTG but not an iV-group.
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The inheritence properties of SSTG's resemble those of GSTG's.
For instance, subgroups and homomorphic images of SSTG's are again
SSTG's and the direct product of SSTG's with similar normalizing
structures is again an SSTG.

THEOREM 3.1. A group G is an SSTG if and only if, G is a
split extension of a nilpotent group A by a nilpotent group B where
A and B have coprime orders and either A or B is a p-group.

Proof Let y be a Sylow system of G which satisfies (N). Let
S and T denote any distinct nonnormal Sylow subgroups of G belong-
ing to S* and let S' and T" be (respectively) the complements of S
and T in SK Since £f satisfies (N), both S' and T' are normal in G.
Furthermore, we may assume S normalizes T. Then [S, T] <Z T" Π T — 1
and hence any distinct nonnormal Sylow subgroups of G in Sf centra-
lize one another. Let A denote the product of all normal Sylow sub-
groups of G and B the product of the nonnormal Sylow subgroups of
G in SZ Then A and B are nilpotent and G = A Π B = 1 and A<]G.

If A or B is a p-group, we are done. Assume not and let π(A) =
k >̂ 2, π(B) = 1^2. Let N19 , Nk be the normal Sylow subgroups
of G and S19 , St the nonnormal Sylow subgroups of G in SZ Since
Si Φ> G, we may assume NL <£ NoiS^. Then, for any positive integers
i, 3 ^ 2, Nβj ^ NaiNiS,) or Nβ, ^ NβiN.Sj). Consequently we have
Ni^CciSj) whenever i, j ^ 2. It follows that N,S No(Sd);j =
1, ••-,«.

Now suppose Nt does not normalize S^ some i ^ 2. Since N1Sί

and iViS2 are subgroups of G belonging to /, either N1S1 <: NG(NiSz)
or i\T,S2 ̂  NoiNfiJ. Then ^ ^ CG(S2) or i\Γ, ̂  C^S,), a contradiction.
Therefore we may assume Ni normalizes St for all i ^ 2. Then
H = N2 - - - NkS1 - - - Si is & nilpotent subgroup of G and (? is the split
extension of Nt by H.

The converse follows easily. For, if G is the split extension of
a p-group A by a nilpotent group 5 of coprime order and having
Sylow subgroups Bx, , Bny then the Sylow basis {A, B19 , BJ ge-
nerates a Sylow system of G which satisfies (N). Next, suppose G
is the split extension of a nilpotent group A by a p-group B with
(\A\,p) = l. If i4n, ,An are the Sylow subgroups of A, then
{A^ , An9 B) generates a Sylow system of G which satisfies (N).

The diagram below illustrates the connections between the classes
of solvable groups considered here and other well-known classes.
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JY-groups SSTG
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