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THE COMPACTNESS OF COUNTABLY
COMPACT SPACES

PHILIP BACON

By a countably compact space we mean a topological space
every countable open cover of which contains a finite subcover.
It is known that a countably compact space is compact if it
is either a Moore space or a paracompact space. In the first
section of this note we introduce a class of topological spaces
that includes all Moore spaces and all paracompact spaces but
includes no space that is countably compact and not compact.
In the second section we study the class of those spaces in
which closed countably compact subsets are always compact.

1* Property L. According to Michael [13, p. 309] a collection
D of subsets of a space X is cushioned in a collection E of subsets of
X if there is a function f: D—>E such that, for any subcollection G
of D, (U G)~ c U (fG). We shall say that D is weakly cushioned in E
if there is a function / : D —»E such that, if 6? is a countable sub-
collection of D and, for each G in 6?, x(G) is a point of (?, then
[x(G):GeG}-c:[J(fG). If E is a collection of sets let ω(E) denote
the collection of all countable (finite or infinite) unions of members of
E. A space X will be said to have property L if, whenever E is an
open cover of X, there is a sequence D19 Dz, such that, for each
n, Dn is a collection of subsets of X weakly cushioned in ω(E) and
UΓ=i Dn covers X.

THEOREM 1.1. A countably compact space is compact if it has
property L.

Proof. Suppose X is a countably compact space with property L
and E is an open cover of X. Let D19 D2, be a sequence such
that U»=i A* covers X and, for each n, Dn is weakly cushioned in
ω(E). For each n, let Zn = \J Dn and let fn: Dn-+ ω{E) be a function
such that, if G is a countable subcollection of Dn and x(G) is a point
of G for each G in G, then {x{G):GeG}~ c U (fG).

Suppose that, for some n, Zn is not a subset of any element of
ω{E). Suppose {xl9 •••,%} is a subset of Zn and, for each i in
{1, •••,&}, Gi is an element of Dn that contains α?f. Define Ak =
\Ji=ιfnGi. Since AΛ is in ω(E), there is a point α^+1 in i?Λ — Ak. Let
G^+1 be an element of Dn that contains xk+ί. Since U*=i ^ ^ s a subset
of Afc, Gk+1 is not in {Gx, •••, Gk}. By induction there exist sequences
{®k}ΐ=if {G/JfcU and {̂ 4fc}Γ=i such that for each k, Gk is an element of
Dn different from G3 when j is not fc, xk is in Gfc Π Zn, Ak = \JΪ=1fJjΓi
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and xk+1 is in Zn — Ak. Define B = X — {xίf x2, •}-. Since Dn is
weakly cushioned in ω(E), {x19 x21 •• )"c | J? s i / , ( j i = (JΓ=iΛ and {JB,
Alf A2, •••} covers X. Since X is countably compact, there is a &
such that X — B\J Ak. But xk+1 is in neither 5 nor Ak. This contra-
diction implies that, for each n, Zn is contained in some element of
ω(E). Since {Zl9 Z2, •••} covers X, X is in ω(E) and, by countable
compactness, some finite subcollection of E covers X. This completes
the proof.

Since a locally finite collection of subsets of a TΊ-space is weakly
cushioned in itself, a 2\-space X has property L if every open cover
of X has a σ-locally finite refinement that covers X. Since a closure
preserving collection (defined in [10, p. 822]) of closed sets is a cushioned
refinement of itself, a space X has property L if every open cover of
X has a σ-closure preserving closed refinement. In particular, Fσ-
spaces [11, p. 796] have property L.

A topological space X is said to be semi-stratifiable if to each
open set U of X there corresponds a sequence of closed sets £7Ί, Ϊ72,
such that C7 — \J7=1 Un and, whenever V is an open subset of an open
set Z7, Vn is a subset of E7"w. It is easily verified that, if E is an
open cover of X, {Un: Ue E) is cushioned in E. Hence all semi-
stratifiable spaces have property L. Among the semi-stratifiable spaces
are the stratifiable spaces [6, p. 1], the developable spaces, including
the Moore spaces [5, p. 176], the semi-metric spaces [9, p. 103], and
the regular σ-spaces [15, p. 472], It is already known that countably
compact semi-stratifiable TV-spaces are compact [8, p. 321, Corollary 4.5].

According to a definition of ArhangeΓskii [3, p. 145], a space X
is said to be σ-paraeompact if, whenever E is an open cover of X,
there is a sequence Dx, Z>2, of open covers of X such that, if
peUeE, there is an integer n such that St (p, Dn) c U. (Here,
St (p, Dn) means \J {DeDn:pe D}.) For each n, let Zn denote the set
of all points p of X such that St (p, Dn) is a subset of some element
of E. Then {{x}:xeZn} is cushioned in {St (x, Dn): xe Zn) and so in
E. Hence σ-paracompact spaces in the sense of ArhangeΓskii have
property L. Clearly, fully normal spaces [16, p. 53] and developable
spaces are of this kind.

A space X is said to be meta-Lindelof [7, p. 796] if every open
cover of X has a point-countable open refinement that covers X. If
D is a point-countable collection of open sets covering a space X, then
{{x}:xeX} is cushioned in {St (x, D): xeX} and, therefore, cushioned
in co(D). Hence meta-Lindelof spaces have property L. It has already
been shown that countably compact meta-Lindelof spaces are compact
[1, p. 41, Proposition 3]. Among the meta-Lindelof spaces are the
Lindelδf spaces, all spaces with point-countable bases, the σ-paracompact
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spaces of Aull [4, p. 45], the screenable spaces [5, p. 176], the meta-
compact spaces [2, p. 142], and the paracompact spaces.

Suppose SK is an infinite cardinal. A space X is said to be 2JΪ-
compact if every open cover of X of cardinality <Ξ Wl contains a finite
subcover. Let us say that a space has property L{W) if it satisfies
the definition given for property L, provided the collection E occurring
in that definition has cardinality ^ 3K. A slight modification of the
proof given for (1.1) shows that a countably compact space with
property L(W) is 33ΐ-compact. This strengthens a theorem of Morita
[14, p. 228, Th. 1.8].

2* Isocompact spaces. Call a topological space X isocompact if
every closed countably compact subset of X is compact. Every closed
subset of a space having property L has property L. Hence it follows
from (1.1) that every space having property L is isocompact.

THEOREM 2.1. If a space X is the union of a countable collection
of closed isocompact subsets then X is isocompact.

Proof. Suppose X — \JT=iFi where each Fi is closed and isocom-
pact. Let M be a closed countably compact subset of X and G be an
open cover of M. For each i, M Γ) Fi is a closed countably compact
subset of Fif and so is compact and covered by a finite subcollection
Hi of G. UΓ-i Hi is a countable open cover of M and so contains a
finite subcollection that covers M.

As a corollary of (2.1) we have

THEOREM 2.2. Every Fσ subset of an isocompact space is iso-
compact.

We say that a map (= continuous function) / : X —> Y is countably
compact {compact} if f~\y) is countably compact {compact} for each
point y in Y.

LEMMA 2.3. If f is a closed countably compact {compact} map
from a space X onto a countably compact {compact} space Y then X
is countably compact {compact}.

LEMMA 2.4. If f is a map from a countably compact {compact}
space X onto a space Y then Y is countably compact {compact}.

THEOREM 2.5. If f is a closed countably compact map from an
isocompact space X onto a space Y then Y is isocompact.
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Proof. Let M be a closed countably compact subset of Y. Using
(2.3), f"ιM is closed and countably compact, hence compact. AT is a
closed subset of the compact set ff~ιM and so is compact.

THEOREM 2.6. If f is a closed compact map from a space X into
an isocompact space Y then X is isocompact.

Proof. Let M be a closed countably compact subset of X. Then
fM is a closed countably compact subset of Y and so is compact.
By (2.3), f~ιfM is compact. Since M is closed in f~ι fM, M is compact.

LEMMA 2.7. If X is a space and Y is a compact space, the
canonical projection ΊZ\ X x Y—^X is a closed map.

From (2.6) and (2.7) we have

THEOREM 2.8. The product of a compact space and an isocompact
space is isocompact.

THEOREM 2.9. If X is an isocompact space and Y is an isocom-
pact space each point of which has a closed and compact neighborhood
then X x Y is an isocompact space.

Proof. We may assume that each of X and Y is nonempty. Let
πx: X x Y—>X and πΓ: X x F—> Y be the canonical maps. Suppose
M is a closed countably compact subset of X x Y and q is a point of
Y — πγM. Let if be a closed and compact neighborhood of q. Define
A = M Π πγ

]K. A is a closed countably compact subset of the product
of the compact space K and the isocompact space X and so, by (2.8),
is compact. A is a closed subset of the product of the compact space
πxA and the space Y. By (2.7) πγA is closed, that is, K Π πyM is
closed. K° — πγM is an open set containing- q. Thus πγM is closed.
By (2.4) τzγM is countably compact. Since Y is isocompact, ττγM is
compact. M is a closed countably compact subset of the product of
the compact space πγM and the isocompact space X. By (2.8) M is
compact.

From (2.1) and (2.9) we have

THEOREM 2.10. // X is an isocompact space and Y is an isocom-
pact Hausdorff space that is a countable union of closed locally
compact subsets then X x Y is an isocompact space.

To say that a space X is hereditarily isocompact means, of course,
that every subspace of X is isocompact or, equivalently, that every
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countably compact subset of X is compact. For example, all semi-
stratifiable spaces are hereditarily isocompact. Isocompact spaces in
which every countably compact subset is closed are hereditarily isocom-
pact. Isocompact first countable 2>spaces are of this kind.

THEOREM 2.11. The product of an isocompact space and a heredi-
tarily isocompact space is isocompact.

Proof. Suppose X is isocompact, Y is hereditarily isocompact and
M is a closed countably compact subset of X x Y. By (2.4) πγM is
countably compact and is therefore compact. M is a subset of the
product of a compact space πγM and an isocompact space Y and so,
by (2.8), is compact.

THEOREM 2.12. The product of any collection of hereditarily
isocompact spaces is isocompact.

Proof. Let P be the product of a collection {Xf. i e A} of heredi-
tarily isocompact spaces and for each i in A let π^P—>X, be the
canonical projection. Suppose M is a closed countably compact subset
of P. By (2.4), for each i, πJΛ is countably compact and, so, compact.
Since M is a closed subset of the product of the compact spaces TΓ̂ M,
M is compact.

From (2.12) it follows that any realcompact space (a space
homeomorphic to a closed subset of a product of real lines) is isocom-
pact. A Hausdorff space X is said to be almost realcompact if each
maximal centered collection M of open subsets of X with Γ\{U~:
U e M) = 0 has the property that for some countable subcollection
D of M, Π {U-. UeD} = 0 [9, p. 128].

THEOREM 2.13. Every regular almost realcompact space is iso-
compact.

Proof. Since any closed subset of a regular almost realcompact
space is almost realcompact [9, p. 133, Th. 5], it will suffice to show
that every regular countably compact almost realcompact space is
compact. Suppose X is a regular countably compact almost realcompact
space and C is a centered collection of closed subsets of X. Let E
be the collection to which U belongs if and only if U is an open set
containing some element of C. Since E is centered, E is contained
in some maximal centered collection M of open sets. Since X is
countably compact, Π [U~: UeD} Φ 0 for any countable subcollection
D of M. Since X is almost realcompact, there is a point p in Π {U~:
UeM}. Suppose there is an element C of C that does not contain
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p. Since X is regular, there is an open set U containing C whose
closure does not contain p, which involves a contradiction. Hence p
is in Π C and X is compact.
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