
THE BOREL PROPERTY OF SUMMABILITY METHODS

J. D. H I L L

1. Introduction. Let T denote the method of summability corresponding to the

real matrix (an fc), for the moment arbitrary, by means of which a sequence {s^ \ is

said to be summable-Γ to s if each of the ser ies in

(1.1) tn = Σ an,ksk (n = 1 , 2 , 3 , • • • ) ,

is convergent and if tn —> s.

We shall be concerned here exclusively with the class 3£ of all sequences x =

\ Cί/f j where the (X^ are 0 or 1 with infinitely many l ' s . A biunique mapping of the

class X into the real interval Tj = (0 < y < 1) is obtained by defining y as the

dyadic fraction 0 .α 1 Cί2 CC3 corresponding to x — ( α 1 ? Cί2, Gί3, •), and con-

versely. This enables us to employ the phrase, ''almost all sequences of 0's and

l ' s , " by which is meant a subset of 3t for which the corresponding subset of 2) has

Lebesgue measure one.

A classical result of Borel [2] may be interpreted as asserting that almost

all sequences of 0's and l ' s are summable-(C, 1), Cesaro of order one, to the

value 1/2. If the corresponding statement is true for the method T defined by (1.1)

we shall say that T has the Borel property, or more briefly, that T £ (BP).

A study of the Borel property for regular methods T was undertaken recently

by the author [5] . In the present paper we dispense with the assumption of regu-

larity, and in §2 we investigate the consequences of assuming merely that T £

(BP). Two independent necessary conditions, (2.2) and (2.5), are obtained.

In v3 it is shown by means of an example due essentially to Erdos that these

conditions are not sufficient in order that T £ (BP) even if condition (2.10) is

added. By virtue of a lemma of Khintchine we are able to state in Theorem (3.5) a

new sufficient condition considerably weaker than that given in Theorem (2.14) of

[5] .For comparison the latter result is repeated here in Theorem(3.3). In Theorem
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(3.11) we deal with a conjecture of Erdos and prove incidentally that in general

the Borel property does not depend on the rate at which Σ^ = 1 α/̂ fc approaches

zero.

At the present time it appears unlikely that the Borel property can be charac-

terized in any reasonably simple manner, at least if no restrictions are imposed on

the matrix (αΛ ί^) at the outset. This aspect of the problem remains to be con-

sidered.

2. Necessary conditions. We shall establish the following result.

(2.1) THEOREM. In order that TζliBP) the following conditions are necessary:

(2.2) 2L an,k converges for each n and tends to 1 as n

.3) An = Σ alik < oo for each n

(2.4) lim an>k — 0 for each k
oo

°°

n->oo

(2.5) lim An = 0 .
rι-> oo

Proof. If T C (BP), there exists a subset §* of g = (0 < y < 1) of measure

one such that

00

4. ( \ — "V ( \
tn{y) = 2, αn,/z^fevyJ

is defined for each n and each y = 0.α t Cί2 α 3 C ?) * and such that tn(y)

—> 1/2. Since D * is of measure one it contains a subset ξ)** of measure one

such that if y ζ^ |f) * then also 1 ~~ y d U**. Choosing any such y we may

write y = O.αt α 2 Cί3 and 1 — y — O.βi β2 β3 * * * > where Oί̂  + /5^ — 1 for all

k. Then (2.2) follows from the fact that

Σ an,k&k + Σ an>kβk ~ Σ αn,/e
fe=l fc=l fe=l

To verify (2.3) we introduce the Rademacher functions R^ (y) defined for each
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k and each y = O.Cί ι <X2 Cί 3 * * * £ | ) as 1 - 2(X/C(y). Then

(2.6) t n = Σ α n^
1 ^ Ί ^

must exist almost everywhere in ?} for each 77. In view of (2.2) the necess i ty of

(2.3) follows from a well-known result of Kolmogoroff [6, p . 126] .

To establish (2.4) let k be fixed and denote by 2)* and ϊ)2

 t n e subsets of Tj

(defined above) of measure 2 which l ie, respectively, in the intervals 0 < γ

< 2~h and 2 ~ A
< y < 22~ / c + 1 . It is evident that there exist subsets S)f * of

and ^ 2 of ?;2 9 °^ measure 2 , such that if y £ )̂ L then y ~h 2 £ §)2

For such a value of y we have y = 0.00 OCί/^ Cί^+2 (A; + 1 zeros ) and y

+ 2 " / t = 0.00 0l0C£ + 1 CC&+2 * * U zeros). Consequently, ί π ( y + 2~k ) — tn(y)

= Unyk —> 0 a s « —> °°.

Ihe proof of the necess i ty of (2.5) is more involved. Since (2.3) implies the

convergence almost everywhere in T) of the ser ies Σ^°=1 α^^/x^ (y) for each n9 it

follows from Egoroff's theorem that there exists for each n a subset In of ^ of

measure In\ > ] — 2~n~ι

9 and an index φ^in), increasing to infinity with n9

such that

00

(2.7) Σ anιί
< — for all m > Φi(n) and all y £ In

n

Setting / —

S), we have

and using δ £ to denote the complement of E with respect to

lε/| < Σ
1

< -

Consequently we have / | > 1/2, and (2.7) holds in /. We need also the fact that

(2.3) insures for each n the existence of an index φ(n) > φ\ (n) for which

(2.8) 2 l

an,k < -
k>φ(n)

Now it follows from (2.2), (2.3), and (2.6) that T will have the lΐorel property if

and only if τn{y) = Σ/C = 1 α π k'^k^j} approaches zero almost everywhere in ψ, a s
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n —> °°. Writing τn (y) in the form

Φ(n)

Σ «ntkRk{y) + Σ «n,k

and using (2.7), we see that T C (BP) implies the approach to zero almost every-

where in / of

φ(n)
σn(y) Ξ Σ an,kRk{y)

Let E be a subset of / with \E\ > 0 on which σn(y) approaches zero uniformly,

and let

φ(n)
σn,m(y) Ξ Σ an,kRk(y)

k-m

We can now follow an argument due to Kolmogoroff (for the details see [6, pp.127-

128] or [4]) and arrive at the inequality

i φ(n)

(2.9) ϊE<Mdy >~\E\ Σ <k,
λ

for a certain fixed μ and all n sufficiently large. From (2.4) it follows that

μ-l

^n>μ(y) ^Vniy) - Σ an,kRk(y)
k = l

tends to zero uniformly in E together with crn(y). Then (2.9) yields

φ(n)

Σ *U =0(1)

k=μ

as n —> °°. Finally from (2.4) and (2.8) we conclude that

μ-l φ(n)

^n = Σ an,k + Σ α r U + Σ an,k = θ ( l )
k = l k=μ k>φ(n)
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as n oc . This completes the proof of Theorem (2.1).

It will be noticed incidentally that conditions (2.2) and (2.4) are among the

familiar Silverman-Toeplitz conditions for the regularity of Γ. The remaining con-

dition for regularity, namely,

(2.10)

00

Σ
* = 1

=o(ι) in

is not necessary in order that T have the Borel property. This is shown by the

example of the following matrix which appears in [ l ] :

1

1

2

1

3

1 1

n n

1

2

1

2

1

3

1

3

1

3

1

3

•
i (-1)"
n n + 1

1

4

1

4

1

4

n +

1
5

1

5

1

5

n + l

2

This matrix violates condition (2.10) but satisfies the sufficient conditions of

Theorem (3.3) below. It has been proved in [ l ] , however, that T is necessarily

regular if it evaluates to 1/2 all sequences of 0's and l ' s which are summable-

(C, 1) to 1/2.

3. Sufficient conditions. We first raise the obvious question of whether the

conditions (2.2) and (2.5), which imply (2.3) and (2.4), are sufficient in order that

T C (BP). Before showing that the answer is in the negative, even with the

addition of (2.10), we make a few preliminary remarks. Using the notations of §2,

and appealing to the Riesz-Fisher theorem, we are led at once to the Parseval

relation /</ τ£ (y)dy — An. The condition An —> 0 is therefore equivalent to the

convergence of \τn\ to zero in the space L 2 , and this assures the existence of
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a sequence of indices {πi} such that τn(y) —> 0 almost everywhere in g). In

other words, if (2.2) and (2.5) are satisfied, the matrix ( α ^ ) contains a row-

submatrix ( α ^ ά ) defining a method Γ* (not weaker than T) having the Bore 1

property; this fact was obtained in [5] with the aid of (2.10). We proceed now to

the construction of an example which shows that in the absence of further con-

ditions nothing more can be said.

We need the following result due to Borel [3, pp.37-47] . The form stated here

is less general than the original, in that the groups of consecutive Cί's are not

permitted to overlap, but it is sufficient for our purposes.

(3.1) LEMMA (Borel). Let \\n\ be a sequence of positive integers, and let

the positive integers {nj} be such that nj > 7iy_ ι + Xy __ t (7 — 2,3,4, ' •)• Then

in order that almost all dyadic fractions y — O d 1(^2^-3 have the property

that for infinitely many j, QLn. is followed by λy zeros, and for infinitely many j,

by \j ones, it is necessary and sufficient that ΣR = ι 2 n — °°.

We can now construct the example of Erdos which was outlined in a letter to

the author. The details have been modified to render the matrix triangular but the

idea otherwise remains essentially as communicated. We use the notation a(n,k)

as alternative to α n ^ , and define a matrix as follows, wherein, as usual, [log m]

means the greatest integer in log m. Let

a\(m2 + ι - l ) , (m-ί2 +j - 2 ) } = [log m]" 1

for j = i + 1 , i + 2, •••, ί + [log m]; i = 1,2, •• , 2 m + 1; m. = 3,4,5, ••

and let an ^ = 0 otherwise. This matrix of nonnegative terms is evidently tri-

angular, regular, and such that (2.5) is satisfied. On the other hand we have

[log .]
( 3 2 ) tn2 + 2jy) = [logm]-1 2 a

m2+v(y) (» = 3,4,5, •••).

and since Σ 2 ° = °° it follows from Lemma (3.1) that for almost all y =

O.CXi 0C2 Cί3 there are infinitely many values of m for which Cί^2 ^ s followed

by [log m] zeros, and also infinitely many m for which α ^ 2 is followed by

[log m] ones. Hence we see from (3.2) that for almost all γ the sequence \tn(y)}

contains both infinitely many zeros and infinitely many ones. Consequently the

matrix (an /,-) fails to have the Borel property.

The search for conditions which are necessary as well as sufficient has so
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far yielded no results. However, the sufficient conditions set forth in the following

theorems appear to be of interest.

(3.3) THEOREM. In order that T C (BP), the conditions (2.2) and

00

(3.4) £ Al < o° (for some q > O) ,

are sufficient [5] .

Proof. The proof of this theorem given in [5] remains valid under the present

weaker conditions. A new criterion involving, as we show later, a condition con-

siderably weaker than (3.4) is contained in the following theorem.

(3.5) THEOREM. In order that T C (BP) the conditions (2.2) and

00

(3.6) Σ exp(-S2/2Aj < ™ (for each 5 > θ) ,

are sufficient.

For the proof it is convenient to have the following lemma.1

(3.7) LEMMA. In order that a sequence ιfn(yn of measurable functions on §

converge to zero almost everywhere it is necessary and sufficient that given

δ > 0 and e > 0 there should exist an index v — v (e, S) such that

(3.8)

υhereEn(8) =E{\fn(y)\ <

Π M > 1 -

Proof of Lemma (3.7). Inasmuch as we make no use of the necessity we give

only the proof of the sufficiency. Let λ (γ) = lim^oo | / Λ ( y ) | > and set H = E{λ(y)

> O]. For m= 1,2,3, , we set Hm = £ {λ(y) > l/m] so that

7 7 1 = 1

1 Added in proof: see P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950,
p. 91, Theorem A.
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If \H \ > 0, contrary to the statement of the lemma, then there is an index μ such

that \Hμ\ > 0. For δ - l/μ and e = (1/2) \Hμ\ the condition (3.8) becomes

for an index v — v{μ). Consequently

2 lHμl

For any point

y o C Hμ

we have λ(y0) > l//x since γ 0 C ^ μ . On the other hand, since

we have | / n (y 0 ) | £ 1/M ^OΓ a ^ n >. vi a n d this yields λ(y0) < l/μ. With this

contradiction the proof is complete

Proof of (3.5). Proceeding as we did in proving the necessity of (2.5), we

first determine an index φ(n), approaching infinity with n, and a set / of positive

measure such that

(3.9) Σ
k>φ(n)

~ for al l y CI and n = 1, 2, 3,
n

If we set

φ(n)

B n = Σ
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then it follows from (3.6) that

(3.10) exp(~S 2 /2£ n ) < (f o r each S > θ) ,

n~\

since Bn < Λn. Now

φ(n)
rn(y) = Σ <>n,

where pn{y) —> 0 for all y £ /, by (3.9). Let /* Z) / denote the entire subset

of fj on which pn(y) —> 0, so that | / * | > 0. If O.Ct t (X2 Cίn is any

point of / , it is clear from the definition of pn(y) that every point of the form

0φι /32 βp Cίp + ! ^n+2 * * * i s likewise in / . Hence / is a homogeneous set

of positive measure, and therefore of measure one (see [9] and [4]). Since pn(y)

—> 0 almost everywhere, we complete the proof by showing that (3.10) implies

that crn(γ) —> 0 almost everywhere. For this purpose let En(S) = E- {|crn(y)|

< δ] for δ > 0. By a lemma of Khintchine [7] we have

I <££„(§) I <U eχV(-S2/2Bn)

for n — 1,2,3, , where M is an absolute constant. Let δ > 0 and e > 0 be

given. Then from (3.10) there exists an index v — v{e, δ) such that

00

M Σ exp(-b2/2Bn) < e .

Consequently

Π > i - Σ

It now follows from Lemma (3.7) that σn(γ) —> 0 almost everywhere.

As a partial consequence of Theorem (3.5) we are able to decide a conjecture

of Erdos(made in a letter to the author) to the effect that (2.2) and An log n — o( l)

are necessary and sufficient in order that T £ {BP)

(3.11) THEOREM. In order that Γ have the Borel property, the conditions (2.2)
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and

(3.12) An log n = o ( l ) (n —* co) ,

are sufficient; but neither (3.12) rcor (3.6) is necessary.

Proof To prove the sufficiency it is enough to show that (3.12) implies (3.6).

For this purpose, let δ > 0 be given and fix € > 0 so that S2/2e > 1. By (3.12)

there exists an index n0 such that An < e/(log n) for all n > n0 . Then

for n > n0 with S2/2e > 1, and (3.6) follows.

To complete the proof we show somewhat more, namely, that no condition of

the form Anφ(n) = o( l) , with φ{n) —> °°, is necessary. Consequently the Borel

property can not be characterized in terms of the rate at which An approaches

zero. For let 0 < θ(n) < 1, θ(n) —> 0, with θ(n) arbitrary otherwise. Let xn

= [1 - θ(n)]/[l + θ(n)] , so that θ(n) = (1 - xn)/(l + xn), 0 < xn < 1, and

xn —> 1. Since the Abel method has the Borel property [5] , the same is true of

the "discrete" Abel method defined by the matrix

an,k = (1 -xn)*^1 (k,n= 1,2,3, •••) .

For this matrix we find that

00

^n = Σ a2n,k = θ{n) ,

where θ(n) may tend to zero in any preassigned manner. Thus, for example, if

log log(n + 2)
θ(n) =

log(n + 2)

we have A n log n —> °°. Finally, if we take θ(n) as I/log log (n + p), for p

sufficiently large, the series in (3.6) diverges for every 8 > 0.

We now wish to show, as mentioned earlier, that condition (3.4) of Theorem

(3.3) implies condition (3.6) of Theorem (3.5), but not conversely. If (3.4) holds

for some q > 0, we have

0 <zn Ξ 2Λn/δ 2 —> 0
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for each δ > 0. Since

e x p ( - l / z π ) = o(z%) or exp(-5 2 /2Λ n ) = 0(/l9)

as n —> oc, it follows that (3.6) is satisfied. On the other hand, for the loga-

rithmic method of regular Riesz means defined by

a-n,k = 1Λ lofe(n + l ) for k = 1,2, ••• , n; n = 1,2,3,

we have

An = 772/6 log 2 n .

Hence for every q > 0 the series in (3.4) diverges, but An log n — o( l ) , so that

(3.6) holds by the proof of Theorem (3.11).

As a simple application of Theorem (3.11), we call attention to the existence

of a regular method having the Borel property and which is weaker than (C, Gί) for

every 0C > 0. It suffices to consider the harmonic method ί\n of regular Norlund

means defined by

o-n.k = l / ( n -fc + 1) log(n + l ) for k = 1,2, , n; n = 1, 2, 3,

It is known [β] that Nh C (C, Ct) for all Cί > 0, and we have here again

An = π2/β log 2 n .
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