
COMPLETENESS OF SETS OF TRANSLATED COSINES

R. P. BOAS, JR.

1. Introduction, Conditions for the completeness on (0,77) of sets {cos λnx\

are well known. Here we shall consider sets {cos ( λnx + qn)\. Such sets seem

first to have been considered by Ditkin [3] , who proved that {cos (nx + 7̂ ^) ô°

is L-complete in (0,77) if 0 < qn < 77/2.

Ditkin's very simple proof uses Fourier series and does not seem capable of

extension to the more general sets considered here. Our principal object is to

show how the problem may be attacked by complex-variable methods; we shall

not attempt an exhaustive discussion.

As a specimen we quote the following case. If Xn > 0 and | Xn ~ n | <

δ < 1/2, then the sets {cos ( λnx -f ^^)jo° a n ( l {s^n (^nx ~*~ 9rc)iΓ a r e £"

complete in (0, π) if 77δ/2 < qn < π(l - δ)/2. (The statement "{ fn(x) } is

//-complete" means that the only functions of Lp which are orthogonal to all

fn(x) are almost everywhere zero.) A further result, not covered by the present

paper, has been given by Bitsadze [ l ] , who showed that every function satisfy-

ing a Holder condition admits a uniformly convergent expansion in terms of the

set {cos {nx + 77/4)5; n e indicates an application of this result to the Tricomi

partial differential equation.

We remark that although Ditkin's set {cos (nx + qn) 5^ remains complete when

all qn — 77/2, it may fail to be complete if some but not all qn — 77/2. In fact,

the set {l, sin x, cos 2xf cos 3%, 5 is orthogonal to cos χ However, we shall

show that not only is the set {sin (nx + qn)}™ complete if ;0 < qn < 77/2, but

even the set {sin (nx + q^)X\ is complete.

By applying the completeness theorem of Paley and Wiener [5 ,p . lθθ] to the

equivalent set {cos nx + an sin nx 5, 0 < an\ < 1, we can show at once that

{cos (nx + qn)}™ i s Incomplete if either 0 < \qn\ < δ < τr/4 for all nor

else 77/4 < δ < \qn\ < 77/2 for all n . The problem of necessary and sufficient

conditions for the completeness of {cos (nx + qn)} remains open.

2. A general theorem. We shall obtain our resul t s on {cos ( \nx + ^71)5 a s
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corollaries of a theorem on a related set of more artificial appearance.

THEOREM. Let \^n\™ be an increasing unbounded sequence of nonnegative

numbers; let /V r̂) and /V2(r) denote respectively the number of λ 2 7 l and of

not exceeding r. If both

(2.1) fi

rt~1N1(t)dt > - r ~ y log r - constant,

and

(2.2) 5^t'xN2(t)dt > - r-\Ύ + - j l o g r -constant,

where γ = 1/(2p ' ) if 1 < p < o° , p ' = p/(p - 1 ) , αnrf 7 < 1/2 if p = 00

ίAe seί

(2.3) cos λ 2 n t -f α 2 n sin λ 2 π t ,

"" α2n + i c o s ^2π + i ί + sin λ 2 π + 1 t

is IP-complete on ( ~~Ή/2, 77/2) i/ ίAe αΛ are reo/ numbers all of the same sign.

COROLLARY 1. The set (2.3),with the an all of the same sign, is ]J-complete

on ( -77/2, τr/2) if 0 < \ n < n + 1 + 1/p' , 1 < p < 0°; it is L°°-complete if

0 < λn < n + S , δ < 2 .

C O R O L L A R Y 2. // λ n > 0 am/

. , 1 π δ 77(1 - s)

then the set { c o s ( X n % + qn)}™ is L-complete on (O,ττ).

For δ — 0, Corollary 2 reduces to Ditkin's theorem; for δ ^ 0, the range of

qn is more restricted. If the \ n are confined to one side of n, a sharper result

is true.

C O R O L L A R Y 3. If n < \ n < n + h, 0 < S <1, and 0 < qn < Ml - δ)/2,

Λ > 0; or if n - 8 < λ n < n /or n > 0, 0 < δ < 1, and π(l - δ ) / 2 <qn < 0,

{cos ( X^# + #72)50° is L-complete in (0,77).

The following result on sets of sines includes the fact that {sin (nx + <]n)n
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is L-complete on (O,ττ) if 0 < qn < ττ/2.

C O R O L L A R Y 4. // | n + 1 - \ n \ < δ < 1/2 and ττδ/2 < qn < π ( l - S)/2,

then the set { s in (Xnx + qn)]™ is L-complete on (0,77).

By demanding only //-completeness instead of L-completeness, we can allow

the \ n to be larger than in Corollary 2 .

C O R O L L A R Y 5. If I < p < co and n + 2 - δ < λn < n + 2 - 1 / p , 1/p <

δ < 1, ί/iew ί/te seί {cos (X^Λ; + g n ) }̂ ° is LP-complete on (O,τr) if πS/2 <

qn <7T/2.

3 Proof of the general theorem. We now prove the theorem stated above. We

must show that if f(x) £ Lp and if

J* 77/2 / .

K ό t l ) -π/2 ^ c o s A2«* +α2« sin λ2nt)f(t)dt-π/2

fπ/2

)dt

= ° (" = 0,1,2, ••• ) ,

where all α n satisfy α n > 0 or else all α n satisfy an < 0, then /U) = 0 almost

everywhere.

Write

(3.2) F ( 2 ) = £ £ / ( 0 cos zt dt, G(z) =1^1 f(t) sin zt dt

then (3.1) i s

(3.3) F(λ2n) + α 2 f l G ( λ 2 n ) = 0 ,

+ G ( λ 2 n + 1 ) = 0 .

Let//(z) = F(z)G(z); then ^(0) = 0; if λ 0 = 0, then #'(0) = #"(0) = 0; and

//( λ2n)H( λ2n + ι) < 0. Note that H(z) is an odd function. Let N(t) = Nι(t) +

/V2(ί), and let Λ(ί) denote the number of zeros of H(z) in 0 < \ z\ < t.

We prove first that

(3.4) Λ(r) >2Λf(r) + 1 .
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To begin with, if λ 0 = 0, we have, for 0 < r < λ t , the relations Λ'(ί) — 1,

Λ(r) > 3; if λ 0 > 0, we have Nit) = 0 for 0 < r < λ 0 , Λ(r) = 1. We proceed by

induction. Suppose that (3.4) is true for r < λ^ . Then it remains true for r < λ^ + 1,

since /V(r) does not change in λ^ < r < λ / ^ . If //( λ/^)//( λ £ + 1 ) ¥~ 0, then

H(\k) and H(\k + ι) have opposite signs and so Λ(λ/C + 1 ) > Λ(λ^) + 2 >

2Λ/(λA;) + 3 = 2IV(λHi) + 1, so that (3.4) is true f or r = λΛ + 1 . If ff(λΛ+1) =

0, then (3.4) is true for r = λ^.+t since Λ(r) increases by 2 at r — λ^ + t while

/V(r) increases by 1. Finally, suppose //(λfc) = 0,H(λk + ι) ^ 0. If //(λy) = 0

for y = 0,1,2, ,λ, then Δ(λ Λ + 1 ) > Δ(λ Λ ) > 2A; + 3 = 2iV(λ/, + 1 ) + 1,

and (3.4) is verified for r — λfc + γ. Otherwise there is a largest j < k for which

//(λy) φ 0, and Δ(λy) > 2/V(λy) + 1; there are at least & - / z e r o s of H{z) in

λy <x < λ^ + j ; but the number of zeros in this interval is even if k ~~ j + 1 is

even [since f/( λ̂ . + 1 ) and fl( λy) then have the same sign] , odd if A; — / + 1 is

odd; so the number of zeros cannot be k ~~j and hence must be at least k ~j + 1.

This completes the proof of (3.4).

By combining (3.4) with (2.1) and (2.2), we see that

(3.5) fr t~ι A.(t)dt > 2 r - 4y log r - constant,

where 4 γ = 2/p' if 1 < p < °° , 4 y < 2 if p = oo .

We now appeal to a modification of a result of Levinson [4, pp. 7-9] to show

that H(z) = 0. This is as follows.

LEMMA. Let [χn\^(Ά be a sequence of real numbers arranged in nondecreasing

order9 and let H(z) be an entire function which is known to vanish at all xn; if

H(z) is known to have a multiple zero at some xn> that xn is to be repeated, ac-

cording to its multiplicity, in the sequence* Let v(r) denote the number of xn such

that xn\ < r and suppose that

f Γ t ' ιv{t)dt > 2 r - α l o g r - c o n s t a n t .

Suppose finally that

where h{t) > 0, hit) C L p (0,π/2) , 1 < p < oo . Then H{z) = 0 if α < 2/p',

p ' = p/(p - 1 ) . // p = oo, then H{z) = 0 if α < 2.
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The proof of the lemrna is parallel to that given by Boas and Pollard [2] for a

similar result, and we omit it.

Since H(z) = 0, we have either F(z) = 0 or G(z) = 0. If F(z) = 0,(3.3) shows

t h a t G ( λ 2 n + ι ) = 0; if G(*) = 0, (3.3) shows that F(λ2n) = 0 .

We first consider the case when F(z) = 0. Then, in particular, we have

and

fZ/lf^ C 0 S λ2n+lt dt = 0

f_l/2f(t) s in λ 2 n + 1 ί Λ = 0_l/2

(n = 0 , 1 , 2, •

(n = 0 , 1 , 2,

) ,

) ;

hence

(3.6)

where

(3.7)

e< μ»* d t = 0 = 0,±l,±2, — ) ,

μ o = O , μn = X 2 n _! (n > 0) , / i n = - λ - 2 n _ ! (n < 0) .

A result of Levinson [ 4 , p . 6 ] , reduced to the interval ( —ττ/2,77/2), is that

e "

(3.8)

is Lp-complete if Λί(ί), the number of | μn \ < t, satisfies

J Γ Γ 1 M(t)dt > r - (l/p') log r -constant,

1 < p < °° his proof also shows that L°°-completeness follows from (3.8) if

l/p' is replaced by any number less than 1. Since M{t) = 2/V2W + 1, (3.8) is

true in virtue of (2.2). Thus (2.2) implies f(t) — 0 almost everywhere if F(z) = 0.

Now suppose that G(z) = 0. In the same way we have

p τr/2 . f v iμnt

y / ( o e dt o

where now

(3.9) μn = λ2n = - λ_ 2 n _ 2 (n < 0)
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In this case M(t) = 2Nί{t) and (3.8) follows from (2.1). The rest of the argument

is as before.

4. Proof of Corollary 1. To prove Corollary 1 we have to show that (2.1) and

(2.2) follow from 0 < λn < n + S (n = 0,1,2, ), where δ = 1 + 1/p',

1 < p < co . ] n the interval 2k+h<u<2k+h+ 2,whereA; = 0,1,2, ,

we have N^u) > k + 1. Let x > 1 and define n by In + δ < % < In + δ + 2.

Then

2 + δ
~ du

+ S - 2

> Σ H
k = l

> Σ

2k + δ - 2 + δ - 2

1 +
2 - δ

2fe

1 . 1= n + | 1 - - δ - - J l o g n + 0(1)

^-γ- log x + 0(1) = J * - ^ 7 logx +0(1)= -x

O n t h e o t h e r h a n d , in t h e i n t e r v a l 2k + 1 + 8 < u < 2k + 3 + δ(k = 0,1, 2 , ),

we h a v e N2(u) > k + 1. T h u s

> Σ 2fe - 1 + δ

_ 1/ 2_
2\2fe - 1
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> Σ 2k + 1

- — + 0.(1) .
2 p ' 2 v '

5. Proof of Corollaries 2-5. In proving Corollaries 2—5, it is convenient to

write ~~an instead of an9 and t — x ~~ 77/2, so that (2.3) becomes

cos ( Xnx ~ Xnττ/2) ~ αΛ sin ( λ Λ # — Xnτr/2) (n even)

αirι(cos λπx — λnπ/2) + sin ( Xnx — λnπ/2) (n odd) .

Put αΛ(l + α ^ ) " 1 / 2 = sin 6 Λ , (1 + α ^ ) " 1 / 2 = cos 6 n , 0 < bn<π/2oτ ~u/2<

bn £ 0> according as α n > 0 or an < 0. Then the completeness of (2.3) is

equivalent to that of

cos (Xnx — λn77/2) cos bn — sin (Xnx ~~ Xnττ/2) sin 6^ (π even)

sin (λnΛ — λn77/2) cos 6^ -h cos (Xnx — Xnπ/2) sin bn (n odd)

that is, to the completeness of

cos (Xnx - λnπ/2 + bn) (n e V e n )

sin ( Xnx - Xnπ/2 + bn) (n odd) .

Now let Xn = m —2en/Ή, where m is an integer of the same parity as n. Then the

completeness of (2.3) is equivalent to that of

(5.1) cos (Xnx + en + 6Π) (n = 0,1,2, •••) .

Thus a set

(5.2) c o s ( λ n * + gn)

is equivalent to a set of the form (2.3) if for all n either

( 5 < 3 ) e n < qn < ττ/2 + en
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or

( 5 4 ) - V 2 + e n < q n < e n .

We may satisfy (5.3) or (5.4) in various ways. For example, (5.3) is certain-

ly true if \n ~ λ j < δ (n = 0 , l , 2 , •), with o < 1/2 and ττh/2 < qn<

77(1 — δ)/2; this establishes Corollary 2, since the condition of Corollary 1 is

certainly satisfied in this case. Corollary 1 requires only that \ n < n + 1 if

p = 1 if we restrict \ n to lie always on one side of n we can therefore obtain

a stronger result than Corollary 2. In fact, if n < Xn < n + 1 we have 6n < 0,

and (5.3) is satisfied if 0 < qn < Ή/2 + 6n, hence certainly if n < λ n <

n + δ, δ < 1, and 0 < ^ n < ττ(l - δ )/2. On the other hand, if n - 1 < λΛ < Λ

(^ > 0), we have en > 0 and (5.4) is satisfied if n ~ δ < λΓi\< ^ (τι > 0),

δ < 1, and-77(1 - δ ) / 2 < ^n < 0.

If we let Xn = m —2βn/π, where m has opposite parity to n , (2.3) reduces to

£sin (λnx + eΛ + i Λ ) | ; by taking m = n + 1 we obtain Corollary 4. Finally,

Corollary 5 is obtained by taking m = n + 2. Further theorems of the same

character are readily written down.
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