ON THE GENERATION OF SEMIGROUPS OF LINEAR OPERATORS

R. S. PHILLIPS

1. Introduction. Let T(¢) be a semigroup of linear bounded transformations
on a Banach space X to itself (see [4]), strongly continuous on [0, ®) with
T(0) = I. Further let (¢, £) be a one-parameter family of functions of bounded
variation in & > 0 which form a semigroup in ¢ > 0 with product defined by
convolution. Then

(1) () = f7T(&) de s, &)

will also form a semigroup of linear bounded transformations on X to itself. If
the semigroup o, -) satisfies certain continuity conditions, then S(¢) will
be strongly continuous for ¢ > 0. This method of generating new semigroups
out of old ones has previously been considered in a general way by N. P.
Romanoff [10] and in connection with stochastic processes by S. Bochner [2].
We shall consider the problem in the setting described above and attempt to
obtain the infinitesimal generator B of the semigroup S(¢) directly in terms
of the semigroup T(¢) and its infinitesimal generator 4. We shall seek also to
relate the spectrum of B to that of A.

In general the integral in (1) will not converge unless o is suitably re-
stricted. The most general function & of bounded variation, for which the inte-
gral converges absolutely, will satisfy the condition

(2) _I;w exp lw(&)] |da| < «,

where w (&) = log || T (£)]] is lower semicontinuous, subadditive, and bounded
near the origin. We shall accordingly limit ourselves to the Banach algebra
G(w) consisting of the set of all such functions &, where the norm is given by
the integral in (2) and the product is given by convolution. Now ©(w) can also
be considered as an operator algebra over the Banach space ¥(w) consisting
of the absolutely continuous elements in ©(w). In the course of proving that
the operator topology for G( ) and the original topology are isomorphic we have
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obtained the following relation for the case lim w (&) = 0:

£E—0
- - (&)= A(¢-9)
3 [ ewla(@] 1dal = lin [~ eplo(e)) | 2202 g,

We have been able to extend the results of A. Kolmogoroff [7] and Paul Lévy
[8] on semigroups of distribution functions to the case of semigroups of mono-
tonic nondecreasing functions in ©(w) when w(¢) satisfies the additional
condition

-0

(4) lim (sup [o(f) - o€+ 5)])<oo.

5—0 \& >0
In fact, if we set wg = inf w( &)/ & and
(5) oA, o] = j:o exp [A €] da for R[A] < w,,
then we have shown that a necessary and sufficient condiiion that (¢, £) be
a semigroup of monotone functions in ©(w) (strongly continuous over (w) at
t = 0) is that

(6) ¢! Iog (I)[)\s a(t, ')] =mA + j(;oo (eXP[()‘—wo)f] - 1) dl/’ + a,

where m > 0, a is real, and ¢/ is monotonic nondecreasing on (0, ) satisfying
the conditions

‘Io.l édy < 0 and j;oo exp [w(¢) - wy €] dy < .
Finally, we have been able to obtain a characterization of the infinitesimal

generator B of S(t) when S(t) is generated by a semigroup of monotone func-
tions in G(w). In this case we show that for x in the domain of 4 we have

7) Bx = mAx + Jom [exp(—~wo &) T(E)x ~ x]1dy + ax,

where m, a, and ¢y (£) are obtained from (6). In addition, if Ay belongs to the
spectrum of 4, then

mAy + j;w (exp[Ag — wp)él-1)dy + a

belongs to the spectrum of B.
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2. The Banach algebra G(w). This section will be devoted to a character-
ization of various kinds of convergence in the Banach algebra G(w). We shall

suppose that the weight function o (¢) satisfies the hypothesis

(i) w(¢) is real valued and lower semicontinuous on [0, 0 );
(h) (i1) w(0)=0, lim w(€) < w;
— 0+
(iii) w(&)is sugadcfitive: a)(rf1 + §2) < m(fl) + w(§2)for fl, {-’2 > 0.

If, in addition,

(iv) lim [sup (w(€) - o(£+ 06))| < w,
8—o0+ |£20

we shall say that @ satisfies the hypothesis (Ah*). Conditions (i) and (iii)
imply (see [4, Chap. 6]) that li_mf__0+ o (&) > 0, and hence that w(¢) is
bounded in every finite interval [0, L]. Further,

(8) wo = inf w(&)/&= lim w(&)/é&.
£>0 £ 00

We now define G(w) to be the set of all completely additive complex-valued
set functions (o) on the sigma-field of Borel measurable subsets B of [0, w)
such that

f0°° exp [w(&)]]da| < w.

We require only that & (o) be finite if ¢ is contained in a finite interval. The

norm is given by
(9) o] = f:o exp [w(&)]] da].

It is clear that ©(w) is a Banach space. In order to define the product y = ot 3
of two elements of G(w), we consider the product measure y of & and 3 de-
fined on the smallest sigma-field B, generated by B x B. For any ¢ € B,

we set
y(o) = y[(u,v)| u+ v €05 u,v>0].

It follows that the product is commutative, that

(10) y(o) = [T alo~u)duf = [T Blo~u)duct,
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and that

(11) Hyll < Hadl- 18-

Thus G(w) is likewise a Banach algebra with unit e. It will sometimes be con-
venient to consider & € G(w) not as a set function & (o), but simply as a

function of bounded variation continuous on the left, namely as

« (&) = a(lo, £)).

This correspondence between set function and point function is clearly one-to-
one and should not cause any confusion.
Let €(w) be the set of Borel measurable functions f(£) such that

L7 explo(O] f(£) | dé < w.

Then with norm

(12) 1l = [ expla (O] 1f(£)] d€,

{(w) is a Banach space. Further if &« € G(w), then

(13) Aa(f) = [T 1€~ uw) dya

defines a linear bounded transformation on £ (w) to itself. Clearly

WA < The Il 1AL

and hence
(14) 4all < [lalf.

We shall show that the two norms are isomorphic. To this end we set f8 (&)=
1/8 for 0 < £ < & and zero elsewhere. Then by (14),

— w(€) — a(€ - 98)
(15) s—l."§’+ L[ ewla(é)] > d¢

= sl_i“; HAa(f)I < ellall,

where
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T o 8
(16) c= lim §! f explw(£)]1dE.
§—0+ 0
Because of (h-ii) and the subsequent remarks, it is clear that 1 < ¢ < .

LEMMA 2.1. If w(&) is subadditive and merely lower semicontinuous, then

o - -8
(17) 8_li_rrl ‘I(; explw(£)] wo Z(‘f )d‘fZHO‘H'

—40+

Since exp[ w(&)] is lower semicontinuous, we can approximate it from below

by a sequence of continuous functions wy (&) such that

0 < wy (&) £ wpey (&) and lim w, (&) = explw(£)]

nn— 00

pointwise. We shall show that

(&) —a(é - b‘),
5

(18)  lim [ wn (&) dg > [T wa (&) |dal,

and hence that

e B)Idfz L7 wn©) [daf

lim j:o explo (£)] |

§—0+4

for all n. The inequality (17) then follows by Fatou’s lemma. It remains to prove
(18). Now given € > 0 there exists a subdivision ¢ =0 < ¢ <-.-< § =L
such that

h
(19) L7 w@lda] < 3 w(&) [a(&) - alg )| + e,

i=1

where & < & < &5 and this inequality remains true for all refinements of
the above subdivision of [0, L]. Setting

(&) = [* wiw) du,

we have
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fab w(&) [ (€) - a(é-8)1dE

W@ @) -atg -1 |0 - [0 W@ (&) + [0 W& dag-5)
(20)
= S0 D) - W(E+ 9)]da- [7 [W(a) - W(€+ 8)ldu

s [OIV(E+ 8) - W(O)]da.
Now
|2 tw(e+ ) - W(Odo- w(e) sla(d) - ala)]
< osclw; a, b + 8] var[a; q, b1,

where @ < &< b If M=max[|w(&)| | € €10, L1], we see that the first two
terms on the right of (20) are bounded above by M8 var[a; b -5, 5] and by
M & var[a; a — §, a] respectively. Hence

a(€) - a(&=-9)

o €

3 f;‘i w(£)

i=1 i-1

(&) — a(é - 8) J

5 4

>

i=1

v

£,
i (&)
Jel, et

n

z w(‘f:) Ia(ft) - (x(fi-l)l

i=1

v

- Z osclw; fi-l’ fi + 8] var[a; 'fi-l’ {:,,]

i=1
-y (var[o; fi-x -5, ‘fi—x] +varlas & - 6, &1).
i=1

We first choose a subdivision sufficiently fine so that for all sufficiently small

8 > 0 we have



ON THE GENERATION OF SEMIGROUPS OF LINEAR OPERATORS 349

€
max tosclw; &, & + 811 < varlo; 0, L1

Combining (19) with the above inequality we then get

(&) —aoc(f - 5) J

L7 w(&) [da] < [T w(£) 3

n

+ 26+ 2M Y var[o; rfi - 5, fi].

i=0
The inequality (18) now follows from the fact that & is continuous on the left
and the arbitrariness of € > 0.

As a consequence of Lemma 2.1 we see that
1Aall = sup 4D/ 1AL 2 tim (1 4ai)11 / T 116 1 2 llall /e

Combining this with (14) we have
(21) Hoall/e < {[4all < [la]].

THEOREM 2.1. The operator norm for the elements of G(w) over £ (w)

is isomorphic to the regular norm (9).

In particular, if lim(f_’0+ ©w(&)=0 then c¢=1, and hence (3) follows from
(15) and (17).

We next obtain a criterion for the strong convergence of elements in ©(w)

considered as operators on 2(w ).

THEOREM 2.2. The operators A, converge strongly to 0 if and only if the
||otn || are bounded and

(22) nlgnm fow explw(£)] |6p (&) =z (£ -8)] dE=0

for all sufficiently small 5 > 0.

If lim, _ Aq, (f) =0 for each f € Q(w), then by a well-known theorem due
to Banach [1, p.80] the || 4, || are bounded, and hence by Theorem 2.1 so are
the [[&n ||, Further, if f(£) =1 for 0 < £ < & and zero elsewhere, then
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1 4a, UL = [[7 explo ()] [0 (€) = an(€ = 8)| dE —0

for all 6 > 0. Conversely, suppose (22) is valid for all § € (0, &, ). Then given
a > 0 there exists an integer k¥ and a & € (0, §,) such that k8 = a. Now for
any £ > 0 we have

L7 explo(O)] |on(é - &) —an(€ - & - 8)| d¢

< explw ()] [T explo(£)] |an(€) = wn(€ = 8)[dé—0

as n— . Hence

L7 explo (O] [an(€) ~ on(€ ~ a)| d€

<Y L7 eplo@] (€ - (-1)8) - anlé = )] d& —0

j=1

as n—> . In other words, if f(£)=1 for 0 < £ < @ and zero elsewhere, then
|[4q, (f)|| — 0. Since the linear extension of this class of functions is dense
in 8(w), and since || 4, || are bounded by (14), the desired result follows from
the Banach-Steinhaus theorem [1, p.79].

We now define

(A, &) = j;w exp[Aé] da,
(23)

[~

¢()\9f) = f

0

exp[A&] f(£) d&.

These integrals converge absolutely for R[A] < w,. We recall that the Laplace
transform of the convolution of two functions is the product of their Laplace
transforms, and hence that

(24) L7 expIrE] Aa(f) dE = @M S ().

We next obtain a necessary condition for the strong convergence of the operators
Ag,, where again &, € 6(w).
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THEOREM 2.3. If the operators A, converge to 0 in the strong topology,
then the ||, || are bounded, ®,(A)—> 0 uniformly in every bounded subset of
RIA] € wg, and 0 (£)—> 0 pointwise.

The boundedness of the ||, || follows as in Theorem 2.2. Since
o (h N1 2SI for RIN < w,

it follows from (24) that |®,(A\) (A, )] < ||4s,()||— 0 uniformly for
RiAl < wg. The uniform convergence of ®,(A) to zero on a bounded subset
E of R[A] < wg now follows from the fact that there exist functions ¢ (A, f)
bounded away from zero on E. In fact, for f defined as in the previous theorem,
(A, fg )=(exp(A8) = 1)/A will suffice for & sufficiently small. The fact
that &, (£)— 0 is a consequence of the following lemma, patterned after the
P. Lety convergence theorem [8, p. 49].

LEMMA 2.2. If o, € &w), the ||| are bounded, and ® (A, &) con-
verges to Q(\) uniformly in every bounded subset of R[A] < w,, then there
exists an & € G(w) such that ®(X, &) =Q(X) and &, (&) > (&) at every
point of continuity of o.

Since the variations of the &, are uniformly bounded in every finite interval,
we can apply the Helly theorem and obtain a subsequence 0, (£) which con-
verges to a function & (&) (likewise of bounded variation in every finite interval
and continuous on the left) at each point of continuity of & (¢£). In order to show
that o € ©(w), we approximate explw(£)] as in Lemma 2.1 by a sequence
of continuous functions w,(£), where

0 < wnp (&) < w4y (§) and wp(§) — expla(é)]
pointwise. Then, by hypothesis,

L7 wn (&) [dony | < [ expla(O)] |dan, | < M.

For each L > 0 we have

L . L
‘IO‘ wy (&) ‘dO(l < kl%l& ‘4 wn (&) ldank .
Hence j:o wp (&) |da| < M for each n; and, by Fatou’s lemma,

fo"" explw(£)] |da] < M.
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Thus & € G(w). On the other hand, for any § > O and u = R(/\)Swo, we have

v+§

(28)7 77 @ulu + iv)dy = f0°° expl(u + iv) &) (5&)7! sin 8& doty.
Now
le"" expl(u + iv)8] (&) sin 8&day| < M/ (5L),
so that

‘/:o exp[(z + iv)€] (8€) P sin §& du,

-—)‘]:o expl(u + iv) €] (6&)7! sind¢ da.

Finally, since ®, (A) — Q () uniformly in every bounded subset of R[A] < w,,
we obtain, for all § > 0,

v+§

(28)7! jv_s Qu + iv)dy = f0°" exp[(u + iv) €] (8&)7! sin 6¢& du

v+ 8

= (28)71 L_B O(u+ iv)dv.

1)

Thus ®(\) = Q(A) for R[A] < w,. Finally since this is true of all subse-
sequences, it follows from the uniqueness theorem for Laplace transforms that
O (£)— o (£) at all points of continuity of o (£).

3. Nonnegative semigroups in G (). In this section we shall obtain a gener-
alization of the Kolmogoroff [7] and P. Levy [8, Chap. 7] representation for
semigroups of distribution functions in terms of their characteristic functions. We
shall consider the semigroup o (¢, £), where

(i) foreacht > 0, a (¢, £) is a nondecreasing function in G(w);
(i) a(y + &, )= a(ty, « )* a(ty, +), &(0, ) =¢e;
(25) (iii) there exists an M such that ||a (¢, +)|| < Mfor0 < ¢ < 1;
(iv) ®[r;a(t -)]= j(;m exp (A€)dg a(t, &) converges to one as ¢ — 0+

uniformly in any bounded subset of R[A] < w,.

It will be convenient to introduce the auxiliary space G(w), where
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0(&) = () - woé.

It is clear that o (&) will also satisfy the hypothesis (h) and that inf & (&) /&=
0. Hence if B8 € 6(w), then B is a function of bounded variation on [0, ).

The transformation

(26) Blo) = U(a) (o) = ‘g exp (woé) dgat

is a norm preserving isomorphism of the Banach algebra G(w) onto G(w).
Further,

(h, o) = 7 exp(AE)dgot = [T expl(h =~ wp)€ldgB = @ (A= wo, B).

Hence if
B(t’ ¢ ) = U[O((t, ¢ )]

then all of the conditions (25) are fulfilled for the semigroup B(¢, - ) C G(w)
with 0 replacing wq in (iv). Since, in particular,

0<B(ho) <|IB(L)|| <M for0o <<,

B(tl + t27 m) = B(tla (D) B(tZy (D),

it follows from well-known results on multiplicative functions that 8 (¢, w) =
exp (at). We now define

(27) y(t, &) = exp(-at) B(t, &).

Then y (¢, - ) is a semigroup of distributions, continuous in the sense of (iv).
Hence we can apply the results of Kolmogoroff and P. Levy. We refer the reader
to Khintchine’s proof [6] which has been reprinted by Hille [4, p.435]. Implicit
in P. Lévy’s discussion of this theorem [8, p.178] is the following modification,
valid for one-sided distributions (that is, distributions defined on [0, ®)).

LEMMA 3.1. Let y(t, &) be a semigroup of one-sided distributions such that

(28) lim y( &) =1 for each & > 0.
t— 0+

Then
(29) t! log(®(A, y(¢ +)]) =mA + fow[exp(}\f) - 11dy (£)
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for all R()\) < 0, where m > 0; y (£) is nondecreasing on (0, ®); ¥ (®) < ®;
and /(;l ¢ dy < w. Conversely, every such choice of m and y defines a semi-
group of one-sided distributions satisfying (28).

For the sake of completeness, we shall sketch a proof of this fact. The
reader will be able to fill in the details by referring to Hille [4, pp. 435-438].
It is readily seen that

log(®[A, y(¢+)]) = t®, (1),

and hence that

(30) ®,(1) = tlim et fo“’ lexp(A€) = 11 dg y(¢, &).

-0+

We next define

G(t, &) = ¢! jo‘f 22/(1 + 92) dpy y(t, 7).
As in [4], it can be shown that var[ G (¢, -)] is bounded for 0 < ¢ < ¢,; that the

variation of G (¢, ) in [L, o) goes to zero as L—>w, uniformly for 0 < ¢ < ¢y;

and that for some sequence ¢, tending to O+,
Gltn, ) G (&) and my = [T 71 dC (1, £)—mo > 0.
It follows that G(¢) can have no jump at the origin and that

mg 2 lim [T &G (m, €) = [T ETdC(E).

Thus fo"" E1dG(¢) < w. Hence, by (30),
®,()) = nlimw{mnh
b L7 TexpA8) = 1= A&/(1+ €)1 (1L + £/ &1 d6 6)]
= m\ + j:o [exp(A&)-11dy (&),

where
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m=mgy ~ j;oo E1dG(€) > 0 and Y (§) = - j;o (1L+92)/92dG(y).

Thus the function (&) is monotonic nondecreasing on (0, @); (&) < 0;
and ‘/0'l Edy(€) < w. The uniqueness of i (&) follows from the uniqueness of
G (£) as in [4]; the converse statement is also proved as in [4].

For our purposes we shall need a theorem of this type applicable to semi-
groups in G(w) satisfying the conditions of (25). We shall show that if

flc° explo(&)]dy(€) < w

then y(¢, ¢) € G(w), and that the converse is likewise true for suitable re-
stricted @ (£). Without loss of generality we set £ = 1.

THEOREM 3.1. If

(31)  log®(A,y) = mr + [ [exp(A€) ~ 11 dy (£),
where
m > 0, ‘/0'1 Edy < w, and j;oo explo (&)1 dy(€) < o,
then y € G(a).
It is clear that y is the convolution of three one-sided distributions, namely:

y, = an m-shift to the right,
Y2, where log @ (X, y,) = ‘(;l [exp(AE)~-114dy,
¥, » where log ®(), y,) = j;oo[exp()\f)— 1]1dy.

It is further clear that y, € G(w), so that it remains to show that the same is
true of Y, and Ya+ Now ‘41 [exp(AE) =11 dy(£) can be approximated by sums
of the type

> lexp(A&) - 1149

i=1

uniformly in every bounded subset of R(X) < 0. Suppose Yy, is such that

log ®(A, y,) = Y [exp(A&) - 11A; 4.

i=1
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Then y,_ is the convolution of n Poisson distributions, and hence has a jump of

no (M)
k)

exp(= X A;¢)
=1 i

f=q

It follows that

n _[n n (Ail/l)ki
Hynll = exp| - ; Ail/') > expw(z k; fi) I —

ki>o =1

Now by assumption (h-ii) there exists an M > 0 such thatexp[w(&)] < M for
0 < & < 2. Hence, in general, exp[&(&)] < M¢ for all ¢ > 1. Thus we obtain

log ||y, || < [ expl&(£)1dy, (&) + ¥ (MF-1)Ay.
i=1

Finally, since ‘4‘ expl@(&)] dy, (£) < M, and since jo‘ (M€ - 1)dy < o,
the approximating y,’s can be chosen to satisfy the conditions of Lemma 2.2.
It follows that y, € G(w). Likewise j;m [exp(Aé)~11dy can be approxi-
mated by sums of the type

> lexp(A§) -11Ay

i=1

uniformly in every finite subset of R()\) < 0. Hence y; can also be approxi-
mated by distributions of the type y_. Now

n n
i=1 =1
so that in this case we have

log ||y, 1l £ X lexpw(&)-114:y.

=1

Since j;w(exp[a(f)]—l)dl,b < w, it follows as above that y, € 6(w).

THEOREM 3.2. If y(¢, &) is a semigroup of distributions in €(w) satisfying



ON THE GENERATION OF SEMIGROUPS OF LINEAR OPERATORS 357
the conditions (25), and

(32) lim gsg% [w(€) -~ 0(&+ 8)] < m,

-0+
then
t7 log @[, y(t,-)] = mA + fow [exp(A¢) - 11dy,

where m > 0, (&) is monotone nondecreasing with

jo‘ Edy < o, and fl“’ explo(&)]dy < w.

It is clear that the continuity conditions (iii) and (iv) of (25) imply (28) by
Lemma 2.2. Hence we may avail ourselves of the results of Lemma 3.1. It re-
mains therefore only to verify the statement j;w explw(£)]1dy < w. By the
assumption (32), there exists a A > 0 and a k> 0 such that (£ + 8) > w(&)-k
for all £ > 0 and all 0 < & < A. It follows by an induction argument that

0(E+8) > (&)= (8AT + 1)k for all £ > 0 and all § > 0. Suppose now that
y(€) is of bounded variation on [0, ) and that y (£ -m) € G(w). Then

_/;w explw(&)] |dy| < expl(mA™! + 1)k] j:o explo (£ + m)|dyl,

so that y(¢) € G(w). Thus without loss of generality we may assume that
m = 0. For ¢ equal to, say, one, we define Y, and Y, as before, so that

log @ (), 72) = L‘l [exp(A &) - 11dy
and
log ®(X, y,) = flw [exp(A&) - 11dy .

Then
Uyl =1ly, * vsll = L7 7 expl@(g, + €)1dy, (&) dy, (&)

_>_ ‘/(.)oo‘/c;eexp [6(62 +§':3)]dy2 (52 )dy3 (53 ),
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whence

Hyll 2 expl~ (€A™ + 1)E] [y, |l y, (€).

Since y, is a distribution function, we have y, (€) > 0 for some € > 0. Hence
v € G(w). Finally we see that

3 @A, 3,))"

n!

DX, y,) = exp [- jl°° d¢]

n=0

where y4(¢f)=0 for 0 < £ < 1 and y4(§)=¢(f)—¢(1) for £ > 1. In other

words,

w0 = ()
)'3=e:cp[-fl a'!//] T =

n=

nl

—

and in particular s (o) > expl - j;oo dy] Vs (o). Since Vs € G(w), it follows
that Vs € G(®), and hence that

J;w explw(£€)]dy < .

We summarize the results of this section in the following theorem.
THEOREM 3.3. If a(t, &) is a semigroup of elements in G(w) satisfying
the condition (25), and o (&) satisfies (h*), then for R(\) < w, we have
(83) £ log ®Ix, ()] = ma + [ (expl(r- o) E1-1)dys (&) + a,

where m > 0, a is real, and ;(£) is a monotone nondecreasing function such
that

_/0'l &dy < 0 and j;w explw(€) - €] dy < .

Conversely, if ®[\, a(t, +)] satisfies (33), then (¢, ) € C(w) and satisfies
(25) for any w (&) satisfying (h).

Before we conclude this section, a remark is in order about the continuity

of the semigroup (¢, -). If we consider Aa(t .y to be a semigroup of operators
’
on £ (w), then the strong convergence of these operators to the identity operator
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as t — 0+ implies, by Theorem 2.3, that the continuity hypothesis (25)- (iii)
and - (iv) will be satisfied by a (¢, +). We shall show in Corollary 4.1 that the

converse is likewise true.

4. Semigroups of transformations. In this section, we shall make use of
the Banach algebra G(w) to develop an operational calculus for the infinitesi-
mal generators of semigroups of transformations on a Banach space to itself.
Hille [4, Chap. 15] first introduced such a calculus. The novel feature of the
present discussion is that this calculus is used to obtain other semigroups of
transformations, and as a consequence to obtain other infinitesimal generators.
This method of generating new semigroups has previously been considered in a
general way by N. P. Romanoff [10] and in connection with stochastic processes
by S. Bochner [2].

Let X be a complex Banach space, let (X ) be the algebra of linear bounded
transformations on X to itself, and let 7(¢) be a semigroup of operators on
[0, ®) to €(X) (see [4]) satisfying the following hypothesis:

) (1) T(ty + t) =T(t,)T(2y) forty, ty >0, (o) =1;
(ii) lim T(t)x =« for all x € X.
t—- 0+

Such a semigroup of transformations will have a closed linear infinitesimal
generator A with domain ® (4) dense in X. It can be shown [4, Theorem 9.4.1]
that 7'(¢) is then strongly continuous for ¢ > 0, and hence that || T(¢)]| is

lower semicontinuous. It is clear that the subadditive function

(34) w(§) = log [| T(£) ]|

satisfies the conditions (h) and may be used to define a Banach algebra of the

type S(w). For a(¢) € G(w), the relation
(35) ®()x = [T T(&)x da(é)

defines a linear bounded transformation in & (X). Further, it is easily seen that
®(e) = I,
B(ax + bB) = a®(x) + bO(R),

(36)
B(ax* B)=0(a)0(B),

e() ]| < [la]l.
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Hence ®(a) is a continuous homeomorphism of ©(w) into €(X) which takes
the unit e into the identity /. This mapping can be thought of as defining an
operational calculus for the infinitesimal generator A of T(t) (see [4] and [9]).

Suppose now that & (¢, ) € G(w) form a semigroup of set functions such
that Aa(t, 2 considered as operators on & (w ) satisfy the postulates (H). Then

(37) S(t) =0[a(e, )]

is clearly a semigroup of operators on X to itself by (36). We show next that
S(t) converges strongly to I as ¢t — 0+. For this purpose we need the following
lemma.

LEMMA 4.1. Let 4, be a sequence of operators on & (w) which converge
strongly to 0. Suppose G (&) € Q(w)* is such that

(38) lim  sup |[G(&+8) - G(&)] expl-w(é)] = 0.
=0+ £ 20

Then

(39) lim fo‘” G(£)day (&) = 0.

By hypothesis,
lim [ 600 [ fe - ) donw)] d = 0
for each f € € (o). By the Fubini theorem,
[e@|ff re-wanwlae- [= [ c@re-nde|a.
If we choose f; (£)=87" for 0 < ¢ < & and =0 elsewhere, then

fo“ 5t [fu“*sc(g)df] do, (1) —0

for each § > 0 as n — . On the other hand, by (38),

|3—l ful“’sc({:)df- G(u)‘ < exp[w(u)]e(a),

where €(8) — 0 with §. Hence
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‘fo“ a‘*[fu“*sc(g) dg] doty, (u) - ‘](;OOG(u)dO(,,(u) < ol €(8),

which converges to zero as § — 0 uniformly in n. It follows that the order of
limits may be inverted and hence that (39) is valid.

It is clear that G (&) = x*[ T (£)x] satisfies the condition (38) and belongs
to € (w)*. Further, by hypothesis, the A, (t, .y converge strongly on L(w) to
Ae =1 as t — 0+. Hence, by the lemma,

lim x*[S(¢t)x] = lim fmx*[T(f)x]dot(t,f)=x*(x)
-0+ “0

t— 0+ t

for all x € X and x* € X™*, The desired strong convergence now follows by a
theorem due to Hille [5, p. 93, footnote]. This concludes the proof of the follow-

ing result.

THEOREM 4.1. If T(t) is a semigroup of operators on %, and &(t, )€
G(w) is a semigroup of operators on (w) (w (&) =log|| T(&)1|), both satis-
fying the postulates (H), then S(t)=0[ (¢, )] is again a semigroup of oper-
ators on X satisfying (H).

If we limit ourselves to semigroups in G(w) of the type studied in $3, we
are then able to obtain a representation for the infinitesimal generator of the
semigroup S(¢)=0[ (¢t +)]. To this end, we now prove a generalization of
a theorem due to K. Yosida [11, Lemma 2].

THEOREM 4.2. Let R be a strongly closed abelian subalgebra of G(X).
For each integer n, let S, (t) be a semigroup of transformations in ® satisfying
(H) with infinitesimal generator B,. We further assume that lim, o Bp(x)=
B’(x) for a dense subset © c NV(B,), and that there exists an M < ® such
that || S, (t)|| < M for t €10, 1] and all n. Then the S, (t) converge strongly
to a semigroup of transformations S(t) in R satisfying (H) with infinitesimal

generator B > B’.

In the proof of this theorem we make use of a technical device due to Dunford
and Segal [3]. For x € O c N9(B,) it is easy to verify that S, (¢ — T)S, (T)x
is strongly differentiable with respect to T. Hence

n

., d
Sm(t)x — Sy (t)x j(; - [Sp,(t = T)Sp (D)x]dT

LS (8 = T8 (T) [Bps = Byx] dr.
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It follows from our hypothesis that || S, (¢)|| < M'*%, and thus that
|Sm (£)x = Sp(£)xl] < M . ¢ || By (x) = Bu()]].

Since the B,(x) form a Cauchy sequence, so do the S, (¢)x. We define the limit
to be S(¢)x. Now for x € 9, S(¢)x is the uniform limit of continuous functions
in every finite interval, and hence is itself continuous. Further, since 9 is
dense in X, and because of the uniform boundedness of the || S, (¢)|| for each
t, it follows that S,(¢)x —S(¢)x for all x € X and that || S(¢)|| < M**,
It is a simple matter to verify that the S(t) form a semigroup of transformations.
Also S(t)x is strongly continuous on the dense set 8, for ¢ > 0 and ||S(2)|| <
M'** implies that S(t) is strongly continuous on X for ¢ > 0. Thus S(t) satis-
fies (H). Finally, for x € 9 we have S,(t)x = x + fotSn({—')B,,x d¢ and
Sp(€)Byx — S(£) B’x pointwise and boundedly. Hence

S(t)x = x + j(;tS(f)B'x d¢.

Thus, for x € D we have d(S(t)x)/dt = B’x, and hence ® C D(B) and
Bx=B’x forx € 9.

We shall hereafter consider only semigroups of functions & (¢, &) (of bounded
variation in every finite interval) whose Laplace transforms ®[A, a (¢, +)]
take the form

(40) &7 log @[, (s, )] = mA + fo‘” (expl(A = o)1 = 1)dy (&) + a

(R(XA) € wp)s

where m > 0, a is real, and (&) is a monotone nondecreasing function such
that

‘/0'l édy < o and fow explo(£) ~ wo £l dy < w.

By Theorem 3.3 we see that & (¢, -) € G(w) and satisfies (25). The converse
will likewise be valid if o (&) satisfies (32) in addition to the conditions (h).

THEOREM 4.3. Suppose that T (&) is a semigroup of transformations satis-
fying (H), that o (&) = log || T(&)]|, and that a(t, ) is a semigroup of ele-
ments in ©(w) having Laplace transforms of the type (40). Then the semigroup
of transformations S(t)=@[ o (¢, «)] satisfies the hypothesis (H), and the
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domain of its infinitesimal generator B contains D(A). For x € D(4) we have
Bx = mAx + fo“ lexp (= wo &) T(E)x ~ x1dy + ax.

Let ®¢ (¢, -) be defined as above by means of the same m and a as (¢, ),

but with ¢, (&) = ¢ (€) for £ < € and ¢_ (&) = Y (&) for £ > €. Then, by

Theorem 3.3, O (¢, ) is likewise a semigroup in G(w) satisfying the conditions
(25). In the notation of $3 we have

HO(e(t,-)Hw= HBG(t")ll(—d_ = exp(at) ||y€(t,-)H5,

where 0 (&) = w (&) — weé, and
£ log DA, y, (¢, )] = mA + fe“(eXp(acf) - 1)dy.
Arguing as in Theorem 3.1, we see that

T og(lly, (4, )llz) < am) + (1 (HE = 1)dy + M)

+ j;oo[exp (&) - 1)dy.

Hence for some K > 0 we have || (¢, +) ||, < exp(Kt) independent of € > 0.
Now y, € S(w). Hence

!
n=0 n:

) = e (e [T av,) [§ " ]

is continuous with respect to ¢ in the ©(w) topology, and a fortiori in the strong
topology over € (w). Since the shift semigroup' ent is likewise strongly con-
tinuous, the result holds also for their product y, (¢ +)= ye'(t, ¢) * ey We

next set
Se(t)x = j0°° T(&)x dog (t, &) = exp (at) f0°° exp (~ woé) T(E)x dy (¢, &),

so that S¢ (¢)x is given equivalently by

1The shift semigroup is defined by (Aemt (E)Y=f(&~mt); here e, (£)=0 for
£ < mtand =1 for £ > mt.
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exp(at) [ exp(— o) T(E)dem(€) [~ exp(=wod) T()xdy{ (L, &)

= expl(a -~ wem)t] T(mt)S¢(¢)x,

where

S¢(t)x = j;w exp (= wo&) T (&) xdy, (¢, &)

Since y/(t, £) is uniformly continuous in G(w), S¢(¢) is likewise uniformly

continuous, and hence dS{(¢)/dt exists in the uniform topology. Thus

Blx = fo“’ [exp (- woé) T(&)x - x1dy (&)

and $(B{)= X. Since Sc(¢) is the product of two commutative semigroups
both strongly convergent to the identity as ¢ — 0, the same is true of S¢ (¢);

and further, for x € $(4),

(Se(8)x-x)/6 =S« [T(md&)x-x1/8 + (SE(8)x~-=x)/8

— mAx + Bl x

1

o
™

R

Thus 9(B¢) > (4), which is dense in X. Finally, for x € $(4),
exp (= wot) T (1)1 =% = exp (= wgt) [ T(&)AxdE + (exp(~aot) - 1)z,
and hence ||exp (- wot)T(t)x — x|| = O(¢) as t — 0. It follows that
Bé“f: [exp (= weé) T (E)x - x]dy

- j;w [exp(- woé)T(&)x~x]1dy = B’x,

and that

Bex — Bx = mAx + j;m lexp(—wo&)T(&)x — x1dy .
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Finally, ||Se (£)|] < |loe (¢, +)||w < exp(Kt). It now follows from Theorem

4.2 that there exists a semigroup of transformations U(t) satisfying (H) and
with infinitesimal generator B such that S, (t)x — U(t)x for all x € X. It
remains to show that U(t) = S(¢).

Let us apply the result obtained thus far to X = Q(w) and (T (2)f) (u)=
f(u~t). The semigroup T (¢) satisfies (H). Now we know that the integral

fo“’ T(Ef dog (e, &) = fo" flu = E)dae(t, &)

converges in X to U(t)f. On the other hand, it follows from Lemma 2.2 that
lime_, o, Qe(t, &) = a(t, &) for each point of continuity of (¢, £). Thus if
f(u) is continuous and differs from zero only on a finite interval then

fo"f(u - & d o (e, &) _>f0“f(u - &)ydalt, &)

pointwise and hence in norm. Since this is true on a dense subset in £(w), and
since ||a¢ (2, +)|| < exp(Kz), it follows that 4, (¢, +) converges strongly to
Aa(t, -) - Finally, if we apply Lemma 4.1 once again with

G(&) = x*[T(&)x] € L(w)*,

we obtain
x*[Se(t)x] —)j‘;m [T (EYx]1do(e, &) = x*[S(t)x].

It follows that S(¢) = U(¢). This concludes the proof of Theorem 4.3.
As a corollary we obtain a partial converse to Theorem 2.3.

COROLLARY 4.1. If a(t, +) is a semigroup of elements in ©(w) satisfying
(40), then A, (s,.) converges strongly to the identity over (w) as t — 0+.

In terms of the previous theorem, we set X = Q(w) and (T (2)f) (u)=

f(u—t), aright translation in & (®). Then

S()f = [T T fda(s, &) = [*f(u - &)da(s, €) = da(s, - f-

Hence by Theorem 4.3, 4,(¢, .) converges strongly to the identity as ¢t —0+.

We conclude this section with a discussion of the spectrum of the infini-
tesimal generator B of the semigroup S(¢). We shall need the following lemma.
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LEMMA 4.2. Let a(t, ) be a semigroup in G(w) such that the operators
Ag(t, ) on L(w) satisfy the hypothesis (H) and let o”(t)=1log ||a (¢, +)||.
Suppose further that G(&) € R (w)* satisfies the condition (38). Then for
g(t) € L(w’) we have

) [ g(0) [[7 6z atn O] d= [T C(Ode (L7 g(0)als &) de),

where

L7 g(@) ale, &) di= [T g() Aoy, .y de

converges in the strong topology over X (w).

For f € Q(w), &(t, +)*f is continuous for ¢ > 0 in the Q¢ (w) topology.
Hence the integral of g(¢) times a bounded linear functional on 0 (¢, +)*f is
equal to the functional on ( ‘]Om g(t)a(e, «)de)*f; that is,

[To@[f7 16 - wd (£ e(rals u) de)]dg

= [T e [fo”(;(g) (jo“‘ f(& = u)dyals u))df]dt.

Fubini’s theorem permits the interchange of the u and ¢ integrations, so that

42) [T [LT6ONE - ] [T s s u)d)

= L7 [ L7 (761 - w) dg) dyals w)] dr.

Again we set f (£)=8"" for 0 < £ < & and = 0 elsewhere. Then, as in Lemma
4.1,

|G(E)f5 (£~ u)dé - G(u)] < expla(u)] e(5),

where €(8) — 0 with 8. Hence, taking the limit in (42) as § — 0, we obtain
(41).

THEOREM 4.4. Given the semigroup of operators T (t) satisfying (H) with
infinitesimal generator A, let 3 (A) be the spectrum of A and let % (B) be the
spectrum of the infinitesimal generator B of the semigroup S(t)=0[ (s, -)].
If the Laplace transform of o.(t, «) satisfies (40), then
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2(B) > ¢, [2(4)],

where
O, (A) =m\ + j:o (exp[ (X = @))€l = 1)dy(€) + a.

In the proof of this theorem we make use of material developed in an earlier

paper [9]. It was there shown that if Ay € 2(4) and & € G(w), then
fo“’ exp (Ao &) da € Z[O(a)].

Now let R(B; A) be the resolvent of B, and set w’(t)=log || (¢, +)||. Then
for R()) > wg = inf w’(¢)/t, we have [4, Theorem 11.6.1]

R(B,\) = [T exp(=At)S(e)de.
Hence for x € ¥ and x* € X* we obtain
x*[R(B; M)x] = fowexp(-m) [fowx*[T(.f)x]dg (¢, 6)] de.

We now apply Lemma 4.2 with

G(&) = x*[T(£)x] € L(w)* and g(t) = exp(-At) € L(o).

The right side of the above equation can then be written as
j; x2*[T(&)x] dg [J; exp(—Az)a(e, ) a’t],
where
ST exp(=ae)a(s, ) de = [ exp(=At)Aq(e, ) de

converges in the strong operator topology in G(w) over {(w ). Since this holds

for all x € X and x* € X*, we have
R(B;N) = [* T(&)dg [fo"" exp (= At) (s, -)dt].

It follows, for Ay € = (A4) and R()A) > wf, that
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S7 e o) de [ [T exp(=A0)als, ) de] € TIR(B; M1,

Now if u = €(w)*, it follows from general integration theory that
u{ [](;w exp (= At) (s, +) dt]*f} = f0°° exp (= At) plo(e,-)*flde

for all f € 2 (w). In particular, let p(f) =j;°° exp (Ao &) f(£)dE, where
R(XAo) < ap; then p(o*f) = ® (A, o) p(f). Hence,

[j:o exp (Ao &) dg (j;w exp(—At)a(e, ) dt)] w(f)

= j;oo exp(-)tt) Q)[)\o, 0('(39 ')] p'(f) dt‘

For some f € (w) we have u(f) # 0, so that

L7 eomo8) de ([ exp(=A) (s, - di)

= [)7 exp(=22) @ (ro, (2, ) d = [A = @4 (A0)]7".
We conclude that

(A= ® (M) EZ[R(B, M)].

It now follows from Theorem 3.1 of [9] that ®; (Ay) € Z(B).
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