
ON ANALYTIC CHARACTERISTIC FUNCTIONS

EUGENE LUKACS AND OTTO SZA'SZ

1. Introduction. In this paper we discuss certain properties of characteristic

functions. Theorem 1 gives a sufficient condition on the characteristic function

of a distribution in order that the moments of the distribution should exist. The

existence of the moments is usually proven under the assumption that the charac-

teristic function is differentiable [ 4 ] . The condition of Theorem 1 is somewhat

more general and the proof shorter and more elementary. The remaining theorems

deal with analytic characteristic functions, and again some known results are

proved in a simple manner. Some applications are discussed; in particular, it is

shown that an analytic characteristic function of an infinitely divisible law can

have no zeros inside its strip of convergence. This property is used to construct

an example where an infinitely divisible law (the Laplace distribution) is fac-

tored into two noninfinitely divisible factors.

2. An existence theorem. Let F(x) be a probability distribution, that is, a

never-decreasing, right-continuous function such that F(-co) = 0 and F ( + oo) = 1.

The Fourier transform of F(x), that is, the function

(1.1) φ(t) = Γ+O° eitxdF(x),

is called the characteristic function of the distribution F{x), The characteristic

function exists for real values of t for any distribution, but the integral (1.1)

does not always exist for complex t. This paper deals mostly with characteristic

functions which are analytic in a neighborhood of the origin.

For an arbitrary function / ( y ) , we denote in the following the first difference

by

; ί) = Δ/(y; t) = f(γ + t) - f(y - t),

and define the higher differences by
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for k - 1, 2, It can then easily be shown that

k=o

I n p a r t i c u l a r , f o r t h e f u n c t i o n f (y) = eιm^ w e h a v e

ΔJ(y; ί) = eimy{eimt-e-imt)n = e i sin mt]n.

We first prove two lemmas.

LEMMA l Let φ(t) be the characteristic function of a probability distribu-

tion F(x), and let Δ2/c</>(0; t)/(2t)2k be the 2kth difference quotient of φ(t)

at the origin. Assume that

lim inf
(2

< oo.

Then the 2kth moment m ^ of the distribution F (x) exists, as do all the moments

mr of order r < 2k.

LEMMA 2. Under the assumptions of Lemma 1, the derivatives φ ( t ) exist

for all t and for r = 1, 2, , 2k and

φ ( r ) ( ί ) = ir J Γ ^ ~ xreitxdF(x).

Moreover, \ώ{2r)(t)\ < | φ 2 r \ 0 ) | = m2r for r = 1, 2, , k.

Proof. The assumption of Lemma 1 means that there is a constant U < oo

such that

(1.2) lim inf
ί - o (2ί)

2k
= M.

From (1.1) it is seen that for

φ(y) =

we have
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sin

and

(2t)2k

We see therefore from (1.2) that

c M

M
m Γ + o o sιnxt\2k

= hm inf / dF(x),
t->0 -βo \ t I

and hence that

2/c

x2k dF(x)

for any finite α. It follows then that the 2λ*h moment

m 2k Λoo

e x i s t s and t h a t M >_ w ^ L e t n e x t r be a p o s i t i v e i n t e g e r s u c h t h a t r < k; t h e n

, andχ2k > x

2 r [{ \ x

2

2 k

\x\
dF(x) > S x2rdF{x),

\\x\

s o t h a t the m o m e n t s of even order m2r [ r = 1, 2, ••• , (A — l ) ] e x i s t a l s o . More-

over ,

for any α and b. This shows that the absolute moments of odd order not exceed-

ing 2/c, and therefore also the moments m2r i (r = 1, 2, , h), exist. This

proves Lemma 1.

From the existence of the moments mΓ (r = 1, 2, , 2k) we see immediate-

ly that J xτ eιtx dF(x) exists and converges absolutely and uniformly for

all real t and r < 2k. It follows then from a well-known theorem (see for instance
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[2, pp. 67-68]) that all derivatives exist and are obtained by differentiating

under the integral sign. This proves Lemma 2.

From Lemma 1 and 2 we obtain immediately:

THEOREM 1. Let φ(t) be the characteristic function of a distribution

F(x), and assume that, for an infinite sequence of even integers \ 2n^ },

(1.3) lim inf
ί)

= Mk

is finite {not necessarily bounded) for k — 1, 2, . Then all the moments mΓ of

the distribution F(x) exist; and φ(t) can be differentiated for all real t any

number of times, with

φ(r\t) = iτ f*°° xΓ eitx dF(x).
- oo

COROLLARY 1. // all the derivatives of the characteristic function exist

at the origin, then all the moments of the distribution exist.

This corollary was proved by R. Fortet [ 4 ] ; it is also stated in some text

books of probability [2, 5], as well as in a paper by P. Levy [ 7 ] . Theorem 1 is

somewhat more general; the proof given here is similar to the proof indicated for

the corollary by H. Crame'r [2, p. 89].

3. Analytic characteristic functions. From now on we assume that the

characteristic function φ(t) coincides with an analytic function in some neigh-

borhood of the origin. Then the assumptions of the corollary are satisfied, all

the moments exist, and the characteristic function has the expansion

oc ik mk

(2.D φ(z) = ]Γ — r χk f o r 1*1 < P »

where p > 0 is the radius of convergence of the series.

We write

for the even part of φ ( z ) , and
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for the odd part of φ{z), then the two series

oo I — I

(2.2)

*«,<*>- Σ

M * > - Σ

l2k

(2k)\

•2/c-l
mΊk-l

2 A;

,2/c-l

converge also in circles about the origin. Denote the radii of convergence of

these series by p and p

If we denote the A th absolute moment of F (x) by

and observe that

we see that

(2.3)
n2k-ι

(2A- 1)!

This shows that

1)! " 2 (2k)\
(24)

Pi > Po >

\k-2

( 2 A - 2 ) !

l con-We see further from (2.3) and β2ιί = m

2/ί that the series 2l,Γ=o βk z I

verges for I z I < pQ. From Lemma 2 we see, for any real ξ, that

\ φ { 2 k ) ( ξ ) \ < m , .

Hence if we denote the radius of convergence of the Taylor series of φQ(z)

around ξ by pQ(ζ), then

> P O ( O ) = p0.
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Similarly it follows from

\Φ{2kml)(ξ)\<β2k.ι

and (2.3 ) that

PSO > P / O ) = Pι> P

We have thus shown that the Taylor ser ies of φ (z) and also that of φ (z)

around ξ converge in circles of radii at leas t equal to p. The same i s therefore

true for the expansion of φ(z) around ξ; thus we conclude that the function

φ(z) i s analytic at leas t in the strip

- p <&(z) < + p .

The analyticity of φ(z) in a horizontal strip follows also from a result of

R. P . Boas [ 1 ] . Boas showed that the Fourier-Stieltjes transform of a bounded

and never-decreasing function is analytic in a horizontal strip provided that it

is analytic in a neighborhood of the origin.

We show next that the representation of the characterist ic function by the

Fourier integral ( l l ) is valid in the strip - p < $(2:) <*+ p .

We saw above that the se r ie s Z^V = Q \y\V βv/v\ converges for | y | < p. Clear-

r + A \x\vdF(x) = / _ + '

V=0 *" f = 0

for any A. There fore the in tegra l J e>^ > dF(x) e x i s t s , and h e n c e the i n t e -

gral f eιzx dF(x) i s convergent w h e n e v e r | e l z % | < e l ^ * ' , where z = ζ+ iy.

T h u s for any ζ and | y \ < p the in tegra l i s convergent . T h i s i n t e g r a l i s an ana-

l y t i c function in i t s s t r ip of c o n v e r g e n c e and a g r e e s with φ{z) for r e a l z; there-

fore it must agree with φ{z) a l s o for complex v a l u e s z - ζ + iy p rov ided

\y\ < P .

We are now in a position to formulate our main result.

THEOREM 2. If a characteristic function φ{z) is analytic in a neighborhood

of the origin, then it is also analytic in a horizontal strip and can be represented

in this strip by a Fourier integral. Either this strip is the whole plane, or it has

one or two horizontal boundary lines. The purely imaginary points on the boundary
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of the strip of convergence (if it is not the whole plane) are singular points of

φ(z).

The first part of Theorem 2 was established above; we have to prove the

statement concerning the singular points of φ ( z ) .

The integral

φ(z) = Γ°° eizxdF(x)

c o n v e r g e s in a s t r i p - (X < <ϋ(z) < + β, w h e r e OL > p a n d β > p, a n d i s a n a l y t i c

i n s i d e t h i s s t r i p . T o carry out t h e proof c o n c e r n i n g t h e s i n g u l a r p o i n t s of φ(z),

we u s e t h e d e c o m p o s i t i o n

f eizxdF(x) + f0^ eizxdF(x) = ̂ ( z ) + C2(z) (say).

Now ^ ( z ) and &2(z) are Laplace integrals, convergent in the half-planes

SX z) > - α and cSLC z) < β, respectively. Let z = iw; then iz - - w. If z - ζ + iy,

then w = - i ζ + y thus

EAiw) = Γ e'wx dF(x) ^ Φ(w)
1 JQ

is convergent for K(tυ) > - α .

It is known that the Laplace transform

g(s) = fo°° e stdG(t)

of a monotonic function G(t) has a singularity at the real point of its axis of

convergence. For a proof the reader is referred to [9, p. 58]. This theorem is

similar to well-known theorems in power series and Dirichlet series. From the

fact that F(x) is nondecreasing we conclude therefore that — CC is a singular

point of Φ(tt ). Thus — ΐOC is a singular point of φ(z). In the same way it is

also seen that iβ is a singular point of φ(z ).

Theorem 2 was stated without proof in a recent paper by D. Dugue' [ 3 ] , and

is indicated in a footnote of an earlier paper by P. LeVy [ 7 ] .

An immediate consequence of the preceding result is this:

COROLLARY 2. Λ necessary condition that a function analytic in some
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neighborhood of the origin be a characteristic function is that in either half-plane

the singularity nearest to the real axis be located on the imaginary axis.

4. Applications. In the following we discuss some applications of our new

results.

The corollary to Theorem 2 can sometimes be used to decide whether the

the quotient of two characteristic functions is again a characteristic function.

We illustrate this by an example. Let

-1

and

with a2 > b2 > 0. It is easy to see that both these functions are characteristic

functions. Their quotient

Φ2(t)

satisfies the elementary necessary conditions for characteristic functions,

namely φ(-t) - φ(t), φ(0) = 1, | <£ ( £) | <_ 1 for real t. However, the condition

of the corollary to Theorem 2 is violated since φ(t) has no singularity on the

imaginary axis while it has a pair of conjugate complex poles ±b — ia Therefore

φ(t) can not be a characteristic function.

Theorem 2 can also be used to establish the following property of analytic

characteristic functions.

THEOREM 3. Let φ{z) be an analytic characteristic function. Then for any

horizontal line in the strip, the function φ(z) and its derivatives φr \z) all

attain their absolute maxima on the imaginary axis.

Proof. By Theorem 2 we have

φ{z) = f+°° eixz dF(x)

in the strip of convergence. Let z — ia + η then
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m a x \ φ ( i a + η)\ < J J ° e ' a x dF(x) =
- OO < T)< OO

- OO

This result is due to Dugue' [ 3 ] .

We also obtain:

COROLLARY 3. An analytic characteristic function has no zeros on the

segment of the imaginary axis inside the strip of analyticity. The zeros and the

singular points of φ{z) are located symmetrically with respect to the imaginary

axis.

The first part of the corollary follows immediately from Theorem 3; we obtain

the statement about the location of the zeros and singularit ies of φ(z) if we

observe that the functional relation

φ(z) = φ(-z)

holds not only in the strip of convergence of the Fourier integral but in the

entire domain of regularity of φ{z).

An important theorem on analytic characteristic functions is due to P. Levy

[6] and D. Raikov [ β l :

T H E O R E M O F L E V Y A N D R A I K O V . L e t φ ( t ) be an analytic characteristic

function, and assume that φ { t ) — φ ( t ) φ ( t ) , where φ {t) and φ ( t ) are both

characteristic functions. Then the factors φ ( t ) and φ ( t ) are also analytic

functions, and their representations as Fourier integrals converge at least in

the strip of convergence of φ ( t ) .

This theorem was originally proven by P. Le'vy [6; 7] only for entire charac-

teristic functions; a simple proof may be found in [3]

From the foregoing theorem we easily deduce:

THEOREM 4 Let φ(t) be the characteristic function of an infinitely divis-

ble law, and assume that φ(t) is an analytic function. Then φ(t) has no zeros

inside its strip of convergence.

If φ(z) is the characteris t ic function of an infinitely divisible law, then the

function \.φ{z)~\ι'n must be a characterist ic function for any n, and a l so a

factor of φ(z). If furthermore φ{z) is a lso assumed to be analyt ic, then, by the

Le'vy-Raikov theorem, [φ(z)]ι/n must be analytic at leas t in the strip of con-

vergence of φ ( z ). If φ ( z ) were to have a zero at some point z0, then [ φ ( z ) ] ι / n
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would have a singularity at z0 for sufficiently large n, which is impossible.

We can use Theorem 4 in the construction of an example which shows that

an infinitely divisible law can be obtained as the product of two noninfinitely

divisible laws. Let

v = a + ib .

A s i m p l e c o m p u t a t i o n s h o w s t h a t ώ(t) i s a c h a r a c t e r i s t i c f u n c t i o n if

b > 2yJ~2 a.

Then also φ( — t) is a characteristic function, as is

1
φ(t) = φ ( t ) φ ( - t ) = .

t2

The characterist ic functions φ(t) and φ(-t) are analytic characteris t ic func-

tions with zeros in their str ip of convergence: hence they are not character is t ic

functions of infinitely divisible laws. Their product φ(t) is the characterist ic

function of the Laplace distribution, which is known to be infinitely divis ible.
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