STRUCTURED THEOREMS FOR RELATIVELY
COMPLEMENTED LATTICES

J. E. McLAuGHLIN

Introduction. In a previous paper [ 3] a study was made of the projectivities
between the points of a simple relatively complemented lattice of finite dimen-
sion. It was shown that for a given dimension there is an upper bound for the
number of transposes required to establish the projectivities between the points.
The examples given in which this upper bound is attained have a particularly
simple structure —they are closely related to a direct union. We shall prove here
some general structure theorems for relatively complemented lattices and then

apply these to the case of maximal projectivities.

The notation will be that of [ 3]. The lattice L to which we refer is always

relatively complemented.

1. Structure Theorems. Our arguments depend heavily upon the simplicity or
indecomposability [ 2] of L, and it is convenient to have the following character-

ization of a direct union:

THEOREM 1.1. If L has dimension n, and a, b are two elements of L, then
L = a/z \% b/z if and only if

(1) pCa) + p(b) < n, and

(2) p C aifandonlyifp ¢ b for all points p € L.

Proof. Certainly if L = a/z \ b/z, conditions (1) and (2) will hold. Sup-
pose (1) and (2) hold in L. We shall proceed by induction on n. The theorem is

true when n =1, 2. Suppose it is true for all lattices of dimension less than n,
but L $ a/z \ b/z.

It is clear that
x=(anx)u(bnx)

for all x € L. Consider the mapping
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x—0ox =(anx, bnx)Ca/z Vb/z.
Now x D y if and only if
anxDany and b nx 2 bny;

and the latter occurs if and only if 0 x D o y. llence L is isomorphic, as a partial-
ly ordered set, to a subset of a/z \% b/z, where

ou="C(a b), 0z =(z,2).
These remarks show that if any two elements a, b of L satisfy (2),we must have
pla) + p(b) > n.

IfL ¢ a/z \% b/z, there are points p C a and ¢ C b such that p/z P, q/z.
Hence there is a maximal element m such that m$p, m $)_ q. Then s, and s,

exist with

a>s 2mna, b>s,2mnb.

Furthermore,

Let u=x5>%; >+ >x,_, >x, =2z be a complete chain in L. This chain

maps onto

ou = (a, b) > ox, >eee>o0x, | > 0%, = (z,2).

Either (i) ox, =(a, t,), where b>t,, or (ii) ox, =(¢t,, b), where a > ¢;. Sup-
pose the former is true. The points of x, are in either a or ¢,, but not both. Then

a and ¢, satisfy (2) in x,/z, and since
plx)=n-1,
we have
p(a) + p(tz) >n—-1.
But
pa) + p(b) < n, so ple,) =p(b) - 1.

~

Then by the induction hypothesis, xl/z = a/z \ tz/z. This gives the exist-
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ence of a chain from s, through a to u of length 1+ p(6) =1+1, or p(b) + 1.
By Lemma 3.6 of [ 3], there is a chain from b to z of length at least p(b) + 1,
which is a contradiction. A similar contradiction arises if gx; =(t;,b). There-

fore L. = a/z \% b/z, and thus the theorem is proved.

The following theorem gives more information about the quotient lattices
a;ﬁ/z introduced in Lemma 3.5 of [ 3].

Tueoriwm 1.2, Let L be simple of dimension n> 1. If p is any point and k
is a nonnegative integer such that h <{(n + 1)/2], then alg/z has dimension at

least 2k + 1.

Proof. The theorem is true when k& = 0. Suppose it is true for all £ less than

the one in which we are interested. Then alpf"l has dimension at least 2k —1,
and a/g D ag_l. If ag = u, we are through, so assume u D ag. Then there is a point
s € L with s ¢_ag, but s/z P, t/z for some ¢t € C;,C. llence there is a maximal

element m such that mis, m} ag. Since s € Cg, we have m D a;g"l

k k-1
aPD ap

. Therefore
, and the dimension of ag/z is at least 2k. Suppose dim (ag/z )=2k.
l.et b be the join of all points of L which are not in ag. All of these points are

in xg = ﬂMg, where

ak _ k-1
Mp_{mCLlu>m§ap ).

(See proof of Lemma 3.5 of [3].) Hence xg Dband b n al}g = z. The latter follows
from the assumption dim (aiﬁ/z): 2k, since, by Theorem 3.1 of [3] for any
point ¢ we would have g C a]; if and only if ¢ € Cl;,. On the other hand, it is
shown, in the proof of Lemma 3.5 of [ 31, that ¢ € Cﬁ if and only if ¢ q; xl;

Since L is simple, there exists an x such that
u>x,x1igak,x¥b.
P
Butx 3 b implies x D ag"l. Then

x=a£"1u(bnx), and u=bux=a§-lub.

Hence if u > m we have m D alg'l,if and only if m D b. Therefore a];, a'l;_‘, and b
satisfy the conditions of Lemma 3.6 of [ 3], and there exists a chain of length at
least 2% from u to b. Then

p(b) <n - 2k, so p(alg) +p(bd) <.

But by Theorem 1.1 we would have [ = ag/z \'% b/z, contrary to the simplicity
of L. Therefore p(ag) > 2k + 1forallk <[(n+1)/2].
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Let § denote the partially ordered subset of L consisting of u, the maximal
elements, the points, and z. Let §$,, be the normal completion of . Consider the
mapping 4— U4 from §, into L. (4 is a normally closed subset of L.) If
A D B, then UA D UB. Suppose U4 D> UB; then x € A" implies x D a, all a€ A
implies x > U4, so x D UB, and hence x2 b all b € B and x € B*; therefore
A* ¢ B¥, so (A4*)4 D (B®)4, or A D B. Thus the mapping is order preserving
both ways.

Suppose a € L,a#u, a# z Set

P(a)={pEPR|adp>zi,

Ma)={m € P | u>m)al.

Now x D p, all p € P(a), if and only if x D a, so M(a) C (P (a))*. Also
P(a)C(P(a)*)s. Su,ppose y € (P(a)*)«; then yCx, all x € P(a)* implies
y Cm, all m € M(a) implies y C a. Suppose a’Dy, all y € (P(a)*)s; then
a’dp,allp € P(a) implies @’ a, so a = U(P(a)*)s. If a = u, then a = U(u);
if a=z then a=U(z). (Here (x) denotes the principal ideal generated by x.)
Hence each a € L has an inverse image under the above mapping, and $, = L;
see [ 2]. This proves the following:

THEOREM 1.3. The structure of L is completely determined by the structure

of .

REMARK. From the nature of the proof it is seen that the above theorem will

be true for any lattice each of whose elements is a join of points and the meet of
maximal elements.

2. Lattices with maximal projectivities. In this section we shall study sim-
ple lattices of odd dimension in which there occurs a maximal projectivity. We
shall show that these lattices are quite close to a direct union in the sense that
their structure can be completely described in terms of sublattices. Throughout
this section L will be a simple lattice of dimension 2n + 1, and p, ¢ are two
points in L such that p/z P q/z requires 2n + 2 transposes. Then we have:

THEOREM 2.1. If k < n, the following statements are true:

(1) plaf) = 2k + 1, plag™) = 2n = 2k + 1

(2) s m b,k

(3) ag/z has a maximal projectivity if and only if a;_k/z has a maximal
projectivity;
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(4) if a* /2 has a maximal projectivity then a* na™ % = 1 > z, otherwise

a* n an_k = Z.
P q

Proof. Note that s € Cy % implies s EI CP implies s C xp 1mp11es ag” e ’JB

k- ! m)xp. If m/z is
simple, we contradict the assumption of a maximal projectivity between p/z and

q/ z, since p(m) < 2n. Write

Suppose there is a max1mal element m such that m D ap

m/z=L VL, Ve VL,

where the L; are simple nontrivial quotient lattices, and v > 1. Now ag k/z and
ap l/z are both simple; if they are in the same L;, we again contradict our max-
imal projectivity asdumption. Hence they are in different components and we

must have
p(ag“‘) + p(a’;—k) < 2n.
By Theorem 1.2,
p(az_l) > 2k - 1; p(a;'-k) > 2n - 2k + 1.
Therefore
p(al™*) = 2n - 2k + 1.

k-

The elements ap n~k

! and ag " are in different L;, so

p(af=t v al™) = p(al™) + plaf™) > 2n,

and hence
_ k-1 n-k k-1 n-k
m=a v a, orm/z—ap /zVaq /z.

Now let s >z, s C xp. Then s ¢ Cp, so sgta . But mgxg, so mD s, and

k, and hence x* = ¢”7*. Thus we

therefore s C ag -k, Thls shows that x% Caq p = aq
have shown that if a u xk # u, then xg =ay” k and p(an—k) =2n-2k+ 1.

Suppose ak"l ux]; = u. Then for each maximal element m, mD ak 1 if and

only ifm_? . We have p(akl)>2k—1 so dim (u l)< 2n+2-2k.
Since [ is SImple, d1m (u/xp) > 2k, by Theorem 1.1. Hence p(xp) < 2n -
2k + 1. But xp p) aq , and (aq ky > 2n — 2k + 1. Hence, in all cases,
x{,‘ z “*  and p(a ky_9n-2k+1. By a similar argument, xZ'k=ag and

p( g) 2k + 1. This demonstrates (1) and (2).
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Suppose r> z, r C ag such that r/z P p/z requires 2% + 2 transposes. Now
r GL Cg implies r C_xg =a’2]—k. Furthermore, r gak = xZ'k implies r E]ﬁ Cz_k im-
plies that r/z P q/z requires 2n — 2k + 2 transposes. The argument is sym-
metric in p and g, and this proves (3).

Suppose s > z and s/z P p/z requires 2n + 2 transposes. Then xg =al=

s = ag = ¢, so there is at most one point ¢ such that p/z P q/z requires 2n + 2
transposes. This shows that the r in the preceding paragraph, if it exists, is

unique, and we have (4).

We are now in a position to characterize the maximal elements of L in terms
of the structure of ag/z and a',;ﬂk/z. When we know these maximal elements, we

will know the structure of L, by Theorem 1.3. First we prove two useful lemmas.

LLEm#wA 2.1. There is a chain of length 2n + 1 through ag.

n-k-1
1 k ~k
classes—those containing ap and those containing az ~1; and by Theorem 1.1,

Suppose a]; ua = u. Then the maximal elements of L are in two disjoint

dim(u/a;;) + dim (u/a';-k“l) >2n + 1.
But
dim(u/a;f) <on+ 1 - (2k+1);
i n-k-1 - -2k-1).
dlm(u/aq )< 2n+1-(2n )

Hence dim (u/a/;,) = 2n - 2k.

Suppose u > m D ag u ag—k—l. Now m/z is not simple, since p(m) < 2n and

m D p, mD g. Suppose
m/z =L VL, Ve:VL,
where v > 1. Then a;f/z and ag—k_l/z are in different components and again

there is a chain from ag to u of length at least 2n — 2% since p(ag-k_l )=2n-

2k — 1. This proves the lemma.

LemMA 2.2, If s > z, a_t S, bis> but a v b D s, then there are points s, C a,
sy Cbsuch thats,/z P, s/zands,/z P, s/z.

Letsub>xDb, and let x” be a relative complement of s u b in a v b/x
such that @ u b > x”. Then x'ig a, x'i s; hence x'isl, for some point s, C a.
Therefore s/z T av b/x' T s,/ z. Similarly we can show the existence of s,.
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proving the lemma.
Lemyma 2.3, The following relation holds: dim (a* a;ﬁ—l )=2

I'or since L is simple there is a maximal m, such that m, iaﬁ, mo i ag_

Then my D ag'l, mg D a;'k". Assume ag > ag_l Then mgy n af = Ig"l. Set
w = az_k nmgy. Then y exists such that ag” ks y D'w. Since mg = ag o w, we

have u = allj"l Uy=wu ap Since there |s a chain of length 2k from ag” k to u,

there exists a maximal m such that mi q k and such that there exists a chain

k-1

of lenpth at least 2% from m to y. Now mi a;‘; since ak uy=u. Butm>D ap and

m/z = alf /z \% y/z in contradiction with the length of the chain from y to m.

k-1
tence a" $ ap™', and we must have dim (ap/
COROLLARY. The following relation holds:
. n-k n-k-1y _
dlm(aq /aq ) =2.
This follows by symmetry.

3. Maximal elements when a;; naZ'k # z. The following theorem gives the
possibilities for maximal elements when ag/z and ag—k/z each have a maximal

projectivity. We assume throughout that 1 <4 <n-1.

THeEoRrREM 3.1. Let ag n ag—k =r>z,and let u>m. If mDr, either

(1) m>D a;f and aZ"k >mn ag_k,
or

(2) ap>mnakandm3a” -k,
[fmiz r, then ap > ag n m and a" -k az—k n m.

Proof Let u > m D r, and suppose m i ap, mb ag %, Then m 2 a;,c !, and
mD aZ k=1 for otherwise we would not have a max1mal projectivity in L. For

the same reason, we have r¢ allﬁ_‘, r¢ aZ'k_l. Then since

plah=t) = 2k - 1, plag) = 2k + 1,
plal™1) = 2n - 2k - 1, plag™) = 2n — 2k + 1,

we must have

k k k-1

a®*>mna®=rva and " >m na" " =rvua
P P p q q

Hence
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_ k-1 n-k-1 d =k =k .
m \ruap)u(ruaq ) and u a,um=a, ua

Similarly, u = a,’}_k u ag_l.

i3y I.emma 2.1, there is a chain from ag to u of length 2n — 2k. Since L is

relatively complemented, it is easy to see that v exists such that u > v, v nag =

1 k=1

ru ag— , and there is a chain from r u ap to v of length at least 2n - 2%.

There is an s € Vllf such that s ¢ag‘l u r. Hence s ¢ v, and this implies

n-k-

v D ag™* "t Therefore v > m and v = m. Then by Theorem 1.1,

m/z = a};—l v r/z \ az_k—l/z;

1

but this contradicts the existence of a chain from a;)‘" urtom of length 2n —

2k. Hence we must have either m D alg, orm>D az—k.

Suppose m D ag_k, but ag >xDm na;;. Let y be a relative complement of x

in ag/ag a m. Theny D ag n m, since a}ff > x. flence m}} x, miz y, SO

Since

p(ag) = p(a;f—l) + 2 and ru aﬁ_l D aﬁ—l,

k-1

it follows that mk a® !, Hence either x;[} ag_l

or yi ag—l. Suppose the latter
is the case. Then there is an s € C‘ff"l such that s ¢ y. But s Cu=yu az_k.
Hence, by Lemma 2.2, s/z Ponsk+s q/z and p/z Pon q/z contrary to our

assumption of a maximal projectivity between p/z and q/z. A similar contra-

diction arises if x_‘fg ag_l. Hence ag > a{f n m. The roles of p and ¢ are sym-

metric, so if m D all‘;, then ag_k >mn aZ‘k

Now let u > m$ r. Since m_,t r, we have m D af)-l and m 2 ag"k—l. Suppose
ag > x> ag'l = ag n m and a;—k >y > ag—k"l = az_k nom.

Let x” be a relative complement of x in af,/af)—‘. Suppose x'ig r, and let x” be

a relative complement of ag in u/x'. Since ap > x”, we can assume u > x”. Now

x”_'Ig ry so x”D ag—k_l. Hence x” = m, contrary to a{ﬁ’l =man a}lf. A similar

k-1 k k
P

contradiction arises if xig r; and since a ? r, we must have ap > mnap.

Therefore either
ak>mnak or an_k>mnan_k.
P 14 q q

Suppose
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k k-1

k k n-k-1 n-k
ap > m N ap > ap .

>y > a =mna

n-—
but ag 7 q

As before, v exists with u > v, v n a{f =mn ag, and there is a chain from mnag
to v of length at least 2n — 2k. There is a point s € CI; such that s ¢ m n a;f,
and hence s ¢ v. Therefore v > ag_k"‘, so v =m. But m/z, by Theorem 1.1, is
equal to m n ag/z % az—k"l/z in contradiction with ‘the length of the chain

from m n ag to v = m. lience az_ >mn a’(;_k; and whenever u > m 1)_ r, we have

k k
a’ > na
mn

k
P

n-k n-
a >mna
" p q

The converse of this theorem is not true; however we do have the following
result:

THEOREM 3.2. If ag >x D r, then u>x v az-k, while if az_k >y D, then
u>ag uy. If a1}§>x33r and ag'k>ngr, then u>x vy if and only if for any
points t Cx, s Cy, we havetuskr.

Proof. Let a;f >xDr, and let x’ be a relative complement of aﬁ in u/x such

that u > x’. Then by Theorem 3.1 we have x’D aZ'k and x“=x u az—k. A similar

argument shows that if az_k >yDr, thenu > a/; uy.

Suppose
az>xi2r,az—k2y}gr.
If
xDt>z and yD s>z,
such that s u ¢t D r, then
xuyDdrand xuy=(xur)u(yur)=u.
Suppose x u y = u. Since

xkr,ykr,

it follows that

k-1 n-k-1
x D ap y ¥y 2 a, .
If x = ag_l ory = a',;—k"‘, Lemma 2.2 tells us that r € Cl; orr € C’;_k. Hence
x > a1 and y > at k-t
P q

So points s and t exist such that x = ¢ v ag_‘ and y =s u az_k"l. Therefore
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k-1 n-k-1 5

a utusuua r.
P q ’

and applying l.emma 2.2 twice we get t u s D r. All that is required to finish the
proof of the theorem is to show that if u>m> xuy, then m=x uy. Suppose

m D r; then
mO(xuvur)ul(yur)=u.
So mi r. Hence, by Theorem 3.1, m = x; u y,, where

k n-k ‘
ap>x1q12randaq >y1¥r.

But this implies x =x,, y = y;, and m =x u y.

4. Maximal elements when a;f n ai}"k = z. Here as before we assume that

1<k<n-1.

THEOREM 4.1. If u> m then m is one of the following three types:

(1) m2 alg, ag_k > a{]"k n mjg aZ'k'l, or dually;

(2) mD ag, ag_k nm= ag_k—l, or dually;

(3) a§> m naﬁg ag-‘, and ag-k > m naZ"kQag"k”.

Proof. Suppose

k k- - -
u>mgazp,m¥a;z l,buta;k>x3azknm.

Then not all elements of ag_k/z covering m n az"k will contain agi"k_l. On the
other hand,
k) k

vua.,

n-
= na
m (m q p

so for any point

s C az—k, s ¢ m n ag"'k,
we have
n—k k n-k-1
s u n a .
(m ag ) u ap ) g
Then by Lemma 2.2 we must have
n-k-1

s u(mnag_k)ga

contrary to the above assertion. Therefore if
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k-
u>m2a]; and miaz L

n-k

n-k
then aqy >mn aq

Now suppose u > m D a;f and m D azwk-l. If m/z is simple, we contradict
our maximal projectivity assumption; but arguing as before on the direct split of

m/z, we see that

m/z =a1;/z \" ag_k_l/z,

n-k _ n-k-1
and hence m n ag " =ag .
Finally suppose u > m, but m_]t a;f, m% ag‘k, Then m D oE-1 and m> az—k—l.
k k-1 k

Assume m n ap =ap "', and let ap > x> aphl, by Lemma 2.3. Let v be a relative
complement of aé in u/x such that u > v. Since v_b alg, we have v D az—khl. Now
v # m, so az_k >mn ag'k. Then m’ exists such that u > m?, m'$ ag_k, and there
is a chain from m n ag'k to m” of length at least 2. Since m” a'é—k, it follows
that m”> ag_ ', and hence m” = m. But m/z is not simple; ag_l and ag_k n m are
in different components. This is contrary to the length of the above chain, since

p(a;ﬁ—1 ) =2k — 1. Hence we must have ag >mn ag, and dually %> moa ag"k.

q
Iixamples show that it is impossible from the structures of allﬁ/z and az"k/z
to tell whether u > ag u ag—k_l or u = alg u ag_k"l, and dually. However, for the

other maximal elements we have:
THEOREM 4.2. If
n-k n—~k-1
aq >y ¥ aq .
then u>y u ag, and dually. If

k-1 n-k n-k-1
> x D
a, > x 2 ag and a >y 2a, )

then u > x v y if and only if for every pair of points s C x, t C vy the lattice
sut/zis aBoolean algebra.

Proof. Suppose

a®F >y > a"* 7t and u = df uy.
q p
Then there is a point ¢ g_ag—k"l such that ¢ ¢y, ¢ ¢ alg, but ¢ Qaf, u y ; and using

I.emma 2.2 we obtain a contradiction of our maximal projectivity hypothesis. On

the other hand, if u>mD a]; u y, then by Theorem 4.1 we get m = a;f uYy.

Let ag >x D a];"l and aZ—k >y D az—k—l. By Theorem 4.1, either u=xuy
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oru>xuy. lf u=xuvy, there are points s Cx, ¢t Cy such that

k-1 n-k-1 n-k
a
tu ap Uusu aq ) q
Then by Lemma 2.2, we have
tusua® k—12a;z=-'k,

thus ¢t u az_k/z is not a direct union, so there is another point r C_a;f such that

n-k-
q

tusua 1> 7, and hence ¢ u s D r But this tells us that ¢ u s/z is not a

Boolean algebra.

If u>x vy, we must have x u y/z = x/z \ y/z, and the condition is satis-
fied.

Here again, then, save for the one exception, the structure of L is determined

by the structure of sublattices and the relations between points.
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