
ESTIMATES FOR THE ERRORS IN THE RAYLEIGH-RITZ METHOD

F U L T O N K O E H L E R

1. Introduction. Let an eigenvalue problem be given in the form of a homo-

geneous linear differential equation

( 1 ) Ly=λy,

with homogeneous linear boundary conditions, denoted by (C). It is assumed

that the parameter λ does not appear in the boundary conditions. The region

R of the problem may be of any number of dimensions; the symbol ff(P)dP

will mean an integral over /?, dP standing for the Euclidean volume element;

(/, g) will stand for ff(P)g{P)dP; and | | / | | , for (f, f)ι/\ The symbol

ffF (P, Q)dPdQ will mean an integral over the Cartesian product of R with

itself. We assume that the problem ( 1 ) + ( C ) is positive definite and self-

adjoint; that is, {φ, Lφ) > 0 and (φ, Lφ)= {Lφ, ψ) for any admissible func-

tions φ and ψ, an admissible function being a real-valued function, not identi-

cally zero, which satisfies the boundary conditions (C) and is continuously

differentiate up to derivatives of the order of the operator L. The class of

admissible functions will be denoted by G.

The existence of eigenvalues for the problem ( 1 ) + ( C ) is assumed, and

these will be denoted by 1 λ t }, 0 < λx < λ2 < λ3 and the corresponding

eigenfunctions, by { yi }, chosen so that (yi9y:) = δ . We assume that a Green's

function G{P, Q) exists for the problem Ly = 0 with boundary conditions (C),

which is symmetric in P and Q and which has the property that, for any con-

tinuous function f{P\ the function

= fG{P,Q)f(Q)dQ

is the unique solution, if it exists, of the equation Ly - f which satisfies ( C ) .

We also assume that the integral f[G2(P,Q)dPdQ is finite and that the in-

tegral [G2(P, Q)dQ is uniformly bounded for all P. Then any admissible func-

tion φ can be represented by the uniformly convergent series Σ / = i c^yi9 where
ci = (φ> ϊi) Since
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(Lφ, y ) = (φ, Lyt) = λi ci9

we also have the Parseval equations

i = l

and

(Lφ,Lφ)= £ λ ? C ι

2 .

1 = 1

The eigenvalues are characterized by the following minimum property1:

(ώ, Lφ)

(2) λ^ = min -f ~ [φ£d, (φ, y ) = 0, i - 1 , 2, . . . , k - 1 ]
V05 φ)

and by the following maximum-minimum property2 in which the functions IΛ are

any continuous functions:

(3 ) λk = max min — [ φ C fl, (φ, v. ) = 0, ί = 1, 2, , k - 1 ] .
Vi (φ, φ) ι

The minimum property (2) forms the basis of the Rayleigh-Ritz method of ap-

proximating the eigenvalues and eigenfunctions.

Let { φ. \ be a sequence of independent admissible functions; and let Vn be

the class of all functions which are linear combinations of φι, 0 2 , «•• , φn If

we ask for the minimum of (φ, Lφ)/(φ9 φ) under the condition that φ €. Vn9

we are led to the following nth order equation in λ:

(4) Ify-λα^i -O.

where α . = {φ 9 φ ) and ft.. = (φ^9 Lφ- ); and, for each root λ of (4), there is

a corresponding function φ G Vn9 not identically zero, such that

(φ9Lφ) = λ(φ9 φ).

1 This follows easily from the Parseval equation for (φ, Lφ) See also [l vol. I,
pp. 345-348] and [8, pp. 10-11].

2 See[lvol. I, pp. 351-353] or [8, pp. 12-13].
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Let the n roots of ( 4 ) be denoted by

μ. = μ( (n) with 0 < μχ < μ2 < < μn

and let the corresponding functions be fγ, / 2, , fn, where

/. = f . { P ) = f . ( P n ) ,

chosen so that (f^ {•) - δ ^ . . We then have, for k = 1, 2, , n :

(</>, Lφ)
(5) μ, = min / [ 0 G Fn, ( ψ , / . ) = 0, £ = 1, 2, . . . , k - 1 ]

and

\ ώj Ltφ ) 3

(6 ) μ̂ . = max min [ φ G Frt, ( 0 , IΛ ) = 0, i = 1, 2, , k - 1 ] .
"£ \φ> φ)

2. Reduction to least square method. It can easily be seen, by comparing

(3) and (6), that λ^ < μ ;̂ but there is no simple method as yet for estimating

the difference μ^ - λ .̂. We shall derive here an estimate for this difference

which, for its application, depends on the solution of another problem in least

square approximation.

Let us consider the problem of minimizing the quotient (Lφ, Lφ)/(φ, φ)

under the condition φ G Vn. This problem leads to the following equation in λ:

(7) lfy-λβ^l - 0 ,

where C.. = (Lψ^, Lip.). L e t the r o o t s of ( 7 ) be d e n o t e d by

Vk ~ vk^n^ W ^ k ^ ^ Vχ — V2 ~ * * * ~ Vγι *

For each k from 1 to n there is a corresponding function

gk = gk(P) = gk(P;n)CVn,

such that (gi9 g.) = δ.. and

Equations ( 5 ) and ( 6 ) follow from the extremum properties of the eigenvalues andliquations \b) and Kb) tollow trom the extremum prop

eigenvectors of quadratic forms. See [ 1, vol. I, pp. 2 6 - 2 7 ] .
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(8) {L
gk
, L

8k
) = vl .

The numbers v^ are characterized by the properties:

(Lφ, Lφ)
(9) ^ = min Ψ iφCVnΛφ.gi)* 0, i = 1, 2, . . . , k - 1 ] ,

\φ> Φ)

and

(Lφ, Lφ)
(10) v2 = maxmin / ^ [φ C FΛ, ( 0 , t;,-) = 0, i = 1, 2, . . . , A - 1 ] .

vi (φ, φ)

By the Schwarz inequality, we have

(φf Lφ)2 (Lφ, Lφ) β

(ψ, φ)2 ~ (Φ Φ) '

and, therefore, by (6) and (10), we get

(11) μk < vk, k = 1, 2, •-. , n.

Now let us consider the eigenvalue problem associated with an integral

operator over the region R. We assume that the function K(P> Q) is sufficiently

regular so as to give rise to a completely continuous operator in the Hubert

space sense, and we write the equation

(12)

We also assume that K(P, Q) is symmetric in P and Q and that

Jfκ(P,Q)φ{P)φ(Q)dPdQ > 0

for any continuous function φ which is not identically zero. The eigenvalues

of (12) are then all positive and will be denoted by { l{}, with 0 < lx < 12<

l3 . .

Let { wι \ be a complete orthonormal set of continuous functions on /?, and let

(13) An(P,Q)= Σ OiijWiiP) wj(Q),

where



ESTIMATES FOR THE ERRORS IN THE RAYLEIGH-RITZ METHOD 157

( 1 4 ) OLij

Then Λn(P, Q) is the best approximation to K(P, Q) in the L2 sense over

R x R by a sum of the given form. The integral equation

(15) y{P) = λfAn(P,Q)y(Q)dQ

will have eigenfunctions of the form Σ<i=ι βi wι, and its eigenvalues will be the

roots of the equation

(16) \δij - λ0Lij\" = 0 ,

which we shall denote by uι < u2 <_•••< un. We can now make an estimate

for the differences of corresponding eigenvalues of equations (12) and (15) by

using the minimum-maximum principle for the eigenvalues of an integral equation

with a symmetric kernel. 4

Let Zγ9 z2, , zn be the eigenfunctions of (15), assumed to be orthonormal.

Then, letting φ be a continuous function subject to the conditions

(ψ, φ) = 1, (φ9 zt) = 0 (i = 1, 2, . . . , k - 1),

we have:

Γk

ι < max Jfκ(P, Q) φ(P) φ(Q)dPdQ

< max ffAn(P, Q)φ(P) φ(Q)dPdQ + max fJ(K - An) φ(P ) φ(Q) dPdQ .

The first term on the right is u"^, and we apply the Schwarz inequality to the

second term. Hence

(17) Γk

ι < uk

ι + e,

where

= e{n)=[ff{K- An)
2dPdθ\W\

In order to connect the original differential problem with the least square

method for integral operators, we let

This estimate and the method used in its derivation are given by Aronszajn [6]
for completely continuous, positive definite operators in Hubert space.
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(19) K(P,Q)=JG{P,X)G{X,Q)dX,

so that Ik = λ^, and we assume that the functions ί φi \ used in the variational

problems are related to the functions \wι\ which are used in the least square

problem by

(20) wt = Lφi (i = 1, 2, 3, . . . ) .

Then, since

ψ.(P) =

(14) becomes

aij = (0i» Ψj) = aijf

and

Cij = (Lφi9 Lφ.) = (u>i, WJ) = δjy.

Hence, equation ( 1 6 ) becomes identical with ( 7 ) and u^ = ι^, A = 1, 2, , n.

Therefore, from ( 1 1 ) and ( 1 7 ) , we obtain

( 2 1 ) λ'2 - e < vk

2 < μk

2 < λl2 (k = 1, 2, . . . ,n).

This inequality shows that, for any fixed k,

lim vk (n ) = lim μ̂  (/ι) = λ^ .
n—> ex? n —» oo

The problem of getting an actual estimate on μ^ — λ^ or on v* — λ^ is reduced

to that of getting an estimate on β(n). There is probably no general way of

treating this problem since the regularity properties of the function K{P, Q)

and the possible choices of the sequence { wι \ depend on the special nature of

a given problem. From the practical point of view, the choice of the sequence

{ W( \ is limited by the fact that the corresponding sequence ί φ^ } must lend it-

self easily to numerical computations. In this paper we shall leave this problem

to one side and consider only how estimates can be made in terms of e(n).

3. Uniform approximations. We now take up the problem of uniform approxi-

mation of the eigenfunctions 5 There does not seem to be any simple condition

5 This problem has been studied in various cases by Courant [2, 3, and 4],
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on the sequence \ψ- } which will guarantee uniform convergence of the functions

/^(P; n) to corresponding eigenfunctions. However, on the basis of the assump-

tions already made, we can prove such convergence for the functions g,(P; n)

Stated precisely, it will be shown that the difference between g^ and some

eigenfunction corresponding to λ, is, for fixed k, of the order of magnitude

6 l / 2 , uniformly over the region /?.

The first step in the proof is to establish mean convergence. For this pur-

pose we use the analogue of (2) with (φ, Lφ) replaced by (Lφ, Lφ) and λ^ re-

placed by λj?.6 Let us assume that

= λ2 =

and consider the function

This function satisfies (C) and is orthogonal to y , y , , yu hence

(Lφ,Lφ)>λ2

κ^ (φ9 φ).

This gives

— K + l
1=1 1 = 1

h e n c e

(22)

where

- K
= l - e l f

(23)

- K
and when e(n) is sufficiently small, ex will be less than a fixed constant

times β(n).

5This minimum principle can be deduced from the Parskval equation for ( Lφ, Lφ).
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Because of the multiplicity of the eigenvalue λ l f the eigenfunctions y ,

y2 ' *•• 9 y a r e determined only to within an orthogonal transformation. We could

equally well take a set Y\, Y2, , Yκ for the first K eigenfunctions, in which

so that, from (22 ),

( 2 4 ) ( g l f y χ ) > ( 1 - e t ) 1 / 2 > 1 - β ι ,

where it is assumed that n i s so large that eι < 1.

Let us now assume that it is possible to choose the eigenfunctions yγ, y2,

in such a way that

( 2 5 ) (g.,y.) > ( 1 - e , ) l / 2 (« = 1,2, . . . , * ) ,

where βj is l e s s than a constant, depending only on ί9 times β{n); and that

e( < 1 ( £ = 1, 2, . . . , ft < w). Then

( g ^ y * ) > 1 - βf, | | g . - y | | 2 < 2 e i f

and

( 2 6 ) ( g A + 1 , y , . ) 2 - ( g A + i , y , - g , ) 2 < l | y έ - ^ l | 2 < 2 e , ( / = 1 , 2 , . . . , * ) .

L e t

λA+Jf+i»

and let

- Σ

Since φ satisfies (C) and is orthogonal to yχ, y2, , y^ + Λ /, we have
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hence

(27)
k

ί = l
Σ

ί=A;+l

From (27) we get

k+M

(28) Σ '

λ / c + Λ ί + l

where, by (26),

(29) e
λ 2

By a suitable orthogonal transformation we can carry the eigenfunctions

'" > Y/c+M > n t o a n e w s e t ^/t+i» * * » ^Ji+jiί' where

3T*+J# ^Λ

and ( 2 8 ) then becomes

We see, therefore, that, for any fixed value of k and for n sufficiently large,

the function g^iPi n) differs in the mean from some eigenfunction corresponding

to λ̂  by an amount which is less than a constant, depending only on k, times

eι/2{n). In this statement, the phrase "for n sufficiently large" is needed to
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ensure that ei < 1 and that v2 - λ? is less than a constant, depending only

on i, times e(n) for i = 1, 2, , k. The latter condition is guaranteed by

(21) if e(n) < λ^2. The actual numerical estimates are obtained from (21),

(23), and (29).

Let us now consider the uniform approximation of g^ to y^ under the assump-

tion

where ek = ek( n ) = O(e(n)). We have

, Q)Lgk{Q)dQ,

By subtraction and the Schwarz inequality, we get

(30) \gk(P)-yk(P)\< M\\Lgk- λkyk\\ = M\uk

2-2λ2

k{gk, yk)+ λ2

k\
ι/2

where

M\ v2 - 2λ f c

2(l - ek) + λ2\ι/2 = M\

M = l.u.b. \JG2(P, Q)dQ\ί/2.

Hence, for n sufficiently large, \ g^iP; n) - y^(P )\ is less than a constant,

depending only on k, times ei/2(n).

It is possible to carry through the proof of mean convergence for the func-

tions ffciP; n) by the same type of argument as is used above for the functions

g^.(P; n). The only changes necessary are to replace {Lφ, Lφ) by (φ, Lφ),

λ? by λ ,̂ v2 by μ{ , and gt by f^ The argument used for uniform convergence of

g^, however, does not go through for f^. This is an illustration of a principle

which has been discussed by Courant: namely, that in the solution of a dif-

ferential problem by variational methods, the more weight given to the higher

derivatives, the better the results in the way of uniform approximations.

There are, however, some problems in which the functions fiAP\ n) c a i * be

shown to give uniform approximations to eigenfunctions with an error that can

be estimated in terms of e(n). We shall consider a class of such problems;
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namely, those for which the Green's function G(P,Q) is bounded, say G (P,Q) <

B. This class will include, for example, the usual one-dimensional problems

and the two-dimensional problem of the normal modes of vibration of a clamped

plate.

We shall use the 0 notation here since it is obvious how explicit estimates

may be obtained from the methods used. The function f^ can be represented by

the uniformly convergent series Σ ι = i c.y , where c = (/;, y ) and where it

is assumed that c^ = 1 - 0 ( e ) . The Parseval equation gives

Letting Σ stand for Σ ι = 1 , the term with i = k being omitted, we have

from which it follows that

(31) Σ ' cj λ. = μk - λk + (1 - c*)λk = O ( e ) .

We now write

( 3 2 ) 4 - y * - Σ ' c . y . + ( c A -\)yk

and estimate the first term on the right side as follows:

λ i

by (31) and from the fact that

. y't
/—' < G(P, P) < B.

Hence \fjc " Ύ]t\
 = O( eι/2) uniformly over the region R.
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