
SOME SPECIAL EQUATIONS IN A FINITE FIELD

L. C A R L I T Z

1. The equation (1.1). Let fi (u), i = 1, , r denote polynomials with co-

efficients in the finite field GF (q), q = pn. We consider the equation

(1.1) / t (£ ι ) + + /r<£>= α (ξitaCGF(q));

let /V denote the number of solutions of (1.1).

For β CGF(q), put

e(β) = e

Then we may write

(1.2) g^Σe(- . (£.

where the summation extends over all numbers β, ζ^ of GF (q )• Now put

(1.3) S(f) = Σ
ξ

where / is any polynomial with coefficients in GF (q ). Then (1.2) becomes

T

qN = / + Σ e(-OLβ) Π S{βf.).

2. Estimate for /V. If deg / £ 2, S(/) can be evaluated explicitly. However,

we are primarily interested in the case deg / > 2. An estimate for S(f) is given

by the following:

T H E O R E M 1. If k= deg / < p, then

(2.1) S(f) =O(qι'ι/k) ( ? — > o o ) .
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Mordell [7 ] has proved (2.1) in the case n = 1, that is, q — p. However,

examination of his proof shows that (2.1) holds for all n >_ 1 provided we

have deg f < p.

If we substitute from (2.1) in (1.4) we have at once:

THEOREM 2. The number of solutions of (1.1), where deg fi = ki < p, is

given by

(2.2) N = qr'1 + 0(qΓ-w) [w = — + . . . + J - ) .

This result is trivial unless w > 1, which will evidently be satisfied for

r sufficiently large.

Hua and Vandiver [5] and Weil [9] have discussed the number of solutions
k

of (1.1) in the special case f.{x) — x ι ; their results are considerably better

than (2.2).

If g^ {u), i = 1, , r, denote a second set of polynomials with coefficients

in GF(q) and such that deg g. < k , then an estimate can be obtained for the

weighted sum

where the summation is extended over all ζ. satisfying (1.1). Indeed, we have

r

Σ (£/;(£) + *<($'

= Σ,e(-aβ) fl

in the notation of (1.3); consequently if at least one gj(x) is of degree >̂ 1,

it follows that

) + +

If all ki = 2 then an explicit formula can be obtained for Sg.

3. Some special case. Let
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(3.1) fix) = a l X

e ι +••• + akχ
e

Mordell has proved that

(3.2)

in the special case q = p. Negative values of et are permitted; however, in that

case it is assumed that in the definition of S(/), the summation is over ξ £ 0.

Clearly this does not affect the estimate (3.2). Here again we find that Mordell*s

proof applies to the general case. We state:

THEOREM 3. If the integers e; in (3.1) are incongruent (mod q - 1), then

(3.2) holds.

(We remark that Min [6, p. 139, Lemma 1] states that (2.1) is valid, with-

out mentioning the restriction k < p. However, his proof does not seem adequate.

For example, for k = p, the system

£ * { = £ y\ (/=i,...,p)

i-\ ί=ι

does not imply that the y's are a permutation of the x's.)

By means of Theorem 3 we obtain at once:

THEOREM 4. Let f (x), i~l, ••• , r, be polynomials of the type ( 3 . 1 ) ,

with k replaced by k(9 and let no two exponents in f^x) be congruent (mod

q - 1 )• Then the number of solutions of

(3.3) fι(ξι) + ... + fr(ξr) β α (ξ. £ 0)

is given by

(3.4) ," j L L|

Once again we have w > 1 for r sufficiently large.

The most interesting case of (3.1) is perhaps f(x) = (Xx + βx~ι The cor-

responding sum S(f) is the Kloosterman sum

(3.5) K ( a , β ) = Σ, e(aξ + β ξ ' 1 ) .
ξ to
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Theorem 4 now implies:

THEOREM 5. The number of solutions ξ. φ 0 of

βl βr
(3.6) aχ ξχ + — + . . . + αΓ ξr + — = α ( α α . β. £ 0)

is given by

(3.7) Z"1 +0{q3Γ/*).

Indeed if we make use of Andre' Weil's estimate [10] for (3.5)

\K{a,β)\ <2qi/2 ,

then (3.7) can be replaced by

(3.7)' <Γι +O(qr/2),

which is significant for r >_ 3.

4. Another special case. Let p > 2. Theorem 4 applies to / (x) = x2 +x~2,

and indeed (3.7) furnishes on asymptotic formula for the number of solutions of

j8i βr

(4.1) a^\ +—+... + arξ?+— = α (αα.jS,. ^ 0).

However it is of interest to note that certain exact results can be obtained. Let

Ni and N2 denote the number of solutions of (3.6) and (4.1), respectively. On

the one hand

(4.2) qNt = qr + Σ ^(-αβ) f ]

on the other hand

r

(4.3) qN2 = qΓ+ £ e(-aβ) Yl K^βa^ββ;),

where
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(4 .4) # 2 ( α , j 8 ) = £ e(aξ2 + βξ-2).

Let ψ(ζ) = + 1 or — 1 according as ζ is a square or a non-square of GF (q).

Then ( 4 . 4 ) implies

K 2 ( a , β ) = Σ , ( l + ψ ( ξ ) ) e ( a ξ + β ξ ' ι ) = K { a , β ) + L ( a , β ) ,

where

(4.5) L(a9β)= Σ

Now i t i s n o t di f f icul t t o e v a l u a t e L(a, β) e x p l i c i t l y ( c o m p a r e [ 8 , p . 1 0 2 ] ) .

We h a v e

0 ( 0 ( α / 3 ) = - l )

L(*9β) =•

G ( l ) ( e ( 2 y ) + e ( - 2 y ) ) (α j8 = y 2 ) .

As for the Gauss sum G ( l ) , we note [ 1 , § 3 ]

( 4 . 7 ) G ( α ) = Σ ^ ( α ^ 2 ) = ψ(a)G(l) ( α ̂  0 ; G 2 ( l ) =
ξ

Then by ( 4 . 3 ) , ( 4 . 4 ) , and ( 4 . 5 ) ,

r

(4.8) qN2 = / + ^ e(-Clj8)Π (^(β^Pββi)

Comparison of (4.2) and (4.8) leads at once to:

THEOREM 6. // ψ( di βt) = - 1, i = 1, , r, then the number of solutions

of (4.1) is equal to the number of solutions of (3.6).

5. Quadratic forms. In the remainder of the paper we shall be concerned with

a quadratic form

r

(5.1) Q ( u i 9 . . . , u r ) = 2 1 a i j u i u j ((Xij C G F ( q ) 9 3 ^ \ C L i j \ ^ 0 ) .

hi-*

We recall that the number of solutions NQ (Cί) of
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, ξr) =α

is given [

(5.3)

for r = 2s

4, pp.

q2s-

q2s-

47-48]

1

 + (qS

1 - 9 s " 1

by

- 9 s " 1 ) (α = 0)

( α , ί 0)

(5.4) q2s +qsφ((-l)saS)

for r = 2s + 1, where in (5.4) it is understood that ψ(0) = 0.

Now let f(ul9 ••• , ut) denote an arbitrary polynomial with coefficients in

GF {q)9 and let NΛ d) denote the number of solutions ζ of

(5.5) 01.

Clearly the number of solutions ξi9 ζ. of

(5.6) Q(ξt, —,ξt) >f(ζt,- ,ζt)

is given by

(5.7) /V= £

We shall now show that the right member of (5.7) can be evaluated in certain

cases.

In the first place let / = u . Then (5.7) becomes

Now apply (5.3) and we get, for r- 2s,

N = {q2s-' + (qs

which is simply

(5.8) N

8)) + (q ~ 8)),
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Similarly, application of (5.4) in the case r = 2s + 1 yields

(5.9) N

2 s + ι

q2s+ι + q*(q-l)ψ((-l)*δ)

This proves:

THEOREM 7. The number of solutions of

is furnished by (5.8) and (5 9).

A slight generalization of Theorem 7 is contained in:

THEOREM 8. The number of solutions of

is given by

N = {(qs - q* ι) q* - q

for r = 2s

N =

(A; odd)

( k even ) .

ql+2s +

((kl9 . . . , kt) odd)

({kχ9 .-• , kt) even)

for r = 2s + 1.

In the next place let /denote a polynomial such that f(ζ2j ••• > ̂ ) never

vanishes. Then since for r = 2s, α ^ 0, /Vρ( α) is independent of α, we see

that the number of solutions of (5.6) is given by

(5.10) Λ / = ?

t | ? a s - ι - g s - a ^ ( ( - D β δ ) l

for r = 2s. On the other hand, for r = 2s + 1 we get

(5.11) N = q

t + 3 s + q s ψ ( ( - I ) s δ ) Σ φ{f(ζ., , ζ t ) ) '
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We state:

THEOREM 9. Let f be a polynomial such that /(ζ , , ζ ) never vanishes.

Then the number of solutions o/(5.6) is furnished by (5.10) and (5.11).

Note that the right member of (5.10) is independent of the polynomial /. It

follows from (5.11) that the number of solutions of

is the same for all values of m. Other special cases that lead to simple explicit

results are contained in the following two theorems:

THEOREM 10. Let f be a polynomial such that f(ζ , ••• , ζt) never van-

ishes. Then the number of solutions of

is given by

THEOREM 11. Let f be a polynomial such that f(ζ 9

ishes. Then the number of solutions ξ., 77, ζ of

, ζt) never van-

(k > 1)

is q for τ=2s, while for r = 2s + 1 the number of solutions is given by

(5.12)

,ί+2s (kodd)

In particular if / i s the square of a polynomial then the second of (5.12) re-

duces to

It is clear how Theorem 11 can be generalized to give the number of solu-

tions of
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Q ( ζ19 " » ζr ) = η t * * * η^ fiζ^ 9 ζt )

A word may be added about a generalization of a different kind. Let Qι de-

note quadratic forms in r; indeterminates and of discriminant δ; Φ 0. Then we

can treat such equations as

(5.13) Ci (£i» ••• ' £• ) ( ?2 ( / /i ' "•• 'Vr ) = α

For example, the number of solutions of (5.13) for 0C Φ- 0 is evidently

(5.14) Σ NQι(β)NQ2{ΰi/β),

which can be evaluated by means of (5.3) and (5.4). In particular if rχ and

r2 are both even, then (5.14) becomes

/ Ί \ / 2 S I - I S i - i < / / η \ S l o \ \ ί 2 S o " I S 9 - I / / / i \ S 2 5> \ \

\Cj — 1 ) \Q ~~ Q ψ \\— L ) θι )) \C[ — q ψ \\ — L ) c)2 / / ,

where rf = 2s£ In similar fashion we can determine the number of solutions of,

say,

where no two Q's have any unknowns in common.

6. Bounds (ί = l ) . Returning to (5.11) and (5.12), we remark that since

an exact formula for such sums as

(6.1) Σ

is usually not available, it is natural to look for a bound. We shall consider

only the case t - 1. Then for the sum

π/) = ΣfU),
ζ

it f o l l o w s from a t h e o r e m of Weil [ l O ] t h a t

(6.2) T(f) - O(qι/2);

by more elementary methods one can prove the weaker estimate [3 ]
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T(f) = Oίg 1 "®*) (&

where Θ3 = 1/4, ®k = 3/2(& + 4) for A; > 4.

Thus applying (6.2) or (6.3) we obtain asymptotic results for (5.11) and

(5.12) with ί = 1.

7. Extension of results of § 5. The results of § 5 can be extended by making

use of known results on the number of solutions of

(7.1) Q(ϋιt . . . , ί/r) = α

in polynomials ί/j C GF[q, x] of degree < m; Q has its usual meaning. For

simplicity we limit our attention to the case r = 2 s . Cohen [2, p. 556, Cor. 3]

has proved that the number of solutions of (7.1) with r -2s is

(7.2)
- K) q^ml){2mmi) ( C C ^ O )

kmqms + {qs _χ)q(s-l)(2m-ι)

where λ=ψ{(-l)sδ). Then we have:

T H E O R E M 12. The number of solutions of

(7.3) W P ...,«,,) φ

in polynomials Ό^ of degree < m is

I m-i
χmqms + (qs _ λ ) g(s-i)(2m-l) £

2 = 0

w Λere λ = ψ((-l)s8).

The proof is like that of Theorem 7.

THEOREM 13. Let f be a polynomial such that fiζ^ ? ζt) never van-

ishes. Then the number of solutions of
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in polynomials U^ of degree < m and ζ. £ GF{q) is

THEOREM 14. Let f be a polynomial such that f{ζ., ••• ? ζt) never van-

ishes. Then the number of solutions of

Q(Vlt...,U2s)= η^—ηϊ'f Us '">£„) (*, > 1 ) ,

with deg ϋι < m, is qw times the number of solutions of (7.3).

The proof of these theorems is immediate.

Finally we mention problems like (5.13) and (5.15) in which the unknowns

are polynomials. Thus for example the number of solutions of

with deg C/j < m;, deg V2 < m2, where / never vanishes, is equal to

where λ; = φ ( ( - 1 ) ι δj ), and δj is the discriminant of Qι.

It may also be mentioned that in a problem like (7.3) we may restrict some

of the Vι to be primary of degree m; the final formula is similar to that obtained

in Theorem 12. The same remark applies to the other theorems of this section.
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