
LIPSCHITZ FUNCTIONS OF CONTINUOUS FUNCTIONS

IMANUEL MARX AND G E O R G E P I R A N I A N

1. Introduction. The present paper was suggested by a note of W. S. Loud

[2] in which the following theorem on functions of a real variable is proved,

THEOREM 1. // CX is a constant ( 0 < α < 1) , there exist a continuous

function f{t) and a pair of positive constants Kγ and K2 such that

\f(t + h)-f(t)\ <K, \h\a

for all t and all h9 and such that

\f(t + h ) f ( t ) \
hm sup > A 2

A - o \h\a

for all t.

It is natural to examine the possibility of a variable exponent d(t) and to

consider various definitions that associate with every continuous function f{t)

a " L i p s c h i t z function" C ( ( ί ; / ) For a reasonable choice of the definition,

Loud's result implies that every constant α ( 0 <(X < l ) i s the Lipschitz func-

tion of some continuous function. The following sect ions offer two different

definitions of Lipschitz functions, and deal with the problem of characterizing

the functions that are Lipschitz functions of continuous functions,

2 . T h e p o i n t L i p s c h i t z f u n c t i o n o f a f u n c t i o n . L e t f{t) b e a c o n t i n u o u s ,

real-valued function of ί Consider the quantity

Q{a, to; f) = lim sup
h-,o \h\a

If Q((X, tQ; f) is finite for (X = α', it is zero for all a less than α'; if Q is

greater than zero for CX = CX', it has the value + oc for all CX greater than Cί'.

Let &{t0; f) denote the least upper bound of all (X for which Q ( α, to; f) is
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f i n i t e . T h e n ait; f) s h a l l b e c a l l e d t h e point Lipschitz function o f fit). A

simple computation shows that

( 1 ) « ( , ; / ) - l ΰ n i n f
Λ-»o l o g I A I

where the fraction on the right is to be interpreted as having the value + oo

whenever / ( t + h ) = / ( t ) .

T H E O R E M 2. If fit) is continuous ( - o o < t < oo), then ait; f) is the in-

ferior limit of a sequence of continuous functions of t; if (X ( ί ; / ) > 1 throughout

soriie open interval of the t-axis9 then C ί ( ί ; / ) = oo throughout the interval.

Let L it, h; f) denote the fraction in the right member of (1), let e denote a

constant (0 < e < 1/2), and let

( 2 ) a At; f) = min [ 1/e , min L ( ί , h f)].
e < \h\ < 2β

Then Cί£(ί; / ) is a continuous function of £, because of the restriction on h and

the truncation of L ( ί , h; f) imposed in the right member of ( 2 ) . If e is assigned

the success ive values 1/4, 1/8, 1/16, , the first part of Theorem 2 follows

from the formula ( 2 ) .

For the second part of the theorem, consider an open interval / on the ί-axis

throughout which Cί(ί; /) > 1. Because / ' ( ί ) = 0 throughout /, fit) is constant

in /, and the proof of the theorem is complete.

THEOREM 3. Let \ dnit)\ be a sequence of continuous functions (0 <

α Λ ( ί ) < 1), and let

ait) = l i m i n f a n i t ) .

Ί h e n there exists a continuous function fit) such that O t ( ί ; / ) = C X ( ί )

The theorem will be proved by a construction analogous to that used by

Loud in his proof of Theorem 1. Let g(ί, s) be the continuous function which

takes the value 0 when t is an even multiple of s, takes the value 1 when t is

an odd multiple of s, and is linear between consecutive multiples of 5. Let

a be a constant between 0 and 1, and let A > [ 2 ( 1 - α ) ] " 1 be an integer.

Loud proved that the series
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(3) Σ 2'2Aan * U 2'2An),
n-l

converges to a function f(t) which has the properties promised in Theorem 1.

Roughly, the principal intuitive idea behind Loud's proof is that for every pair

of values t and h at most one or two terms of the ser ies ( 3 ) make a significant

contribution to the difference f{t + h) — f(t); the contribution is always small

enough so that the first inequality in Theorem 1 is satisfied; and for every t

there exist arbitrarily small values of h for which the contribution is so large

that the second inequality in Theorem 1 is satisfied. The following three sec-

tions will be devoted to elaborations of Loud's method that lead to a proof of

Theorem 3, We first summarize our construction of a continuous function f(t)

whose Lipschitz function d{t) is the inferior limit of a given sequence of con-

tinuous functions dn(t). The construction is then described in full detail in

the following two sect ions .

The function f{t) will be written as an infinite ser ies

fU)
m =1

with Gm depending on the function Cim(t) alone. For every m, we divide the

ί-axis into intervals / over each of which the function Cίm(O lies within fixed

bounds to be specified. The function Gm{t) is defined separately in each in-

terval. Over a fixed interval /, the graph Γm of the function Gm(t) consists of

rows of saw-teeth completely filling /. There is a row of relatively high and

wide teeth in the central portion of the interval, flanked by two rows of some-

what lower and much narrower teeth, which are in turn flanked by two rows of

still lower and narrower teeth, and so on. All the teeth of the central row have

equal height and equal width, all the teeth of the two flanking rows have equal

height and equal width, and so on. Toward the end-points of the interval /, the

heights and the widths of the teeth of Γ m approach zero. The function Gm (t) is

continuous for all ί, is differentiable except at a countable number of points,

and is not constant in any interval. The heights and the widths of the saw-teeth

are so chosen that

) = a(t)

for the function
oo



4 5 0 IMANUEL MARX AND GEORGE PIRANIAN

Details of the proof follow.

3. Classes of intervals. For each m9 we denote by lm a class of intervals

to be constructed, with Im depending on Ilf I2i ••• > ̂ m-i a s well as on the

functional values of dm(t). The class / t consists of finitely many or infinitely

many disjoint, open intervals that meet the following three requirements: each

point of the ί-axis lies in the closure of one of the intervals; no point of the

ί-axis is a limit point of end-points of intervals of the class I^ and throughout

each of the intervals one of the conditions

0 < at(t) < 3/4,

1/4 < α ! ( ί ) < 1

is satisfied.

When the classes Ii9 I2, * Im-ι °f intervals have been defined, we choose

the intervals of the class Im subject to the following four requirements: each

point of the ί-axis lies in the closure of one of the intervals of the class; no

point of the ί-axis is a limit point of end-points of intervals of the class

throughout each interval of the class, one of the conditions

0 < α m ( t ) < 3/2 m + 1 ,

l / 2 m + 1 < am(t) < 5/2 m + 1 ,

(4) 3/2 m + 1 < α m ( ί ) < 7/2m + 1 ,

α m ( t ) < 1

is satisfied; and no end-point of an interval of the class Im is an end-point of

an interval of a previously defined class.

4. The saw-tooth functions. The function /(<) to be constructed will be of

the form

( 5 ) f i t ) = Σ. G m ( t ) = Σ, « „ ( * > '
m-l n=\

where
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The indices n = 1, 3, 6, 10, , are said to belong to m = 1, the indices n = 2,

5, 9, , are said to belong to m - 2, and so on. The graphs of the functions

Gm(t) and gn(t) will be denoted by Γ m and γ , respectively.

We summarize the construction of the functions g ( ί ) . Corresponding to the

function Gm we have se lected a c lass Im of intervals, and throughout each in-

terval / of the c lass Im the function dm(t) sat is f ies one of 2 m inequalities

specified in § 3 . We choose a c lass of exponents c in accordance with these

inequalit ies, so that c is fixed throughout each interval /, and a decreasing

sequence \sn\ of positive numbers, where sn depends only on s l9 s2> ••• » sn-ι

and on the value of m to which the index n belongs. The function gn(t) is

continuous, with a graph γ consist ing alternately of rows of equally high and

equally wide saw-teeth and of segments of the ί-axis. There are at most two

subintervals of each interval / of the c lass Im where gn(t) differs from zero,

and in these subintervals it has the form

( 6 ) g n ( t ) = SZ g(t, Sn),

with the exponent c corresponding to the interval /. (The function g(t9 s) was

defined in § 2 , immediately after the statement of Theorem 3.) The terms gn(t)

of the series for Gm(t) are so chosen that every point interior to an interval

of the c lass Im l ies on the base of a tooth of the graph Γ m of Gm (t). It remains

to describe the choice of the exponents c in ( 6 ) , to se lect the sequence U n l ,

and to determine the position of the teeth in γn.

Let gn (t) be a term of Gm ( ί ) , and let / be an interval of the c lass Im. The

graph γ of g (t) shall contain rows of equal saw-teeth over at most two sub-

intervals of /, and the exponent c in ( 6 ) determining the height of the teeth

shall have the value l/2™ + ι , $/2m + ι , , or 1 - 1 / 2 W + 1 , according as the

function Cίm{t) satisf ies in / the first, second, ••• , or last of the conditions

( 4 ) . It follows that the height s^ of a tooth in γn has one of finitely many values

and depends only on the range of values taken by CXm(ί) in the interval / where
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the tooth appears, while the width 2sn is the same for all teeth appearing any-

where in y . It also follows that the derivative g^(O exists (except at denumer-

ably many points ), and takes only finitely many values.

The number s t can be chosen arbitrarily, subject to the condition 0 < sι < 1.

Once the numbers slf s2> ••• * sn-ι a r e determined, sn is chosen subject to the

following three conditions:

1) We require that sn.ι be an even multiple of sn .

2) We require that the inequality

-m-l sn-ί

s2 <
10

be satisfied, where m refers to the function Gm(t) of which g ( ί ) is a term.

If this requirement is met, the height of each tooth in γn is no greater than 1/20

the base width of any tooth in yΓ (r = 1, 2, , n — 1), and every tooth in

yn_ i is more than 10 times as high as every tooth in γn It follows that the

series Σ ^ = 1 \gn(t)\ converges uniformly on the interval (-oo, oo).

3) We require finally that the slopes of the sides of the lowest teeth in γn

be in absolute value greater than 10 times the sum of the greatest slopes that

can possibly occur in γ (r = 1, 2 , , n — 1). Because the side of a tooth of

height sc and width 2s has a slope numerically equal to \/s ι"c, this require-

ment is met provided sn is chosen small enough.

We turn now to the disposition of the teeth in γn Let / be any interval of the

class /1 # Then y shall have as many teeth in / as possible, subject to the

restriction that the distance from either end of / to any tooth of the graph shall

be greater than twice the height of the tooth.

Again, if / is an interval of the class Il9 and if γι has no teeth in /, then

y shall have as many teeth in / as possible, subject again to the restriction

mentioned above. If γ has beeth in /, then y shall have, in /, two rows of

teeth flanking the row of teeth of γ^ again, the distance from either end of /

to any tooth in y3 shall be greater than twice the height of the tooth.

Next, if / is an interval of the class I i9 then y6 shall have teeth in the mid-

dle portion of / provided that y3 has no teeth in / and / is sufficiently long. If

y has teeth in /, then γ shall have two rows of teeth: each of these rows shall

be adjacent to a previously constructed row, and shall extend as near as pos-

sible to the nearer end of /, subject to the condition that the remaining distance

be greater than twice the height of the teeth.
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The construction of γn {n = 10, 15, 21, ••• ) proceeds according to the pat-

tern that has been described. The construction of y (n = 2, 5, 9, ) is similar

to the previous construction, with these modifications: the construction is car-

ried out with reference to intervals of the class 72, and with reference to the

values of the function CX2(O; and the distance from each tooth to the end of

the interval of the class I2 in which it stands is required to be 2 2 times the

height of the tooth ( 2 m times the height of the tooth in the construction of teeth

belonging to the graph Γ m ). The construction of Γm is entirely independent of

the construction of Γ, (k φ m) Further details are superfluous, and we must

only prove that the function defined by (6) has the required properties.

5. Arithmetical estimates. First we show that if ί0 is a fixed point, α 0 =

α ( ί 0 ) , and e > 0, then

(7) lim sup

A-o \h o + e

In other words, the point Lipschitz function of f(t) has at ί0 a value not greater

than Cί o.

Let m be any integer such that t0 is interior to an interval of the c lass Im

(at most one positive integer m fails to satisfy this requirement); then there

exists an integer n such that gn(t) is a term in the series defining Gm (t) and

such that t0 l ies on the base of a tooth of the graph γn of gn ( ί )• Therefore

g {t) is linear in a sufficiently small interval with t0 as end-point; that is,

there exists a number h, with

( 8 ) — sn < I h I < sn ,

such that the function gn(t) is linear in the interval joining the points t = t0 and

t = t0 + h. For this number h we have further

| G m ( ί 0 + A ) - G m ( ί 0 ) | = | s π ( i o + λ ) - g n ( t o ) l = I M C 1

where

(9) c < α 0 + Tm + Tm-1.

For all teeth that cover the segment joining t0 and t0 + h and belong to

graphs y with r < n, the requirement 3) on { sn \ implies that
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r < n

and therefore that

r<n

For the functions gr with r > n, the requirement 2) on \sn \ gives

Σ \sΓ

(-to + h)-gr(to)\ < sn (1/10 + 1/100+. . ) < s B / 5 .

From (8) and from the estimates obtained thus far it follows that

u r o + e ur ° + e

By (9) , the exponent in the last member is less than - 6 / 2 if m is large enough,

and therefore the relation (7) is established.

Secondly we must prove that, for every e > 0,

| / U o + ) / ( o ) l
(10) lim sup = 0.

Λ-o \h\ao'e

We choose an integer m0 such that 2"m + 2~m~ι < 6 for all m > m 0, and a posi-

tive quantity h0 such that the interval

to — h0 < t < t0 + h0

contains no end-point of an interval of any of the classes Iu / 2 , ••• , or ImQ>

except possibly the point t0 itself. Without restricting the generality of the

proof, we suppose that \h\ < Λo.

To establish (10), we make separate estimates of the variation of Gm(t)
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for the following three cases: the point t0 is an end-point of an interval of the

class Im; t0 is not an end-point, and m < mo; or t0 is not an end-point, and

ΊTl > P 2 Q .

If t0 is an end-point of an interval of the class Im, then the disposition of the

saw-teeth ensures that

( I D \ G m ( t 0 + h ) - G m ( ί 0 ) | < \ h \ / 2 m .

For each m < m0 for which ί0 is not an end-point of an interval of the class

/m, the quantity Gm(t0 + h) — Gm{t0) can be written as the sum of finitely

many terms of the form gn(t0 + h) - gn(t0); the set of indices n that occur in

this sum depends only on hθ9 not on h Since the corresponding derivatives

g^(t) are bounded, it follows that, for every (X < 1,

^ \Gm(to + h)-Gm(to)\

lim V = °
h-*0 m <m0 \n\

For m > mQ and | h \ < h0, two possibilities arise, for each index m: either

t0 and t0 + h both lie in the same interval of the class / m , or they do not lie in

the same interval. In the latter case, the inequality (11) holds, and it is there-

fore sufficient to discuss the former case.

Let k be the least integer such that s^ < \ h \ and such that the term g^it)

occurs in the series defining a function Gm(t) with m > m0. The choice of the

exponents in the definition (6) of gn(t), and the requirement 2 ) on the sequence

ί sn 1, imply the inequality

r > k

2sc

k < 2

and the quantity c is greater than CX0 - e because of our choice of m 0 . Finally

we estimate the contribution from those terms gr(t), occurring in the ser ies that

define functions Gm(t) with m > mθ9 for which sr > \h\ while t0 and t0 + h

lie in the same interval of the c lass Im» Let p be the greatest value of the index

r for such terms. We find

h)-gp(t0)\ < \h\sc

p

 ι < \h\c \sp/h \c-1

and the sum of the remaining terms of the same category is less than half of the

last member. The inequality (10) is established, and the proof of Theorem 3 is



4 5 6 IMANUEL MARX AND GEORGE PIRANIAN

complete.

We observe that Theorem 3 no longer holds if the restriction 0 < an{t) < 1

is removed. For if f (t) is a continuous function, the set of points where

α ( ί ; /) < 1 cannot have isolated points. The complete characterization of the

functions that are point Lipschitz functions of continuous functions appears to

be difficult.

6 . T h e l o c a l L i p s c h i t z f u n c t i o n o f a f u n c t i o n . L e t f(t) b e a c o n t i n u o u s ,

real-valued function of t, and let h be a variable taking positive values. Denote

by B{t0, h; f) the least upper bound of all numbers β for which the quantity

{t"-t')β

remains bounded as long as the variables ί' and t" satisfy the restriction

t0 ~- h < t' < t" < tQ + h. For each value t09 B(t0, h; f) is a nonincreasing

function of h. The quantity

(12) β(t) = β(t f) = lim B(t, h; f)

s h a l l b e c a l l e d t h e local Lipschitz function o f f(t).

It follows at once from the definition that

β(t;f)<a(t;f),

for every continuous function f(t). That equality does not always occur is seen

from the following example. Consider the function

/ ( * ) = * sin 1/ί (t £ 0 ) , / ( 0 ) = 0.

In every closed interval that does not contain t = 0, f(t) has a bounded deriva-

tive, so that α (ί; /) > 1 for t £ 0. Since α ( 0 ; /) = 1, it follows that the point

Lipschitz function of f{t) is everywhere equal to 1 [except at the zeros of

/ ' ( O , where α ( ί ; / ) = 2 ] . On the other hand, the local Lipschitz function

β(t f) has the value 1 everywhere except at t - 0, and /3 (0; /) = 1/2 (for

details, see [ l ] ) . It follows that equations (1) and (12) do not define equi-

valent Lipschitz functions.

7. Characterization theorems. The following two theorems provide a char-

acterization of bounded local Lipschitz functions of continuous functions.
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THEOREM 4. If f(t) is continuous (-oo < t < oo), then

i ) β(t; f) is lower semi-continuous;

i i ) for each point t, either 0 < β{t; f) < 1, or β(t; f) = oo;

i i i ) the set of points t where β(t; f) ^ oc is a perfect set.

S u p p o s e t h a t β{t) = β{t; f) i s t h e l o c a l L i p s c h i t z funct ion of a c o n t i n u o u s

funct ion f(t). If β(t0) > 1, t h e p o i n t t0 i s i n t e r i o r t o an i n t e r v a l in w h i c h f{t)

s a t i s f i e s a L i p s c h i t z c o n d i t i o n wi th a n e x p o n e n t g r e a t e r t h a n 1. T h e n f(t) i s

c o n s t a n t in an i n t e r v a l a b o u t t 0 , s o t h a t β{t0; f) = oo. P a r t i i ) of the t h e o r e m

i s p r o v e d .

T h e s e t of p o i n t s w h e r e 0 < β(t; f) < 1 c a n n o t h a v e i s o l a t e d p o i n t s , and

the s e t of p o i n t s w h e r e β(t; f) = oo is o p e n . T h e r e f o r e p a r t i i i ) of t h e t h e o r e m

i s p r o v e d , a s w e l l a s p a r t i ) for t h o s e p o i n t s t w h e r e β i s i n f i n i t e . F i n a l l y , if

β{t0) < 1, for every e > 0 t h e r e e x i s t s an i n t e r v a l | t — t0 \ < δ in w h i c h

β(t) > β(t0)- e.

It follows that

β ( t 0 ) < l i m i n f β ( t )
t->t0

for all t0, and the proof of the theorem is complete.

T H E O R E M 5 . Let β(t) ( 0 < β(t) < 1 ) be a lower semi-continuous func-

tion. Then there exists a strictly increasing continuous function F (t) such that

β(t; F) = β ( t ) .

Let ! Ir} denote a sequence of closed intervals on the ί-axis with the fol-

lowing property: for each point t0 and for every £ > 0, there exis ts an interval

Ir of length less than e, covering ί0. In each interval Iτ we se lect a point tr at

which β(t) assumes its minimum value in the interval. The function F(t) will

be chosen as an infinite ser ies

If the p o i n t tr c o i n c i d e s wi th one of the p o i n t s tl9 t2> > tr-1> w e c h o o s e
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frit) = 0; otherwise we choose fr(t) as a strictly increasing function of t whose

local Lipschitz function has the value βitΓ) for t — tτ and the value 1 every-

where else.

The term fr(t) is constructed from the function

/(*; y) = S g n

y ^

This function is strictly increasing; for

f'(t γ)- , I f . | y , ' ,

when t φ. 0, and the function is continuous at t = 0. Furthermore, the local

Lipschitz function of fit; γ) has the value γ at £ = 0, since

( 1 3 ) l / ( « " ; y ) - / U ' ; y ) | <2\t" -t'V

for all dist inct ί ' a n d ί"; and it has the value 1 everywhere e l se , since / ' ( t ; γ)

is continuous for | ί | > O In order to adapt fit; γ) to our needs we require a

sequence { pr\ of positive numbers, chosen as follows. We se t p = 1. If tτ coin-

cides with tl9 t29 ••• 9 or ί/ -i> the function frit) is identically zero, and no

number pr is needed. If all the quantities \ t r - t ί \ , \tr-t2\ > •••> U r - ^ r - i l

(r > 1) exceed 1, we set pr = 1; otherwise we set pr equal to the leas t of these

quantit ies .

The nonzero terms frit) of the function Fit) are given by the formula

( 1 4 ) fit) = Tτ

 Pr f — j 8 ( ί r ) | .

K /
We prove first that

(15) βitQ; F) <βit0),

for each point ί0. For every h > 0, the interval

t0 - h < t < t0 + h

has a subinterval lτ which contains the point ί0. Since

β(tr) <β(t0),
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and since the function F (t) does not satisfy in Ir a Lipschitz condition with an

exponent greater than β(tr), the relation ( 1 5 ) is establ ished.

Secondly, we show that

(16) β(t0; F) >β(to)-e

for e a c h p o i n t ί 0 a n d e v e r y € > 0 . B e c a u s e β ( t ) i s l o w e r s e m i - c o n t i n u o u s ,

β ( t ) > β ( t 0 ) - e

i n s o m e i n t e r v a l 1 1 — t0 | < δ . W e c h o o s e a p a i r o f i n t e g e r s r ι a n d r 2 ( r 2 > r t )

s u c h t h a t

t0- 8 < trχ < t0 < tr2 < tQ + 8,

and denote by / the closed interval (ίΓ , tr2) ^ e make separate estimates for

those terms fΓ(t) for which tr lies in /, for those terms with r > r2 for which

tτ is exterior to /, and for those terms with r < r2 for which tr is exterior to /.

By (13) and (14), the inequality

| / r ( ί " ) - / r ( ί ' ) | < 2 U r \t"-t'\βUr)

holds for all distinct t' and t". This inequality implies that the sum of all

terms fr(t) for which tΓ lies in / satisfies throughout / a Lipschitz condition

with exponent β (t0) - 6. If r > r 2 and if tΓ does not lie in /, then / r '(O < 2 r - 1

in /, so that the sum of all terms fr{t) corresponding to such values of r has a

bounded derivative in /, that is, satisfies throughout / a Lipschitz condition

with exponent 1. Finally, let / ' b e a subinterval of / containing t0 and suf-

ficiently small to exclude all points tr for which r < r 2, except those coin-

ciding with ί0. The sum of the corresponding terms fr(t) also has a bounded

derivative in /'. The inequality (16) is established, and the proof of Theorem 5

is complete.
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