
REMARK ON THE PRECEDING PAPER OF CHARLES LOEWNER

G. SZEGO

1. Introduction. In the preceding paper, Charles Loewner constructed certain

Jordan curves with the property that the clamped plates bounded by such Jordan

curves have an oscillating Green's function. The question concerning the sign

of the Green's function has been raised by J. Hadamard, and this problem has

been pursued recently by R. J. Duffin and P. R. Garabedian. The construction

of Loewner is based on a method due to N. Muskhelichvili using appropriate

conformal mappings. x

The purpose of the present note is to construct such Jordan curves in an

elementary manner. For the sake of completeness we repeat a few definitions to

be found in the preceding paper.

A function of u(x, y) defined in a domain g and having therein continuous

partial derivatives of the fourth order is called a biharmonic function in g if it

satisfies the biharmonic equation

d4u d4u d4u
(1) V 4 u = V2 V2 u = + 2 + = 0.

dx4 dχ2dy2 dy4

Let g be a connected domain bounded by a finite number of analytic arcs.

Let q be a fixed point in g. The Green's function Γ ( p ) = Γ ( p ; q) of g with re-

spect to q is a function of the variable point p = p{x9 y) satisfying the follow-

ing conditions:

( a ) Γ is a biharmonic function of p except at the singular point q. Denoting

by r the distance of p from q, we have

(2) Γ = r2 logr + fc,

where k(p) = k(x, y) is biharmonic in g without exception.

(b) On the boundary of g we have the conditions:

1 See the References given in the paper of Loewner.
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dΓ
(3) Γ = — = 0.

dn

A function u(x9 y) biharmonic in the neighborhood of x=09 y - 0 can be

written in the form:

(4) u(χ, y) = U 2 + y 2 ) uχ(χ, y) + u2(χ, y ) ,

where ux and u2 are harmonic functions in the neighborhood of x = y = 0.

The previous concepts can be extended to infinite domains by using an ana-

logue of Thomson's transformation. As is obvious from the representation (4),

we have:

Let u{x9 y) ~ u(r, φ) be harmonic in the neighborhood of the origin r = 0

(r, φ are polar coordinates). We apply the inversion

x = x\x'2 + y'2)-\ y = y\x'2 + y ' 2 Y \

(5) r-(r')-1 - '

The function

(6) V(x',y') = ( r ' ) 2 u(x9 y)

will be then a biharmonic function in the neighborhood of x' = oo, y ' = oo.

A function biharmonic in the neighborhood of the origin can be presented as

a linear combination of the basic biharmonic functions

rn cos nφ9 rn sin nφ9

(7)
rn+2 cos nφ, rn 2 sin nφ9 n = 0, 1, 2, ,

to which r2 log r has to be added if the function is singular at the origin (as for

instance is the case for the Green's function with respect to the origin).

A function biharmonic in the neighborhood of x - oo, y — oo, can be repre-

sented as a linear combination of the basic biharmonic functions

r~n cos nφ9 r~n sin nφ9

( 8)
r2~n cos nφ9 r2~n sin nφ9 n = 0, 1, 2, ,

to which log r has to be added if the function is singular at infinity.

By use of the inversion (5) , (6) there is no difficulty in defining the Green's

function of an infinite domain with singular point at infinity provided that this

point is, an interior point of the domain.
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2. Results. In order to prepare the construction announced above, we con-

sider the infinite plane, which we interpret as the complex z-plane, z = x 4- iy -

re ι *, cut along the following circular arc of the unity circle:

(1) r = i , 7 7 - α < g 0 < 7 7 + α .

Here OL is given, 0 < Cί < π We map this infinite slit domain onto the exterior of

the unit circle of the £-plane, ζ-p e^, in such a way that z = oo and ζ- oo cor-

respond to each other. Furthermore, we assume that dz/dζ is positive at z - ζ =

oo. This mapping has the following form:

(2)
ζ-λ

Here λ is an appropriate function of (X.

First we note that the real point z — — 1 of the slit corresponds to ζ - 1 and

ζ = — 1. Now let λ = cos φ , 0 < φ < π/2; since

, x dz l

U ) - ζ ' λ -

we see that the points ζ- e ± l ^o correspond to the end-points z = —e ι a of the

slit. More precisely, elv^o corresponds to eι^rr~a' = — e~ιa. As £ = e1^ describes

the unit circle in the positive sense, z surrounds the circular slit; the arc ~φQ <

φ < φ corresponds to the inner ( concave) side of the slit, and the remaining arc

to the outer (convex) side of it. In particular, ζ-1 and ζ- - 1 are transformed

into the point z = — 1 on the concave and convex border of the slit, respectively.

Inserting ζ= eιΨo in (2), we find that

e °{cosφ0 - e ° - 1) e2t^o(cos φ0 - e * °) 2iψQ _ α

< _ # = β = — β ,

e* ° - cos φQ e ° - cos ^ Q

so that Ίφ - π - Oί; hence

(4) λ = sin ( α / 2 ) .

We denote the image of the circle | ζ\ =/?,/?> 1, by CR. This is an analytic

Jordan curve.

The principal results of this note are the following:

I. Let Γ ( p ) be the Green's function of the infinite slit domain of the z-plane
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bounded by the circular arc (1) , having at z = oo its singular point. This function

changes its sign in the slit domain just defined.

II. Let Tip) be the Green's function of the infinite domain outside of the

curve CR9 R > 1, having at z = ooits singular point. This function will change its

sign in the infinite domain outside of CR provided R is sufficiently near to 1.

From the last example it is easy to derive an example of the kind announced

in the introduction: we have to apply an inversion to the curve CR with respect

to any fixed interior point. Here we must use the results of Chapter 1.

3. Circular slit. We seek the Green's function Tip) of the circular slit do-

main in the following form:

( 1 ) Tip) = log- + Alp--) cosφ + fip, φ ) + ( r 2 - l ) g(p, φ ) .
p \ pi

Here A is a constant, and /(p, φ) and g(p, φ) are harmonic functions regular

for p > 1, including p = oo. The point p is represented by the complex number

z = reiζ^ defined in 2. The relation between z = re1® and ( = p e 1 ^ is given by

2 (2).

The boundary conditions of the clamped plate amount to the fact that the

function (1) and its derivative with respect to p vanish as p = 1. But p = 1 im-

plies that r = 1, so that we have:

(I j f(\,φ) = 0; i.e., f(p, φ) Ξ 0.

/(9(r 2 )\
(II) - 1 + 2/4 cosφ + g ( l , ώ ) = 0 .

\ d p /P=ι

Now we note the following formulas which will be useful in our later work:

λ 2 p 2 - 2λp cos φ + 1
r = p ,

p 2 - 2λp cos φ + λ2

( 2 ) . . . , , ~2λp cosφ + λ2ip2 + D

p 2 - 2λp cos φ + λ2

From the second we conclude that

( 3 ) | " v < M _ 2 [ ~ 2 λ p c o s ^ + λ 2 ( P 2

p2 - 2λp cos φ + λ 2 / 1 - 2λ cos if/ + λ
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ίience condition (II) can be written as follows:

(4) - 1 + 2Λ cosφ + • - g ( l , φ) = 0.
4 λ ( - c o s φ + λ)

- 2λ cos(/f + λ2

We determine 4 according to the condition

4 λ ( - c o s ^ + λ)
- 1 + 24 c o s ^ + = 0,

4λ2

4 = ( 2 Λ Γ 1 ,

and (4) yields

1 - 2λ cos ψ + λ2

gίhψ) =

g(p» Ά) =

4λ 2

1 + λ2 1 cos φ

4λ 2 2 λ P

Recapitulating, we find the following expression for the Green's function

Γ ( p ) :

, . „ . , , 1 1 / 1 \ . _ x / l + λ2 cosώ\
( 6 ) Γ ( p ) = log — + p cosφ + (r2 - 1 ) .

P 2 λ \ P I \ 4λ2 2 λ P /

In the limiting case (X—>π, λ —» 1, we obtain of course the Green's function

υf the exterior of the unit circle, namely,

(7) l o g - + - ( p 2 - l ) .

4. Conclusion, ( a ) The dominant term in 3 (6) is

4λ 2

so that Γ is positive as z —> oo. Now we write

1

λ

and have
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1 1 1 + λ 2 1
Γ = log λ + λ - —

2λ \λ \ 4λ2 2]

l - λ 2

= l o g λ + _ .

This quantity is certainly negative if λ is sufficiently near 1, more precisely if

λ > λ 0 where λ0 is the only root of the equation

l - λ 2

(2) logλ + = 0

4 λ 2

on the range 0 < λ < 1.

( b) We can show however that Γ must change its sign for all λ, 0 < λ < 1.

For this purpose we compute the following second derivative at the point z = — 1

on the concave side of the slit:

1 Id2(r2)\ ( l - λ ) 2

+ \ dP

From the second formula in 3 ( 2) we find

Id2(r2)\ -2λ + 2λ2

( - 2 λ + 2 λ 2 ) ( l - λ ) 2 - ( - 2 λ + 2 λ 2 ) ( 2 - 2 λ ) 4 λ ( l + 3λ)
+ 4 =

( l - λ ) 4 ( l - λ ) 2

so that, in view of 3 (3),

f 3λ 4 4λ
/ Γ \ 1

( 3 ) = 1 + ,

\ aP lp=ι,φ=o

which is indeed negative.

( c) It is interesting to compute this second derivative for all values of λ. We

obtain from 3 ( 6 ) :
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cos φ - 2 λ cos φ + 2λ
= 1 + 2

- 2 λ p cos ψ + λz(pz + 1

p 2 - 2λρ cos φ + λ2

- 2 λ cos ι/y + 2λ 2

1 - 2λ cos

4λ(λ - cos φ)

— 2λ cosι// + λ

Hence this second derivative is positive on the convex side of the circular arc,

and negative on the concave side of this arc. On the convex side Γ is positive,

and on the concave side Γ is negative, provided p is sufficiently near to the arc

in question.

5. On the Green's function of the infinite domain which is the exterior of C D .

We denote now by F ( p ) the Green's function of the infinite domain which is the

exterior of CR, having its singular point at infinity. We seek this function in the

form:

R p
Γ ( p ) = log — + A - cos φ + B

P &

+ C LZ + \z\
2 \D + E — c o s J ,

p 2 - 2λp cosψ + λ2 \ P I

where A, B, C, D, E are appropriate constants depending on R and λ; here again

the point p is represented by the complex number z = re* , and the relation be-

tween z = re1® and ζ~ pe1^ is the same as above. We show that the constants

A, , E can be determined in a unique way so that Γ satisfies the boundary

conditions of the clamped plate provided that R is sufficiently near to 1; more

precisely, there must be 0 < R - 1 < 6 = e ( λ ) .

The conditions

dΓ
( 2) Γ = = 0 for p = R

dp

are equivalent to the following:
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ι

( 3 ) Γ = = 0 for p = R,

dp

where the function Γι is defined by

Γ\ = ( p 2 - 2λp c o s ^ + λ 2 ) Γ

(4) = log —• + A — cos ψ + B) ( p 2 - 2λp COSΪ/Γ + λ 2 ) + C(P

2-λ2)

+ p 2 ( 1 - 2λp cos t/ί + λ2 p 2 ) Z) + £ — cos J .

\ /

Here we used the first formula in 3 ( 2 ) . Now ( 4 ) is a quadratic expression in

cos ψ. Conditions ( 3 ) can be replaced by the corresponding set of equations for

the coefficients of cos φ in ( 4 ) . T h e s e equations are somewhat simplified if in

( 4 ) we replace cos ψ by p " 1 cos ψ. The resulting coefficients are:

M

t(p) = (log — + B) ( p 2 + λ 2 ) + C ( p 2 - λ 2 ) + Z ) p 2 ( l + λ 2 p 2 ) ,

( 5 ) M ( p ) = 4 ( p ' + λ 2 ) - 2λ log — + B - 2 λ / ) p 2 + ER ( l + λ 2 p 2 ) ,

R \ p I
2λA

M3(P) = - — - 2λ ER.

The boundary conditions are equivalent to the following set of conditions:

( 6 ) M(R) = M'{R) = MIR) = Λί ' (Λ) = Af,(Λ) = Aί ' (Λ) = 0 .
1 1 2 2 ό ό

(b) The last of these six equations can be disregarded since M3(p) is inde-

pendent of p. The resulting five equations are linear in the five unknown quanti-

ties A, , E. They are as follows:

(7) B(R2 + λ2) + C(R2-λ2) + DR2 (1 + λ2 R2) = 0 ,

2RB - — (R2 + λ2) + 2CR + D(2R + Ίλ2R3) = 0 ,

L ( Λ 2 + λ 2 ) _ 2 λ β _ 2 λ D Λ 2 + ER(l + λ2R2) = 0 ,

2λ A
2A + 4λDR + 2Eλ2R2 = 0 , — + ER = 0 .

R R
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In order to show that the unknowns are uniquely determined, we have to dis-

cuss the determinant of this system. As R —> 1 the elements of this determinant

approach those of the following determinant (the second and fourth equations are

divided by 2):

( 8 )

0

0

1 + λ 2

1

1

1 + λ 2

1

- 2 λ

0

0

1 - λ 2

1

0

0

0

1 + λ 2

l + 2 λ 2

- 2 λ

- 2 λ

0

0

0

1 + λ 2

λ 2

1

Subtracting here the first column from the last we obtain:

1 + λ 2 1 - λ 2 1 + λ 2

1 1 l + 2λ 2

+ λ 2 - 2 λ 0 - 2 λ

1 0 0 0

( 1 - λ 2 )

0

0

1 + λ2

1

- 2 λ

= 2 λ 2 ( 1 - λ 2 :
1 + λ 2

- 2 λ

1 - λ 2

1

0

1 - λ 2

0

1 + λ 2

l + 2λ 2

- 2 λ

= 4 λ 3 ( l - λ 2 ) jί 0 .

6. Conclusion. From 5 ( 7 ) it is obvious that the parameters A, , E are

rational functions of R and λ. Let λ be fixed, 0 < λ < 1. Then these parameters

are rational functions of R, and the evaluation of the determinant 5 ( 8 ) shows

that they are regular in a certain neighborhood of R — 1. Incidentally, we find

from 3 ( 6) th at

( 1 ) A = -E = — , D = ~
2λ 4 λ 2

C = 0 as R = 1.

Inserting z = 0, p — 1/λ, ψ = 0 in 5 (1), we obtain an elementary function of

R which is regular at R = 1. It is a combination of log R and the rational func-

tions A, B, C of R. Now this function is negative for R = 1 (provided λ is suf-

ficiently small) . From this the same property follows for the function 5 ( 1 )

provided R i s sufficiently near to 1. This yields the desired property of the
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domain outside of the level curve CR of the conformal mapping of the circular

slit domain onto the exterior of the unit circle.

In order to prove the same property for all λ (and for sufficiently small values

of R — 1), we compute

(2) —

\ UP lp=R,ψ=o

We note that the curve CR intersects the real axis in two points; the curve is

convex at the left point and concave at the right point of the intersection, pro-

vided R ~ 1 is small enough. The second derivative ( 2 ) we consider is associ-

ated with the concave point of intersection. Now ( 2 ) has the same sign as

where Γj_ is defined as in 5 ( 4 ) . From 5 ( 4 ) we see again that (3) is a function

of R which is regular at R = 1. Since it is negative for R = 1, it must be negative

for all R > 1 sufficiently near to 1.

This establishes the assertions.
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