GENERALIZED CONVEXITY AND SURFACES
OF NEGATIVE CURVATURE

PaurL A, CLEMENT

Introduction. In a study [4] of surfaces whose Gaussian, or total, curvature
K satisfies the relation K < 0, a number of functions having geometrical sig-
nificance have been shown to be convex. In the present paper, a study of sur-
faces whose Gaussian curvature satisfies K < K,, where K, is a negative con-
stant, leads to the determination of a class of functions which are subfunctions
(defined in §$1.1) of a two-parameter family of functions determined by the
bound K. This is a natural generalization because the convexity property is
equivalent to the subfunction property with respect to the particular two-para-

meter family (nonvertical straight lines) determined by the bound K, = 0.

A main objective will be to exhibit functions which have a geometrical
significance and also have the subfunction property for surfaces with K < K.
This property then implies certain inequality relations for functions associated

with certain geometrical configurations on such surfaces.

I. SUBFUNCTIONS

1.1. Definitions. A real-valued function g(x) of a single real variable x
defined on an open interval (a, b), with ~c0 < a <x < b < + w, is said to be

a convex function of x provided g (x) satisfies the inequality
(1.11) gltxg + (1=t)x, ] < tg(x) +(1=-1t)g(x,)

for all x,, %, in (a, b) and for all ¢ on the range 0 < ¢ < 1. If g(x) is of class

C?, it is convex if and only if g*°(x) > 0 throughout the interval.

Geometrically, (1.11) indicates that no part of the graph of the curve y=g(x)

lies above the chord joining two points upon it within the interval (a, b).

A generalization of the foregoing characteristic geometric property of convex
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functions leads to the theory of subfunctions [3]. Let {A,5(x)} be a two-
parameter family of continuous functions such that for all x,, x, in (e, b) and
apfBy (%) of the family such that
hooBe(%i) =7y, (i=1,2). Then a function g(x) is said to be a subfunction of

every y,, y, there exists a unique member 4

the given family on (a, b) provided® we have
(1.12) glixy + (1= 2)x,] < ho g, [ex; + (1= 2)x,]
for all x,, %, in (a, b) and for all ¢ on the range 0 < ¢ < 1, and where
ho gy (%) = g(x;) (i=1,2).

Geometrically, (1.12) indicates that in the subinterval (x,, x,) no part of
the graph of the curve y = g(x) lies above the member of the parameter family
joining the points [x,, g(x,)] and [x,, g(x,)]. We note that if g(x) is convex,

it is a subfunction of the two-parameter family of nonvertical straight lines.

1.2. A fundamental theorem. Necessary and sufficient conditions that a
function g(x) be a subfunction of a certain type of two-parameter family have
been obtained by Shniad [ 10]. The following lemma and theorem are due to him;
proofs are included because of the fundamental use made of the theorem in

subsequent developments.

LeEMMA 1.1. If ¢ (x) is a positive continuous function of x, and ) (x) is a
strictly increasing continuous function of x, on a < x < b, then the condition
that g(x) be a subfunction of the family A¢ + B, where A and B are para-
meters of the family, is equivalent to the condition that g/¢ be a convex func-

tion of Y.

Proof. The hypotheses on ¢ and ¢/ ensure that g/¢ is a continuous function
of ). To prove the existence of a unique member of the family through any two
points (xi, yi) (i =1, 2), with the x; distinct and in the interval, it suffices
to note that

@(xy) & (%) ()
= ¢(x,) plxy) [Y(x,) — ¢ (x,)] # 0.
& (x,) ¢ (x,) ()

Let x, and x, satisfy a < x; < x, < b, and let

1A more general definition of the subfunction property is given in [5]; in [3] it is
shown that a function satisfying (1.12) necessarily is continuous on (a, b).



GENERALIZED CONVEXITY AND SURFACES OF NEGATIVE CURVATURE 335
hal’Bl (x)=A4;¢(x) + Bip(x) ) (x)
with
halﬁl(xi)=g(xi) (i=1,2).
Then the condition
hallgl(x)?_g(x) for x; < x < x,

is equivalent to the condition

g(x)
P(x)

Ay + Biy(x) > forx, <x < x,,

or that g (x)/¢(x) be a convex function of ) on the range y(a+) < ¢y < )(b-).

THEOREM 1.2.% Let ¢(x), ¥(x), and g(x) be functions having the fol-
lowing properties on an interval a < x < b:

a) the functions ¢, ¥, and g have continuous second derivatives,

b) the inequalities ¢(x) > 0 and ' (x) > 0 hold, and

c) each of the functions ¢(x) and ¢ (x))(x) is a solution of the differential
equation

b+ Ph*+ Qh = 0,

where P and Q are continuous on the interval.

Then a necessary and sufficient condition that g(x) be a subfunction of the

family A¢ + Bd i) on the given interval is that
g7+ Pg"+ g >0
on the interval.

Proof. From Lemma 1.1 it follows that g is a subfunction of the family if
and only if g/¢ is a convex function of {/. Since g/¢ has a continuous second

derivative with respect to i, the latter condition is equivalent to

2The conclusion of this theorem is obtained in a more general setting in [9]. How-
ever, the proof is immediate for the theorem as stated here, and this form is sufficient
for our purposes.
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<¢')12¢[g"+g'[_ i i % ' g[% i %’ ' 2(%)2”2 >

From the Wronskian relation we easily verify that ¢ and ¢y are linearly inde-
pendent solutions of the differential equation. Then the theorem follows from
uniqueness properties of linearly independent solutions of this type of dif-

ferential equation.
1.3. Sub-K, functions. The differential equation we are to consider is
R+ Kb = 0,

where K, is a negative constant, and the interval of definition is 0 <x < b < .

The two-parameter family of solutions of the equation is given by

(1.31) thep(x)}={ua cosh (V=Kgx) + B sinh (V=Kux)},

where 0 and 3 are the parameters. A property of this family is given in the

following lemma; we omit the proof.

LEMMA 1.3. If A: (xy, y,) and B: (x,, v, ) are two points with x, # x,,
then there is one .and only one curve of the family {hog(x)} passing through A
and B. Thus, if y; > 0 and y, > 0, the curve hal'ax(x) passing through A and
B satisfies hal'B1(x) >0 forx; <x < x,.

DEFINITION. A function g(x) will be said to be a sub-K, function of x
if it is a subfunction of the family {haﬁ(x)} of (1.31) on the interval 0 < x <
b <. Moreover, g(x) will be said to be a Ky -function if the sign of equality
of its subfunction relation (1.12) holds throughout the interval; and it will be
a strictly sub-K function if the strict inequality holds throughout for 0 <t < 1.

It is convenient to introduce a second-order differential operator © defined

by

~
O

D? + K,,

where K, is a negative constant; we may write ©, to indicate the variable for

differentiation.
REMARK. With the choices

$(x) = cosh (vV=Kox) and ¢ (x) = tanh (y=Kyx),
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the family {0t ¢+ B oy} coincides with the family (1.31), and these functions
¢ and ) satisfy the hypotheses of Theorem 1.2. Hence a function g(x) of class
C? is a sub-K, function (K -function) if and only if Gg(x) > 0 (Gg(x)=0)
on the interval.

Certain elementary properties of sub-K, functions are given in the following
theorems. The proofs are omitted as they merely involve applying the foregoing
remark to appropriate members of the family { haﬁ(x) i

THEOREM l.4. Any linear combination of sub-K, functions with nonnegative

coefficients is a sub-K, function.

THEOREM 1.5. Let f(x) be a nonnegative sub-K, function, and let k be
a constant > 1. Then [f(x)]k is a sub-K, function; in fact, [f(x)]k is a
sub-kK, function.

THEOREM 1.6. Let fi(x) (i=1,2,+++,n) be convex functions of x which
are nonnegative and monotonic nondecreasing and at least one of which is a

sub-Ko function. Then the product function f f, «+-f is a sub-Ky function.

1. SURFACES OF NEGATIVE CURVATURE

2.1. Geodesic parameters. Let an analytic surface S be represented by
geodesic parameters [7, p. 1741 (u, v), so that

(2.11) ds? = du? + p?(u, v)dv? (p>0),
and
(2.12) da = p(u, v)du dv,

where the curves v = constant are the geodesics, and the curves u = constant
are the geodesic parallels. The surface S is said to be given in geodesic repre-

sentation.

Singular points of the geodesic family are points where p = 0; other points,

where y > 0, are regular points.

The Gaussian curvature K of S exists at all regular points. If S is given in
geodesic representation, the Gaussian curvature is given [7, p.181] by the
formula
1 92
(2.13) K=ot

F 9u?
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DEFINITION. An analytic surface S will be said to be a sub-K, surface if
its Gaussian curvature is bounded from above by K,, a negative constant, at
all regular points of S. Moreover, S will be said to be a Kgy-surface if its
Gaussian curvature everywhere is Ko. If S is a sub-K surface which is not a

K,-surface, it will be said to be a strictly sub-K, surface.

2.2. Geodesic parallels. We have the following lemma.

LEMMA 2.1. If an analytic surface S is given in geodesic representation,
then a necessary and sufficient condition that S be a sub-K, surface is that the
function p(u, vo) be a sub-K, function of u for each line-segment u, <u < u,,

v=v, in the (u, v)=domain of definition.

Proof. The result follows directly from (2.13) and Lemma 1.3 by an argu-
ment analogous to that in [4, p.286]. The proof reveals that y is a strictly
sub-K, function of u if and only if S is a strictly sub-K, surface, and that p is
a K-function of u if S is a K-surface.

Let S be a sub-K, surface given in geodesic representation. Then we have

the following results.

THEOREM 2.2. Let the arcs C(u) (u; < u < u,), of length 1(u), be arcs
of geodesic parallels between geodesics v=v, and v=v, (v, <v,) on S.
Then the length [(u) is a sub-K, function of u (that is, of the geodesic length
u—uy); L(u)is a strictly sub-K, function if S is a strictly sub-K, surface, and
I(u) is a Ky-function if S is a Ky-surface.

Proof. A proof may be patterned on that of the related theorem in [4, p. 2871,
in which we substitute the appropriate member (which is of class C?) of the

family (1.31) in a subfunction inequality in place of the convexity inequality.

THEOREM 2.3. Let the arcs C(u) (u, - W <u <uy, +W), of length I(u),
be arcs of geodesic parallels between geodesics v =v, and v =v, (v, <v,) on
S, and let a(w) denote the area of the part of S enclosed by v=wv, C(u, +w),
v=v, Clu,—w) (0<w <W). Then a(w) is a sub-K, function of w; a(w)
is a strictly sub-Kg, function if S is a strictly sub-K, surface, and is a Ky-func-
tion of w if S is a Ky-surface.

Proof. The proof is similar to that in [4, p.288] when we consider sub-

function properties instead of convexity properties.

2.3. Geodesic polar coordinates. Let the analytic surface S be represented
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in geodesic polar coordinates [ 7, p.181] (u, v), that is, coordinates for which

(2.11), (2.12), and

dp
(2.31) 1 (0, v) =0, [5_]

u

are satisfied. The curve u = u, is a geodesic circle with center at the pole P

of the representation and geodesic radius u,.
We shall write r, 6 for u, v, respectively.

Hereafter we indicate functions determined by, or calculated for, a Kg-

surface by a subscript zero. Some such functions can be determined explicitly.

LEMMA 2.4. Let S, be a Ky-surface, and let 1y(r) and ay(r) denote the
circumference and area, respectively, of the geodesic circle on S, with fixed

center P and geodesic radius r. Then

(2.32) lo(r) = 2_"_ sinh (v=Kor)
V-Ko
and
(2.33) 4 (r) = = [cosh (v=Kgr) - 11.
—Ho

Moreover,

Iy (r) > 2ar (r>0 on S),
and

aplr) > ar? (r>0 on S).

Proof. Since Gyp =0, we find that the function p (r) of the family (1.31)
satisfying (2.31) is
1
VCK,

sinh (/=Kyr).

po(r) =

When we evaluate (2.11) and (2.12) for a geodesic circle using this expression
for y, we obtain the formulas of the lemma. The inequalities are easily es-

tablished; cf. [ 4, p.291-292],
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We remark that the functions [(r) and a4(r) will occur in formulas which
refer to a sub-K, surface S; in such cases, (2.32) and (2.33) provide definitions

of these functions on S.

III. SUBFUNCTIONS FOR GEODESIC CIRCLES

3.1. Definition. Some functions of geometrical significance involving the
geodesic radius have certain properties in common. We collect these properties
in the following definition.

ConpiTiON C. For a given sub-K, surface S and for a given pole P of
geodesic polar coordinates on S, a function ¢ (r) of the geodesic radius r satis-
fies Condition C provided: ¢(0)=0; for r > 0 on S, ¢(r) is a continuous,
nondecreasing sub-K, function of r; ¢(r) = 0 if S is a K,-surface, but otherwise
¢ (r) is a strictly sub-K, function.

If we let Ky =0, the K, -surface becomes a developable surface, and the
““sub-K, function of r”’ property becomes the usual ‘‘convex function of r’’
property. Thus our Condition C specializes to Condition A of [ 4, p.289] when
Ky =

It follows from the theorems of § 1.3 that sums and products of functions
which satisfy Condition C also satisfy Condition C.

3.2. The length function. Hereafter we assume that p(r, ) is of class C?,
which ensures the existence of the derivatives we write. We now consider a

geodesic circle C; on S with fixed center P and geodesic radius r.

LEMMA 3.1. Let S be an analytic sub-K, surface, and let [(r) denote the
length of the circumference of C,. Then l(r) satisfies the differential relation

(3.21) GL(r)=1"(r)+ Kol (r) > 0 (r>0 on S).

Proof. The result is immediate since G,u(r, ) > 0 for r > 0 on S. We
note that equality holds in (3.21) if and only if S is a K, -surface, that is, in
our notation, if and only if we have 5/, (r) = 0, where ,(r) is given by (2.32).

LEMMA 3.2. Let S be an analytic sub-K, surface, and let a(r) denote the

area of Cr. Then a(r) satisfies the differential relation

(3.22) a”(r)+Kpa(r)=2m=1’(r) + Kya(r) =27 > 0 (r>0 on S).

Proof. By differentiating the area function
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a(r) = /;r AZW unlp, 0)dpdo,

we get

o 27 9p
a (f)=/ —do = 1°(r).
0 or
Since a(0) =0, and [’(0) = 27 by (2.31), we have equality in (3.22) for r = 0.
The derivative of the function
1'(r)+Kpa(r)-2m

is ©l(r), which is nonnegative by Lemma 3.1; hence the left member of (3.22)
is monotonic nondecreasing, and (3.22) holds. It is readily seen that equality

holds in (3.22) if and only if S is a K -surface.

THEOREM 3.3. Let S be an analytic sub-K, surface, and let [(r) denote
the length of the circumference of Cr. Then the function

¢ (r) = 1(r) = 1 (r) (r>0 on S),
satisfies Condition C.

Proof. The functions u(r, 6) and p (r, ) associated with the surfaces S
and Sy, respectively, both satisfy (2.31), and are such that

d*u

+ Ku=0 (r>0 on S),
ar?
3*u

°+K0u0=0 (r>0 on §),
ar?

where K < K,. By Sturm’s oscillation theorems [8, Chap. X1, it follows that

ulry, 0) = p(r, 0) > 0 (r>0 on S),
and

T

FE_25 (r>0 on S5).

or ar
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Hence we find that qﬁl(O) =0, ¢~l(r) =0 on S if and only if S is a K -surface,
and

¢'(r)El'(r)-l'(r)=f”(a—#——aﬁ)dezo (r>0 on S).
! 0 o \dr or
Then calculation shows that
G¢, (r) = 6I(r),
whence
6¢ (r) > 0 (r>0o0nS),

by Lemma 3.1. Thus, by Theorem 1.2, ¢I(r) satisfies Condition C.

COROLLARY 3.4. If S is an analytic sub-K, surface, then [(r) is a mono-

tonic increasing sub-K, function of r and satisfies the inequality
L(r) > 1,(r) (r>0 0n S);
1(r) is a strictly sub-K, function if and only if S is not a K j-surface.
Proof. The inequality follows from Theorem 3.3 and the identity
L(r) = Lo(r) + ¢,(r) (r>0o0nS).

REMARK. The function ¢ (r) may be modified to form a new function in
tke following way: replace the function ly(r) (Lemma 2.4) in é,(r) by its
Maclaurin series expansion from which has been deleted any finite or infinite
number of terms. The new function so obtained is a nonnegative, monotonic
increasing, sub-K, function of r. In like manner, similar functions may be formed
from subsequent ¢ functions which involve subtractive functions [o(r) and

ao(r). We omit proofs.

3.3. The area function. On a surface where K < K, the area function a(r)

for a geodesic circle C; has properties similar to those given for [ (r).

THEOREM 3.5. Let S be an analytic sub-K, surface, and let a(r) denote
the area of C,. Then the function

¢,(r) = a(r) ~ ao(r) (r>00nS)
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satisfies Condition C.
Proof. Verification is immediate by use of Lemma 3.2 and Theorem 1.2.

COROLLARY 3.6. IfS is an analytic sub-K, surface, then a(r) is a mono-

tonic increasing sub-K, function of r and satisfies the inequality
a(r) > ap(r) (r>00n3S);
a(r) is a strictly sub-K, function if and only if S is not a Ky-surface.
Proof. The inequality follows from Theorem 3.5 and the identity
a(r) = ao(r) + ¢,(r) (r>0o0n9).

We shall find additional theorems for the functions a(r) and ¢, (r) showing
certain subfunction properties of these functions when an additional assumption
is made for the surface S. In the sequel we use the following lemma, which
shows that certain conditions which clearly imply the sub-K, function property

for a function also imply this property for its square root.

LEmMA 3.7. If g(r) is a nonnegative function for which g’”’(r) exists in
the interval o < r < B, and g(r) satisfies

(3.31) h(a) = 2g () g (@) = [g?(c)]? + 4Ko[g ()12 > 0
and
g’ (r) + 4Kog’(r) > 0 (x <1 <B),

then [g(r)1'/% is a sub-K, function in & < r < B and is a strictly sub-K, func-

tion there provided

(3.32) g’ (r) + 4Kpg’(r) > 0 (a0 <r<B)

Proof. If we let f (r) = [g(r)]'/?, then at points where f (r) # 0 we have

1
of (r) = " Lg(MT32h(r).

Moreover,

(3.33) h'(r) = 2g(g””" + 4Kog"),
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so that from the hypotheses we get
h() >0, R°(r) >0 (x <r<B),

whence A (r) > 0. Thus ©f(r) > 0 at points where f(r) # 0. And, since the non-
negative function f(r) satisfies the subfunction inequality (1.12) for points
where f(r)=0, it follows that the continuous function f(r) is a sub-K, function
for o <r < B.

With (3.31) and (3.32) the nonnegative sub-K, (and hence convex) function
g(r) can vanish at no more than one point of & < r < 3, whence, by (3.33),
we have A(r) > 0 (¢ < r € B). It follows that we have Gf(r) > 0 except for
at most one point of & < r < 3, so that f(r) is a strictly sub-K, function for
¢ < r < B. This completes the proof of the lemma.

An additional assumption on the surface S causes certain functions im-
mediately to satisfy (3.33) for r > 0 on S. Thus, if S satisfies K < 4K, for
its Gaussian curvature, then a modification of the proof of Theorem 3.3 indicates

that we have
a’” (r)+4Koa’(r)=17(r) + 4Kyl (r) > 0 (r>0o0n8),

with equality holding if and only if S is a 4K, -surface. We now determine some
functions which have certain subfunction properties in common; these properties

are collected in:

ConpITION D. For a given sub-4K, surface S and for a given pole P of
the geodesic polar coordinates on S, a function ¢ (r) of the geodesic radius
r satisfies Condition D provided: ¥/ (0) = 0; forr > 0 on S, ¢ (r) is a continuous
monotonic nondecreasing sub-K, function of r; and ¢ (r) is a strictly sub-Kj

function except possibly when S is a 4K,-surface.

THEOREM 3.8. Let S be an analytic sub-4K, surface, and let a(r) denote

the area of the geodesic circle C;. Then

Y, (r) = [a(r)]'/?

and

¥, (r) = (¢, (112 = La(r) = ag(r)]!/?

satisfy Condition D, and i (r) is a Ko-function if S is a 4K ¢-surface.
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Proof. We have

a’(r)=1(r), a”(r)=1"(r), a"(r)=1"(r);
hence, beside a(0)=0, we have
a’(0)=0, a”’(r) > 0 (r>0 on S),
with
a”(r)+4Ka’(r) > 0

for r > 0 on S unless K = 4K,. Then for r > 0 on S, a(r) satisfies the hypo-
theses on g(r) of Lemma 3.7, so that (/Jl(r) satisfies Condition D for r > 0 on
S, and is a strictly sub-K, function if S is not a 4K-surface. If S is a 4K

surface, then

/2 /
[a(r)]Y? = { { cosh (\/~4K0r)—-1}]l z( 2 )‘ ’ sinh (v -Kgr),

- 0 ]

and thus it is a K-function.

The proof for (,//Z(r) is similar in method and is omitted.

We can find other functions which satisfy Condition D. Let [,(r) and a,(r)
denote the length of circumference and area, respectively, of the geodesic
circle C; on a 4K -surface. Formulas for /,(r) and a,(r) can be written (see
Lemma 2.4), and these expressions serve to define /,(r) and a,(r) for a sur-
face S having arbitrary curvature. If S is a sub-4K, surface, then, by methods

analogous to those of Lemma 3.1 and Lemma 3.2, we find the relations
1(r) > 27 ~ 4Koa(r) (r>00n3),
and

17(r)+4Kyl(r) > 0 (r>0 on S),

with the equality sign holding for r > 0 on S if and only if S is a 4K -surface;
that is,

(3.34) 1/(r)=2n~-4Kqa,(r),

and
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I{(r) + 4Kyl (r) = 0.

THEOREM 3.9. Let S be an analytic sub-4K, surface, and let L(r) and
a(r) denote the circumference and area function, respectively, of C; on S. Then

the functions

Y, (r)

1(r) - ll(r),
Y, (r) =a(r) —a (r),
and

Y (r) = la(r) - ao(r)]”2
satisfy Condition D.

Proof. The method is that used in earlier theorems wherein now we apply

the four relations which immediately precede Theorem 3.9.

REMARK. It was indicated earlier that our Condition C reduces to Condition
A of [4, p.289] if Ky = 0. Now if K, = 0, the assumption that S satisfies K < 4K,
imposes no new requirement upon the surface. In fact, our Condition D becomes
Condition A if K, = 0 and if the function ¢ (r) is identically zero when the sur-
face is developable.

The role played by the condition K < 4K, when K, # 0 for ‘‘square root”
functions is indicated in the following theorem.

THEOREM 3.10. Let S be an analytic sub-K, surface, and let a(r) denote
the area of C; on S. Then in order that the function

Y, (r) = la(r)]'/?

be a sub-K, function of r for every possible pole P, it is necessary and suf-
ficient that S be a sub-4K, surface.

Proof. The sufficiency has been established in Theorem 3.8.
Now let P; be a point of S where K, > 4K, and let P, be the pole of a

geodesic polar coordinate system. Since S is analytic, there exists a neighbor-
hood of P; in which K > 4K,, and hence a value r; > 0 such that the geodesic
circle of radius r, lies entirely within this neighborhood. In this coordinate

system we have
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0%

— + 4Kqu < 0 (0<r<r onS),
or?

and then it easily follows that

I”(r) + 4Kyl(r) < O (0<r<r onS).

By calculation we get that
Gt/;l(r) = -za's/z[Zal'-— %+ 4K0a2] B :11-0'3/2 h(r),
where A(r) is the bracketed expression. Then we have that 4(0) =0, and
R(r)=2a(1” +4Kyl) < 0 (0<r<ryonS);

hence A(r) < Qfor 0 < r < r,, and thus also
Gy, (r) <0 (0<r<r onS).

Then by Theorem 1.2, ¢ (r), when evaluated in a coordinate system with such

a pole, cannot be a sub-K, function.

IV. THE [SOPERIMETRIC INEQUALITY AND RELATED FUNCTIONS

4.1. The isoperimetric inequality. Let L and A denote the perimeter and
area, respectively, of a simply connected region bounded by an analytic curve

on a surface of nonpositive curvature. The isoperimetric inequality

L2
(4.11) f=—-4>0
4n -

holds for such a region. In fact, the following theorem [6, p.670-672] has
been established:

For an analytic surface S, a necessary and sufficient condition that (4.11)
hold for all simply connected regions bounded by analytic curves on S is that
K < 0onS. Further, if K < 0 but K # 0 on S, then the strict sign of inequality
holds in (4.11); while if K = 0 on S, then the sign of equality holds in (4.11)

only for geodesic circles on S.
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We shall study the function 6 of (4.11) and some modifications of it for

sub-K, function properties when S is assumed to be a sub-K, surface and the
region is that determined by a geodesic circle. A well-known generalization
of the function 6 for geodesic circles on surfaces of constant negative curva-

ture K, is the function

1%(r) Koa?(r)
(4.12) ¢J3(r) = . + . - al(r),

which we shall call the isoperimetric function.

THEOREM 4.1. Let S be an analytic sub-K, surface, and let L(r) denote
the length of the circumference, and a(r) the area, of the geodesic circle C; on
S. Then the isoperimetric function ¢ (r) satisfies Condition C.

Proof. Squaring the inequality (3.22) and using (3.21), we obtain
4r6p (r) > [17? + Kol? - 4a%] = h(r),

where A (r) is the function in brackets. Then we see that A(0) =0, and that
h°(r) > 0 for r > 0 by (3.21); hence 6¢3(r)_> 0 for r > 0 on S, and thus
¢,(r) is a sub-K, function by Theorem 1.2. The other requirements of Condition
C are easily found to be satisfied by ¢3(r).

COROLLARY 4.2. If S is an analytic sub-K, surface, and 1(r) and a(r)

as in the theorem, then the function

13(r)

m

ol(r) = - a(r)

is a continuous monotonic nondecreasing sub-Ky function of r.

Proof. It follows from the proof of Lemma 3.2 that a(r) is a continuous
monotonic nondecreasing sub-K, function of r, and then that a*(r) also has
these properties by Theorem 1.5. Then, using the positive coefficient —K,/4 m,
we may apply Theorem 1.4 and get

Koa?(r)
Ol(r) = ¢3(r) - —477——,

so that 6, (r) has the properties stated in Corollary 4.2.
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CoRrROLLARY 4.3. If S is an analytic sub-K, surface, then

12(r) 12(r)  Koa®(r)
—al(r) > +
4 4 47

(4.13) —a(r)>0 (r>00nS),

where the sign of equality holds for r > 0 on S if and only if S is a K y-surface.

Proof. This corollary is an immediate consequence of Theorem 4.1 and

Corollary 4.2.

4.2. Modifications of the isoperimetric function. We shall consider modi-
fications of the isoperimetric function, ¢,(r), which are produced by adding
certain functions to it and/or by replacing [(r) by [,(r) or 27r and a(r) by
ao(r) or zero. For example, the function 6, (r) may be considered a modification

of ¢, (r) formed by replacing the a?(r) function in $,(r) by zero.

THEOREM 4.4. Let S be an analytic sub-K, surface, and let [(r), Lo(r),
and a(r), ay(r) denote length and area functions associated with the geodesic
circle C;. Then the functions

Lo(r)1(r) Ky al (r)

¢, (r) = pp + - —a(r)

and

lo(r)1(7) Koag(r)a(r) ao(r)  a(r)
¢ (r) =

+
4 47 2 2

satisfy Condition C.
Proof. We establish the result that
(4.21) Iol” = 11§ = 1o1” + Kgagl ~ 20l > 0 (r>0o0nS).

The function on the left is zero when r = 0, and its derivative is the nonnegative

(by Lemma 3.1) function [o(r) S1(r); hence (4.21) holds.

Now ¢4(0)=0, and qﬁ‘:(r) > 0 by (4.21) and Theorem 3.3; thus ¢4(r) is

monotonic nondecreasing. The calculation for © ¢, (r) may be arranged so that
4‘776¢4(r) = [1061— Kol(l - lo)-‘ 2K0a0(l’— l(;)

—4nKola-ay) + Ko(13 + Kyad — 4may)].
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Then we have 6¢4(r) > 0 for r > 0 on S, since each parenthesis above is non-
negative by previous results~the last one, in particular, being identically zero
according to Corollary 4.3. Thus ¢4(r) is a sub-K, function by Theorem 1.2,
Finally, ¢,(r) satisfies Condition C since the signs of equality hold in the
relations above if and only if S is a K, -surface, and obviously ¢,(r) =0 if S

is a K y-surface.

For ¢ (r), we find that c}Ss(O): 0 and that ¢ (r) > 0 by Lemma 3.2. We

may arrange the calculation so that

4n6 ¢ (r) = [,OL + (151" + Kolol = 2715 - 2nKgaq)]

v

Il + Kolgl = 4n* = h(1r),

where h(r) is the function after the inequality sign. Clearly %2 (0)= 0, and we
find that

1l

h(r) = 1361 > 0.

Hence, 2 (r) > 0 for r > 0 on S, and then Theorem 1.2 ensures that ¢_(r) is a

sub-K, function. The other conditions to complete the proof are easily verified.

Theorem 4.4 then admits a corollary which is analogous to the isoperimetric
inequality for the functions ¢,(r) and ¢ (r); we omit its statement, but we re-
mark that the inequality for ¢ (r) is sharper than the isoperimetric inequality
(4.13) in that it presents a better estimate ( greater lower bound) for (r).

The next theorem presents another function determined by the modification

process.

THEOREM 4.5. For a surface and functions as in Theorem 4.4, the function

—al\r) —

ri(r) riy(r)
2

6.(r)= . a0<r)s-25[z<r>-zo<r)]-[a<r)—ao<r)1

satisfies Condition C.

We omit the computations and also the corollary stating the inequality satis-

fied by ¢6(r).

It may be noted that with ¢ (r) satisfying Condition C it readily follows that
¢4(r') does. For if the function
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1
—_— (lo_zﬂr) (l'—lo),
4

which satisfies Condition C (in part by Theorem 1.6), is added to ¢6(r), we
obtain ¢,(r), which then satisfies Condition C (in part by Theorem 1.4).

Theorem 4.5 suggests a consideration of the substitution of [(r)~ly(r)
and a(r) - ay(r) for the functions [(r) and a(r). When this substitution is
made in the isoperimetric function, we find that the new function does not satis-
fy our conditions. Nevertheless, in the next theorem we have a result of this

procedure.

THEOREM 4.6. For a surface and functions as in Theorem 4.4, the function
1 K
¢, (r) = — [1(r) = L,(r)]* + — la(r) - ag(r)1?
4 4

satisfies Condition C.

Proof. We find that ¢ (0) =0 and that ¢/(r) > 0 by Lemma 3.2 and Theo-

rem 3.3; thus ¢,_(r) is monotonic nondecreasing. By computation we find that
4ﬂ6¢7(r) >12( =131+ Kga=27) + Ko(I = 13)* + K2(a=ay)?] = k(r),

where h(r) is the bracketed expression. We see that A(0)=0, and that its

derivative satisfies
R(r) > 207 =14 (17 + Kga = 27) + Ko (1= 1) (17— 1) + K& (a = ap) (1 - 1y)]

=207+ Kol)(I’+ Kga~-27) >0

by Lemmas 3.1 and 3.2. Hence 2 (r) > 0 for r > 0 on S, with equality holding
if and only if S is a K-surface. It follows that ¢ (r) satisfies Condition C

since obviously ¢, (r) = 0if S is a K,-surface.

Theorem 4.6 admits refinements of the inequalities which appear in Corol-
lary 4.3 and Corollary 3.4.

COROLLARY 4.7. Let an analytic sub-K, surface S be referred to a geo-
desic polar coordinate system with pole P. Then, for geodesic circles, the
isoperimetric function ¢ (r) and the functions ¢,(r) and ¢,(r) satisfy the

inequalities
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(4.22) ¢,(r) > 2¢,(r) >0

and
$,(r) > ¢,(r) > 0,

where the signs of equality hold for r > 0 on S if and only if S is a Ky-surface,
in which case all functions are identically zero.

Proof. It is easily seen that
¢,(r) = ¢,(r) = 2¢(r),
and the corollary then follows from Theorems 4.6 and 4.3.

COROLL ARY 4.8. Let an analytic sub-K, surface S be referred to a geo-
desic polar coordinate system with pole P. Then the length of the circumference
of a geodesic circle of radius r satisfies the inequality

(4.23) 1(r) > 1y(r) + V=Ko la(r) = ao(r)],

where the sign of equality holds for r > 0 on S if and only if S is a Ky-surface.

Proof. Since Ko < 0, 47 ¢, (r) has real factors. The factor ¢ (r), where
pelr)=1l~1o+ V=K, (a—-ay), satisfies ¢g(r) > 0 by Corollaries 3.4 and
3.6; hence so also does the other factor by Corollary 4.7. This other factor
yields (4.23).

Less precise relations may be obtained from the isoperimetric function by

using the theorems of § 1.3.

THEOREM 4.9. Let S be an analytic sub-K, surface with length and area
functions relating to geodesic circles on S as previously defined. Then the

functions

1
¢9(r) = p L1%r) - loz(r)] ~ la(r) = ag(r)],

1o 2 KO[ 2 2
$,(r) = E[l (r) = 15(r)] + i (r) = af(r)],

and
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a(r)

ao(r

\/__K(—)’)

¢u(r) = 1%(r) - lg(r) = {%r) - 4ma(r) cosh( 2

satisfy Condition C.

Proof. We refer to § 1.3 and merely indicate the verification of the desired
subfunction property of these functions. Thus, ¢,(r) results from adding the
function —(K0/4ﬂ)[a2(r)-—a§(r)], which satisfies Condition C, to the isoperi-
metric function ¢ (r). The function ¢ (r) is obtained by adding the function
¢,(r)=a(r)—ao(r) to ¢.(r). And the function ¢,,(r) is obtained by adding
~Koa(r)la(r) = ao(r)], which satisfies Condition C, to dng (r).

4.3. Another kind of modification. The properties of the isoperimetric func-
tion and its modifications which we have developed now enable us to introduce
new functions which satisfy our conditions. These new functions are produced

by replacing each term of an expression by its square root.

THEOREM 4.10. Let S be an analytic sub-4K, surface with length and area
functions relating to a geodesic circle on S as previously defined. Then the

functions

Ye(r) = Va(r) - Va,(r)
and

¢, (1) = Va(r) = Va,(r)
satisfy Condition D.

Proof. We have ¥, (0) =0, and

for r > 0 on S by the properties of ¢  (r) of Theorem 4.9, since now 1,(r) and
a;(r) behave analogously to [4(r) and ay(r) of that theorem. Hence y.(r) is
a monotonic nondecreasing function of r. Then using (3.34) and the isoperi-

metric identity satisfied by [,(r), we get

-3/2

Gy (r) = —— [2al’ =~ 12 + 4Kga?] > 0
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for r > 0 on S, since the function in brackets is identical with that which would
occur for the function ¢ (r) of Theorem 3.8, Thus ¢, (r) satisfies Condition D.

The proof for 1 (r) is similar to this for ¢, (r).

The next theorem presents a modification of the function ¢,,(r) of Theorem

4.9.

THEOREM 4.11. Let S be an analytic sub-K, surface with length and area
functions relating to geodesic circles on S as previously defined. Then the

function

¢,(r) = L)V ag(r) = 1(r)va(r)

satisfies Condition C.

Proof. We first establish the inequality

(4.31) 2a(r)l7(r) = 12(r) + Kya?(r) > 0 (r>0onS),

where the sign of equality holds for r > 0 on S if and only if S is a K,-surface.
The result is immediate, since the function on the left in (4.31) is zero at
r =0, and its derivative is nonnegative for r > 0.

Clearly <,6l2(0)= 0, and qﬁu(r) > 0 for r > 0 on S since qS“(r) satisfies
Condition C. Then, by substituting for [”(r) and {j(r) from (4.31), we find
that

sa 23 +ﬁ) (1@ - 10va) - Kovam (a-va)| 2 0.

2l\a a,

tnus ¢ (1) is monotonic nondecreasing. Then using (3.21) we find that

1L, 1§ 151 121 141
26¢ ,(r) > -—— |t - —

Ve, va| \vas 2avas V@

1, 1L, 121,
+ -~ + .
Vi, V@  2ava

Now using (4.31) in the last two parentheses, we get
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V ao Va a@ao

2 2
> — (mo\/-‘i —lzg) > (Il - 115).
=

a Qo va

1’1 11 L1
466 (1) > 2|—= - —2| + =2 (Ivag - lova@) ~ Kolov— (Va- yag)
12 ao 0

Hence, by (4.21), it follows that G(f;lz(r) > 0 forr > 0 on S. Thus, on citing
Theorem 1.2 and the obvious fact that ¢ ,(r)=0if S is a K,-surface, we have
shown that ¢ ,(r) satisfies Condition C.

V. EXTENSIONS AND GENERALIZATIONS

5.1. Geodesic circular sectors. The generalization from a basic configura-
tion of geodesic circles to one of geodesic circular sectors is indicated in

[ 4, p.296], and its relations apply immediately to this study.

We state some representative results.

THEOREM 5.1. Let S be an analytic sub-K, surface, and let [(r; 0y, 6,)
and a(r; 0, 0,) denote respectively the length of the bounding arc and the
area of the geodesic circular sector on S with fixed pole P, fixed angle from

0, to 0,, 6, < 0,, and geodesic radius r. Then the functions
(]513(7') = l(l‘; 61, 62 ) - lo(r; 01, 62)9

a(r; 0, 0,)~ae(r; 0y, 6,),

1

é(r)
and

1*(r; 645 0,) Kya®(r; 6, 0,) (
(r) = + - al(r; 64, 6,),
%) = S0 200, - 0,) e

(r>0,0,<6<0, on S),
satisfy Condition C.

The proof for each function is similar to the proof of the analogous result

for the corresponding function for geodesic circles, and will not be given here.

Other functions which satisfy Condition C or Condition D for geodesic cir-

cular sectors (the analogues of those for geodesic circles) obviously could be
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written. It is clear that, as corollaries, we then obtain certain inequality re-
lations between the length and area functions for a suitably restricted surface.

5.2. Regular super-K, surfaces. The preceding results concerning sub-K|
surfaces hold in the large and are unaffected by singular points. We now de-
scribe somewhat analogous results for surfaces whose Gaussian curvature
satisfies K > K;; such surfaces will be called super-K, surfaces. We still
assume K, < 0, although some of the results hold, in the small, for K, any
constant. In general, our results will hold only on parts of S where there are no
singular points of the surface, or of the family of geodesics, other than at the
pole of geodesic polar coordinates; and some of the results hold only in the

small even where there are no singular points.

A function f(x) is said to be a super-K, function provided ~f(x) is a

sub-K, function.

A surface S given in geodesic coordinates, or in geodesic polar coordinates,
will be said to be regular provided there are no singular points on S except, in

the case of geodesic polar coordinates, at the pole P.

Lemma 2.1 holds if we add the restriction that S is regular, and replace
““sub-K,’’ by “‘super-K,.”” Theorems 2.2 and 2.3 hold with the same alterations,
and the inequeality relations given by (3.21), (3.22), and (4.21) hold with the

inequality signsreversed.

THEOREM 5.2. Let S be a regular analytic super-K, surface, and let I(r)
and a(r) denote the length and area functions for a geodesic circle C,. Then
the functions —¢].(r) (j=1,2,4,5,6, 8) satisfy Condition C.

Proof. The theorem follows in routine fashion by an examination of earlier
calculations for these functions in relation to (3.21), (3.22), and (4.21) with

the inequality signs reversed.

Now consider the isoperimetric function ¢ (r). We compute ¢;(r), and find
that ¢,(r) is monotonic nonincreasing on any regular super-K, surface S, and
is monotonic decreasing if S is not a K,-surface. Actually, since [“(0) =2z,
it follows from a consideration of ©¢ (r) that there is an ro = ro(S, P) such

that ¢, (r) is a super-K, function for 0 < r < r,.

From the properties of the functions ¢j(r) we obtain results for /(r) and
a(r). We have

I(r) = L(r) + ¢ (1),
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(r) = 15(r) + ¢:(r),
and
Gl(r) = C¢ (r).

Since the functions —¢].(r) satisfy Condition C on regular super-K, surfaces,

we have
¢1(r)§0, Q~3¢l(r)§0 (r>0o0onS).

It follows that on regular analytic super-K, surfaces the function L(r) is a
super-K, function and satisfies [(r) < lofr); I(r) is a strictly super-K, func-
tion and satisfies the strict inequality for r > 0 on S if S is not a Kq-surface.
Also, on these surfaces we have ¢7(0) = 0, so that, since ¢,(r) is a super-K,
function, for a given regular analytic super-K, surface and for a given pole P
on S, either 1(r) is monotonic increasing on S or there is an ro =ry(S, P) > 0
such that [(r) is monotonic increasing for 0 < r < r, and monotonic decreasing

forr > ry on S.
Again, we have

a(r) = aolr) + ¢,(r),

a’(r) = ly(r) + ¢ (r) = L(r),

and

On regular analytic super-K, surfaces we have
¢,(r) <0, ¢,7(0) =0, 5¢,(r) <0 (r> onS).

Hence on regular super-K, surfaces, a(r) satisfies a(r) < ao(r); the strict
inequality holds for r > 0 on S if S is not a Ky-surface. Further, for a given
regular analytic super-K, surface, and for a given pole P on S, either a(r) is
a strictly sub-Ky function, or there is an ry =ro(S, P) > 0 such that a(r) is
a strictly sub-K, function for 0 < r < ry and a strictly super-K, function for
r>ry on S. The interval 0 < r < ry on which a(r) is a sub-K; function coin-

cides with the interval on which [(r) is increasing.
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From the properties of ¢,(r), ¢.(r) and ¢ (r) described in Theorem 5.2,
we deduce some inequalities of interest. Thus, on regular analytic super-K,

surfaces we have the inequalities
1

a(r) > :1— [Lo(r)I(r) + Kyal(r)],
m

1

a(r) > Llo(r)I(r) = 2may(r)],

o\7”

and
r
a(r) > ao(r) - 5 [lo(r) = 1(r)],
associated with ¢4(r), ¢s(r), and ¢ (r) respectively, with the signs of e-

quality holding for r > 0 on S if and only if S is a Ky-surface.

When the proof in Theorem 4.6 is examined in light of the new basic in-
equalities for regular analytic super-K, surfaces, we find that ¢ (r) remains
a monotonic, nondecreasing sub-K, function. The function 47¢,(r) is factor-
able in such a way that ¢_(r) is a factor; then, by Theorem 5.2, the other

factor satisfies the inequality

L(r) = 1y(r) = V=K, [a(r) = ap(r)] < 0.

Hence, using this last relation, on regular analytic super-K, surfaces we have

the inequalities

L(r) <lo(r) = V=Kq lag(r) = a(r)] < lo(r),
and

1

ag(r) > a(r) > ao(r) -

[lo(r) - l(")],

0
with the signs of equality holding for r > 0 on S if and only if S is a K,-surface.

The ¢ functions related to geodesic circular sectors (see Theorem 5.1) have

analogous properties on regular super-K, surfaces.

5.3. Surface characterization. Heretofore we have assumed S to be either
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a sub-K, surface or a super-K, surface. In certain instances we have obtained,
in the two cases, conclusions which are distinct except for the dividing class
of K-surfaces. Thus by logical exclusion we obtain several characterizations

of the indicated classes of surfaces.

For example, a regular analytic surface S is a super-K, surface, but not a

Ky-surface, if and only if for each pole P on S we have

(5.31) 1(r) < 1o(r)
forallr > 0 on S.

Proof. In $5.2 we have shown that the condition K > K,, K # K,, on S
implies (5.31). Conversely, if we should have K; < K, at some P; on S, then
we would have K < K, throughout some neighborhood of P,, and therefore, in
the neighborhood, we would have [(r) > [,(r); also, if we should have K = K,
on S, then we would have [(r) =1[,(r); hence (5.31) implies K > Ky, K # Ky

on S.

In the same way we could establish similar results for each function in the

following theorem.

THEOREM 5.3. The regular analytic surface S is i) a sub-K, surface, but
not a Kg-surface, ii) a super-Kq surface, but not a Kq-surface, or iii) a Ko

surface, if and only if we have

(5.32) i) qﬁj(r) > 0, i) o,’)j-(r) <0, or iii) <,‘b]-(f)

1l
S

(j=ls Za"' 96, 89 97"', 15)1

respectively, for all poles P and all r > 0 on S.

By Theorem 1.2, it is evident that we might replace (5.32) with the dif-

ferential conditions
i) (‘5¢].(r) > 0, ii) 6¢j(r) <0, or iii) 6¢j(r) =0
(j=1,2,4,5,6, 8,13, 14).

5.4. Geodesically similar curves. The preceding theory may be applied to
more general configurations than geodesic circles and sectors. Thus we may
study comparison functions which involve length and area functions relating
to a class of curves upon an arbitrary surface S as compared to the correspond-

ing curves upon a Ky-surface or in the plane.
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It is evident that r has heretofore played a dual role: it has served as the
parameter for the family of geodesic circles (sectors) on S with centers at the
pole P, and it also has been a variable of the geodesic polar coordinate system.
We now rephrase the previous conditions in terms of the parameter of the family

of curves to be considered.

ConDITION A(k). For a given surface S of nonpositive Gaussian curva-
ture, and for a given one-parameter family of curves C (%), a function A (%) of
the parameter k satisfies Condition A (k) provided: A(0) = 0; for & > 0, A(k)
is a continuous monotonic nondecreasing convex function of k; A(k)=0 if S
is a developable surface, but otherwise is monotonic increasing and strictly

convex.

ConpiTioN C(k). For a given sub-K, surface S, and for a given one-
parameter family of curves C(k), a function 7(%) of the parameter k satisfies
Condition C (k) provided: 7(0) = 0; for k£ > 0, 7(k) is a continuous monotonic
nondecreasing sub-K, function of %; 7(%k) =0 if S is a K -surface, but other

wise 7(k) is a strictly sub-K function of k.

On a surface S referred to geodesic polar coordinates (r, §) with a given

pole P, we first consider the family of curves C (k) of parameter £ given by

(5.41) r=Fkf(0), k>0,

where f(0) admits a continuous derivative and f(6) > 1. We remark that the
condition (@) > 1 is merely a normalization; for, if f(6,) < 1 and f(0) £ 0
in a closed interval, o < 6 < 8, then f(6) is bounded away from zero in
(¢, B), say f(8) > m > 0 in (&, B). Then a new parameter k, may be intro-
duced by setting £ = m#k,, so that

r = klfl(e) = kl[mf(e)]’

and this representation satisfies our requirements. It may be noted that f(6) =1
presents the case of geodesic circles (sectors). The curves C(k) of the
family given by (5.41) are said to be similarly situated or homothetic, and we

shall call them geodesically similar.

THEOREM 5.4. Let S be an analytic surface of nonpositive Gaussian curva-
ture referred to geodesic polar coordinates with given pole Py. Let lp(k; o, )
and lg(k; o, B) denote the lengths of the curve of the family C(k) of (5.41)
from 0= to =P, (a < B), for the parameter value k in the plane and on
the surface S, respectively, and let ap(k; o, B) and as(k; o, B) denote the
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areas of the sectors formed by the curve of the family C(k), 0 =&, and 6= f3
(« < B), for the parameter value k in the plane and on the surface S respective-
ly. Then the functions

Mks o, B) = Is(k; o, B) = Ip(k; o, B)
and
Az(k; O(, B) = as(]L; On, B) - G/P(k; O(’ 16))

satisfy Condition A (k).

Proof (outlined). For 6, fixed and o < 6, < B, let

dr2l/2 ) d’_21/2
s
olks b ) [“ "\ 70 "\

where r =r(0) is given by (5.41). We find that A,(0, 6,) = 0, and that dA,/d %
and 9*Xo/dk? are nonnegative since p(r, 6,) is a convex function of r. On
verifying the other requirements, we have that, for each fixed value 64, Ay(%, 6,)
satisfies Condition A (k).

Since
B
Mk o, B) = / Aok, 0)dO,
a

it follows (See [4, Theorem 1, p.287].) that A,(k; o, B) satisfies Condition
A (k). If the function [5(k; o, B) alone is considered, then the relations used
also indicate that Ig(k; ¢, B) is a convex function of k, that it is strictly con-
vex if S is not a developable surface, and that it is linear (as a function of %)

if S is developable.
Now, with (5.41),

(ks o, B) = /ﬁ /;r Lu(p, )= pldpdb,

and its first and second derivatives are found to be nonnegative by use of the

convexity of p(r, ). The remainder of the argument is direct.

We find other results for the area functions:
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THEOREM 5.5. Let S be an analytic sub-K, surface referred to geodesic
polar coordinates with given pole Po. Let as(k; &, B), as (k; &, B), and
ap(k; &, B) denote the areas of the sectors formed by the curve of the family
C(k) of (5.41) for the parameter value k, 0= ¢, and 6= (& < B) on the
surface S, the Ky-surface Sy, and in the plane respectively. Then the function

Aok o, B) = as(k; o, B) ~ap(k; o, B)

is a monotonic nondecreasing sub-K, function of k, and the function
7 (ks o, B) = as(k; o, B) - ag (ks o, B)
satisfies Condition C (k).

Proof. By Theorem 5.4, A,(k; ¢t, ) is nonnegative and monotonic non-

decreasing. By calculation,

2

B [ d
gk)\z(/f;o(,ﬁh/ L [Spu+a—’: (f2=1)=Kopldpdd > 0
a P

forr > 0 (k > 0) on S since f(8) > 1. Hence Ay(k; &, B) is a sub~-K,, function
of k.

For the other function, we find that

o7y

B
— = [Plut )=y, 01 1020

and
B r 2 ¢ 2
6k71(k;0(,,3)=/ fo [£26, (k= py) = Kolp = y) (2= 1)1dpdo.

These are nonnegative by the proof of Theorem 3.3, and the rest of the argument

is immediate.

5.5. The Steiner configuration. Let C be an arbitrary closed convex curve
in the plane, of length L and area F, and let C(p) be a curve parallel to C
at a distance p from it, p being measured along the outward normal to C, of
length L (p) and area F (p). The family of curves C(p) will be called a Steiner

configuration; it is a classical result of Steiner [2, p.128] that
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L(p)=1L +2mp
and

F(p)=F + pL + np?.

Generalizations of these formulas for curves lying on a curved surface have
been given in [1; 2], and explicit formulas found in the case of surfaces of
constant curvature. We shall establish the sub-K, function property of some
functions which involve the L (p) and F# (p) functions for the Steiner configura-
tion associated with a suitable curve C on an arbitrary sub-K, surface, K, < 0.
It is evident that our preceding theory for geodesic circles of center Py on S is
obtained from a Steiner configuration on S.if the curve C is a geodesic circle

of center Py on S.

Let the curve C be a simple, closed, bounding, and differentiable curve on
the surface S. Introduce a geodesic representation with coordinates (u, v) in
which u = 0 is the curve C, and v = constant are the geodesics orthogonal to
C; further, let v be the arc length of C measured positively for motion on the
curve which keeps the bounded area to the left, and let u be the arc length of
geodesics normal to C. Sufficient conditions for the validity of such a coordinate
system in a region of S have been given [1; 2]. We shall assume that our co-
ordinate system is valid and term admissible those curves which satisfy the

above conditions.

Then, for an admissible curve C of length L and area F, and for p fixed, the

length L (p) of C(p) is given by

(5.51) L(p) = ‘/(;;L(p, v)dv,
and the area F (p) of C(p) is given by

(5.52) F(p)=F «+ é./o‘pp(u,v)dudv.

For a K,-surface, K, < 0, Abascal [1, p.843] has shown that these relations
simplify to (in our notation)
Ky
(5.53) Lo(p)=1L +1y(p) :—Z—[Flo(p)+La0(p)],
w

and
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Liy(p) Ky Fay(p)
(5.54) Folp) = F + aglp)+ o\p B o @Go\p
27 27

where {4(p) and a,(p) are given in Lemma 2.4,
LEMMA 5.6. The functions Lo(p) and Fy(p) satisfy the relations
Li(p) + Ko Fy(p) = 27 = 0,
Ly (p) + KyLy(p) =0,
and

L3(p) K F(p)
(5.55) ’ + °e — Fy(p) =M = constant
4 4n

for p > 0 on the Ky-surface Sy,

Proof. The first two relations follow easily from (5.53), (5.54), and the
properties of [4(p) and ay(p). The third relation is immediate since the deriva-

tive of its left member is zero.

THEOREM 5.7. Let S be an analytic sub-K, surface, and let C(p) denote
the curves of the Steiner configuration for an admissible curve C on S. Then
the length function L(p) is a sub-Kq function of ps L(p) is a strictly sub-Kq
function if S is a strictly sub-K, surface, and it is a Ky-function of p if Sis a
Ko-surface. Further, the area function F(p) is a strictly sub-K, function.

Proof. These properties of L (p) were established in Theorem 2.2.

By calculation from (5.52) we get

9
(556) G, F(p)= //p GH,LdudHf(_’i) dv + KoF.
c Jo c \du =0

For our geodesic representation, it is known {7, p. 188] that

dJ
Kg(v) = [——"; ”)] ,
u u=0

where Kg(v) is the geodesic curvature of C. By the Gauss-Bonnet theorem

[7, p.191], noting that C has no exterior angles, we get



GENERALIZED CONVEXITY AND SURFACES OF NEGATIVE CURVATURE 365

(5.57) /Kg(v)dvz 2w — /nydudeZn—KoF.
C
F

since K < Kq. With G, > 0 and (5.57), it follows from (5.56) that
(5.58) GpF(p)EL'(p)+KOF(p)227T,
and then Theorem 1.2 ensures the result of the theorem.

We shall now make comparison between the length and area functions for
Steiner configurations on a sub-K, surface S and on the K,-surface. However,
our expressions may be considered to be functions formed with respect to S

alone because of (5.53), (5.54), and the known formulas for [,(p) and ay(p).

THEOREM 5.8. Let S be an analytic sub-K, surface, and let C(p) denote
the curves of the Steiner configuration for an admissible curve C of length L

and area F on S. Let Cy(p) denote the curves of the Steiner configuration for

any admissible curve Cqy of length Ly =L and area Fy =F on the Ky-surface
So- Then the functions

T2(p) = L(p) = Lo(p)

and

n

T3(p) = F(p) = Fy(p)

satisfy Condition C(p), where p is the parameter of the family.

Proof. There is equality in (5.57) if S is a K,-surface, and the proof using
(5.51) and (5.52) is similar to those of Theorem 3.3 and Theorem 3.5.

Theorem 5.8 admits the corollary that the functions L (p) and F (p) satisfy

the inequalities

| Kol

L(p) > Lolp) =L + Ly(p) + [Flo(p)+Lao(p)]

m

and

Liy(p) | Kol Fag(p)
F(p) > Fo(p) = F +aplp) + + ;
2m 27

both functions are strictly sub-K, functions and satisfy the strict inequalities
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for p > 0on S if Sis not a Ky-surface, and they satisfy the equalities if S is
a Ky-surface. We remark that the conditions Ly =L and F, = I were imposed
to meet the requirements of Condition C(p). The sub-K, function properties

and inequality relations above would hold equally well for any admissible C,
such that Ly < L and F, < F.

We shall now establish some results for functions involving L (p) and F (p)

which are analogous to the isoperimetric function and to its modifications.

THEOREM 5.9. Let L(p) and F(p) be the length and area functions, re-
spectively, of the curves of a Steiner configuration on an analytic sub-K, sur-
face S. Then the function

L%(p)

0(p) = - F(p)

is a positive monotonic strictly increasing sub-K, function of p; further, if
C, on the Ky-surface S satisfies Ly = L and Fy = F, then the function

L2(p) - L2(p)
7i(p) = —pT-i CLF(p) = Folp)]

m
satisfies Condition C(p).

Proof. Tt is known [6] that 6(p) > O on sub-K, surfaces. With (5.58) and
Theorem 5.7, routine computations show that 6“(p) and ©6(p) are positive,
establishing the properties of 8(p). The properties of 7,(p) are established in
routine manner by the use of (5.58) and Theorem 5.8.

THEOREM 5.10. Let L(p) and F(p) be the length and area functions,
respectively, of the curves of a Steiner configuration on a sub-K, surface S,
and let Ly(p) and Fo(p) be the length and area functions, respectively, of the

curves of a Steiner configuration on a Ksurface Sy. Let the admissible curve

Cy on Sy satisfy Ly =L and Fo = F. Then the function

75(p) = - Fo(p)

L¥p) KoF*(p) LAp) KoFé(p)
+ -F(p)| - +
4 4n 4w 4w

satisfies Condition C(p).

Proof. Obviously 75(0) = 0, and using (5.55) we get 75(p) > 0 by (5.58).
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By another calculation we find that
47675(p) > {2L°(p) [L7(p) + Ko F(p) = 2al+ Ko L3 p) + KZF?(p)
~ 47K, F(p)—-4anK M},

where the constant ¥ is given by (5.55). We then use (5.58) just as we used
(3.22) in the proof of Theorem 4.1, and we get

(5.59)  47G75(p) > [L**(p) + Ko LHp)~4dn* - 4nKoM] = h(p)
where A(p) is the function in brackets. By (5.53) and (5.54), we verify that
AnKoM = L'Oz(p) + KoL2(p) - 4a?,

and when this is substituted in (5.59), it follows that A (0) > 0 since L”(0) >
L§(0) by (5.58). By computation and use of Theorem 5.7 we find that £’(p) > 0
for p > 0; hence A(p) > 0 for p > 0, and 75(p) is a sub-K, function. Since
further considerations show that the signs of equality hold above if and only if
S is a Ky -surface, we have, with the final remark that 75(p) =0 if S is a K-

surface, the result that 75(p) satisfies Condition C (p).

We remark that the last two theorems imply inequalities for the functions

L(p) and F(p) somewhat similar to (4.13); we omit the formal statements.

Let the symbol ®,(p) denote the new functions produced from the functions
qﬁk(r) when the functions r, a(r), ao(r), {(r), and [,(r), associated with geo-
desic circles, are replaced by the functions p, F (p), Fo(p), L(p), and Ly(p),
respectively, associated with the Steiner configuration of an admissible curve

C. For example,
Ts(p) = @3(p) - M,

where M is the constant of (5.55). It may then be verified (indeed almost solely
by inspection of the proof that the corresponding ¢ (r) function satisfies Con-
dition C) that the functions

@k(p)—M (k=4,5),
and

@, (p) (k=6,7,8,9,10,11),
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satisfy Condition C(p).

Again, we might formulate a Condition D (p) which is analogous to Condition
D in the way that Condition C (p) corresponds to Condition C. Then large parts
of the theory in § 3.3 on ‘‘square-root’ functions are found to apply to similar
functions associated with a Steiner configuration. Finally, it may be shown that
much of the theory in § §5.2, 5.3 can be generalized to hold for appropriate

functions associated with Steiner configurations.
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