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OF NEGATIVE CURVATURE

PAUL A. CLEMENT

Introduction. In a study [4] of surfaces whose Gaussian, or total, curvature

K satisfies the relation K < 0, a number of functions having geometrical sig-

nificance have been shown to be convex. In the present paper, a study of sur-

faces whose Gaussian curvature satisfies K < Ko, where K$ is a negative con-

stant, leads to the determination of a class of functions which are subfunctions

(defined in §1.1) of a two-parameter family of functions determined by the

bound Ko. This is a natural generalization because the convexity property is

equivalent to the subfunction property with respect to the particular two-para-

meter family (nonvertical straight lines) determined by the bound Ko = 0.

A main objective will be to exhibit functions which have a geometrical

significance and also have the subfunction property for surfaces with K < Ko.

This property then implies certain inequality relations for functions associated

with certain geometrical configurations on such surfaces.

I. S U B F U N C T I O N S

1.1. Definitions. A real-valued function g{x) of a single real variable x

defined on an open interval (α, b), with -co < ^ α < % < 6 < ^ + o o , i s said to be

a convex function of x provided g(x) satisfies the inequality

(1.11) g [ t x v + ( l - ί ) * 2 ] < t g ( x i ) + ( l - t ) g ( x 2 )

for all xl9 x2 in (α, b) and for all t on the range 0 <̂  t < 1. If g (x) is of class

C 2 , it is convex if and only if g"(x) > 0 throughout the interval.

Geometrically, (1.11) indicates that no part of the graph of the curve γ — g{x)

lies above the chord joining two points upon it within the interval (α, 6) .

A generalization of the foregoing characteristic geometric property of convex
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functions leads to the theory of subfunctions [ 3 ] . Let \haβ(x)} be a two-

parameter family of continuous functions such that for all xl9 x2 in (o, b) and

every yγ$ γ2 there exists a unique member haQβQ(x) of the family such that

haQβQ(xi) - Jι (i = 1, 2). Then a function g(x) is said to be a subfunction of

the given family on (α, b) provided1 we have

(1.12) g[txi + ( l - t ) x 2 ] < haιβι[txi + ( l - t ) x 2 ]

for all xl9 x2 in (α, b) and for all t on the range 0 < £ <_ 1, and where

haιβί^
xi) = g(χi ) (l = 1, 2 ) .

Geometrically, (1.12) indicates that in the subinterval (xt> x2) no part of

the graph of the curve y = g(x) lies above the member of the parameter family

joining the points [xlf g(%ι )] and [x2, g(x2)]. We note that if g(x) is convex,

it is a subfunction of the two-parameter family of nonvertical straight lines.

1.2. A fundamental theorem. Necessary and sufficient conditions that a

function g(x) be a subfunction of a certain type of two-parameter family have

been obtained by Shniad [ 10]. The following lemma and theorem are due to him;

proofs are included because of the fundamental use made of the theorem in

subsequent developments.

LEMMA 1.1. If φ{x) is a positive continuous function of x, and φ{x) is a

strictly increasing continuous function of x, on a < x < b9 then the condition

that g(x) be a subfunction of the family Λφ + Bφψ, where A and B are para-

meters of the family, is equivalent to the condition that g/φ be a convex func-

tion of φ.

Proof. The hypotheses on φ and ψ ensure that g/φ is a continuous function

of xjj. To prove the existence of a unique member of the family through any two

points (Λ^ , γi ) {i - 1, 2), with the x( distinct and in the interval, it suffices

to note that

φ(ιφ(2)φ(2)φ(ι) £ 0.
φ(x2) φ(x2)φ{x2)

Let Xγ and x2 satisfy a < x^ < x2 < b, and let

XA more general definition of the subfunction property is given in [ 5 ] ; in [3] it is
shown that a function satisfying (1.12) necessarily is continuous on (α, b).
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ha β (χ) = Axφ(x) + Bίφ{x)φ(x)

with

Then the condition

ha β (x) > g(x) for xγ < x < x2

is equivalent to the condition

A\ + Bx φ(x) ;> for xί < x < x2 9

φ(x)

or that g{x)/φ(x) be a convex function of φ on the range φ(a + ) < φ < φ(b-).

THEOREM 1.2. 2 Let φ(x), φ(x), and g(x) be functions having the fol-

lowing properties on an interval a < x < bi

a ) the functions φ, φ, and g have continuous second derivatives,

b) the inequalities φ{x) > 0 and φ'(x) > 0 hold, and

c) each of the functions φ(x) and φ(x) φ(x) is a solution of the differential

equation

h" + Ph' + Qh = 0,

where P and Q are continuous on the interval.

Then a necessary and sufficient condition that g(x) be a subfunction of the

family Aφ + Bφφ on the given interval is that

on the interval.

Proof. From Lemma 1.1 it follows that g is a subfunction of the family if

and only if g/φ is a convex function of φ. Since g/φ has a continuous second

derivative with respect to φ, the latter condition is equivalent to

2 The conclusion of this theorem is obtained in a more general setting in [$)]. How-
ever, the proof is immediate for the theorem as stated here, and this form is sufficient
for our purposes.
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From the Wronskian relation we easily verify that φ and φ ψ are linearly inde-

pendent solutions of the differential equation. Then the theorem follows from

uniqueness properties of linearly independent solutions of this type of dif-

ferential equation.

1.3. Sub-^o functions. The differential equation we are to consider is

A " + Koh = 0,

where Ko is a negative constant, and the interval of definition is 0 <_x < b < oc.

The two-parameter family of solutions of the equation is given by

(1.31) U α y β ( * ) } = {Cί cosh (V-

where Ot and β are the parameters. A property of this family is given in the

following lemma; we omit the proof.

LEMMA 1.3. // A: ( # l 5 yι ) and B: (x2, Y2 ) are t w o points with x± ^ x29

then there is one .and only one curve of the family \ haβ(x)\ passing through A

and B. Thus? if yι >_ 0 and y2 >_ 0, the curve ha β {x) passing through A and

B satisfies ha β (x) >_ 0 for xx < x < x2.

DEFINITION. A function g(x) will be said to be a sub-K0 function of x

if it is a subfunction of the family ^h^Λx)] of (1.31) on the interval 0 < x <

b <_oo. Moreover, g(x) will be said to be a KQ-function if the sign of equality

of its subfunction relation (1.12) holds throughout the interval; and it will be

a strictly sub-K0 function if the strict inequality holds throughout for 0 < t < 1.

It is convenient to introduce a second-order differential operator S defined

by

S s D2 + Ko,

where KQ is a negative constant; we may write Qx to indicate the variable for

differentiation.

REMARK. With the choices

φ(x) Ξ cosh (V-^o^) a n d φ(x) = tanh {yJ-Kox),



GENERALIZED CONVEXITY AND SURFACES OF NEGATIVE CURVATURE 3 3 7

the family \<Xφ+ βφφ\ coincides with the family (1 .31), and these functions

φ and φ satisfy the hypotheses of Theorem 1.2. Hence a function g(x) of c lass

C 2 is a sub-i£0 function ( i ϊ 0 -funct ion) if and only if 5g{x) > 0 (Gg(%) = 0 )

on the interval.

Certain elementary properties of sub-&0 functions are given in the following

theorems. The proofs are omitted as they merely involve applying the foregoing

remark to appropriate members of the family \h n(x)}.

THEOREM 1.4. Any linear combination of sub-K0 functions with nonnegative

coefficients is a sub-K0 function.

THEOREM 1.5. Let f(x) be a nonnegative sub-K0 function, and let k be

a constant > 1. Then [ / ( % ) ] is a sub-K0 function; in fact9 [f (x)] is a

sub-kK0 function,

THEOREM 1.6. Let f {x) (i—1, 2, ••• , n) be convex functions of x which

are nonnegative and monotonic nondecreasing and at least one of which is a

sub-KQ function. Then the product function fif2'
mmfn

 ι ' s a su^"^o function.

II. SURFACES OF NEGATIVE CURVATURE

2.1. Geodesic parameters. Let an analytic surface S be represented by

geodesic parameters [7, p. 174] {u, v), so that

(2.11) ds2 = du2 + μ 2 U s v)dv2 (μ > 0 ) ,

and

(2.12) da = μ(u, v)du dv,

where the curves v = constant are the geodesies, and the curves u = constant

are the geodesic parallels. The surface S is said to be given in geodesic repre-

sentation.

Singular points of the geodesic family are points where μ = 0; other points,

where μ > 0, are regular points.

The Gaussian curvature K of S exists at all regular points. If S is given in

geodesic representation, the Gaussian curvature is given [7, p. 181] by the

formula

1 d2μ
(2.13) K = L.

f du2
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DEFINITION. An analytic surface S will be said to be a sub-K0 surface if

its Gaussian curvature is bounded from above by Ko, a negative constant, at

all regular points of S. Moreover, S will be said to be a Resurface if its

Gaussian curvature everywhere is Ko. If S is a sub-X0 surface which is not a

K0-surface, it will be said to be a strictly sub-K0 surface.

2.2. Geodesic parallels. We have the following lemma,

LEMMA 2.1. // an analytic surface S is given in geodesic representation,

then a necessary and sufficient condition that S be a sub-K0 surface is that the

function μ{u, v0 ) be a sub-K0 function of u for each line-segment uγ < u < u2,

v = vQ in the (u, v) —domain of definition.

Proof. The result follows directly from (2.13) and Lemma 1.3 by an argu-

ment analogous to that in [4, p. 286]. The proof reveals that μ is a strictly

sub-K0 function of u if and only if S is a strictly sub-K0 surface, and that μ is

a £0-function of u if S is a K0-surface.

Let S be a sub-2£0 surface given in geodesic representation. Then we have

the following results.

THEOREM 2.2. Let the arcs C{u) (uί <u <Lu2)> of length l(u), be arcs

of geodesic parallels between geodesies v = vι and v = v2 (t>i < v2 ) on S.

Then the length l(u) is a sub-K0 function of u {that is, of the geodesic length

u — Uι ); I (u) is a strictly sub-K0 function if S is a strictly sub-K0 surface, and

l(u) is a KQ-function if S is a K0-surface.

Proof. A proof may be patterned on that of the related theorem in [4, p. 287],

in which we substitute the appropriate member (which is of class C 2 ) of the

family (1.31) in a subfunction inequality in place of the convexity inequality.

THEOREM 2 . 3 . Let the arcs C(u) (ui -W < u < ux +W), of length l(u),

be arcs of geodesic parallels between geodesies υ — vx and v — υ2 (vγ < v2) on

S, and let a(w) denote the area of the part of S enclosed by v = vι$ C (uι + w),

v = υ2, C {uι - w) ( 0 < w < W). Then a(w) is a sub-K0 function of w; a(w)

is a strictly sub-K0, function if S is a strictly sub~K0 surface, and is a K0-func-

tion of w if S is a K0-surface.

Proof. The proof is similar to that in [4, p. 288] when we consider sub-

function properties instead of convexity properties.

2.3. Geodesic polar coordinates. Let the analytic surface S be represented
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in geodesic polar coordinates [7, p. 181] (u, v\ that is, coordinates for which

(2.11), (2.12), and

(2.31) μ(0, v) = 0, h ^ l = 1

are satisfied. The curve u = u0 is a geodesic circle with center at the pole P

of the representation and geodesic radius u0.

We shall write r9 θ for u9 v9 respectively.

Hereafter we indicate functions determined by, or calculated for, a Ko-

surface by a subscript zero. Some such functions can be determined explicitly.

LEMMA 2.4. Let So be a KQ-surface, and let lo(r) and aQ(r) denote the

circumference and area, respectively, of the geodesic circle on SQ with fixed

center P and geodesic radius r. Then

(2.32)

and

2π
(2.33) ao(r) = [ c o s h ( y / - K o r ) - l ] .

~Ko

Moreover^

l0 ( r ) > 2πr (r > 0 on S),

and

ao{r) > πr2 (r > 0 on S).

Proof. Since Quμ - 0, we find that the function μQ(r) of the family (1.31)

satisfying (2.31) is

When we evaluate (2.11) and (2.12) for a geodesic circle using this expression

for μ, we obtain the formulas of the lemma. The inequalities are easily es-

tablished; cf. [4, p. 291-292].
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We remark that the functions lo(r) and ao(r) will occur in formulas which

refer to a sub-&0 surface S; in such cases, (2.32) and (2.33) provide definitions

of these functions on S.

III. SUBFUNCTIONS FOR GEODESIC CIRCLES

3.1. Definition. Some functions of geometrical significance involving the

geodesic radius have certain properties in common. We collect these properties

in the following definition.

CONDITION C. For a given sub-K0 surface S and for a given pole P of

geodesic polar coordinates on S, a function φ{r) of the geodesic radius r satis-

fies Condition C provided: <^(0) = 0; for r>0 on 5, φ(r) is a continuous,

nondecreasing sub-K0 function of r; φ ( r ) = 0 if S is a X0-surface, but otherwise

φ(r) is a strictly sub-X0 function.

If we let Ko = 0, the X0-surface becomes a developable surface, and the

"sub-X0 function of r" property becomes the usual "convex function of r"

property. Thus our Condition C specializes to Condition A of [4, p. 289] when

It follows from the theorems of § 1.3 that sums and products of functions

which satisfy Condition C also satisfy Condition C.

3.2. The length function. Hereafter we assume that μ(r9 θ) is of class C 2 ,

which ensures the existence of the derivatives we write. We now consider a

geodesic circle Cr on S with fixed center P and geodesic radius r.

LEMMA 3 . 1 . Let S be an analytic sub-K0 surface, and let l(r) denote the

length of the circumference of Cr. Then l(r) satisfies the differential relation

(3.21) S Z ( r ) Ξ l"(r) + Kol(r) > 0 (r > 0 on S).

Proof. The result is immediate since GΓμ(r, θ) > 0 for r >_ 0 on S. We

note that equality holds in (3.21) if and only if S is a K0-surface, that is, in

our notation, if and only if we have S/ 0 (r) = 0, where lo(r) is given by (2.32).

LEMMA 3.2 . Let S be an analytic sub-K0 surface, and let a(r) denote the

area of Cr. Then a{r) satisfies the differential relation

(3.22) a " ( r ) + £ o a ( r ) - 2 7 r = Γ(r) + Koa{r) - 2π > 0 (r > 0 on S).

Proof. By differentiating the area function
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Γr r2ττ
a(r) = / / μ ( p > θ)dpdθ,

Jo Jo

we get

dμ

/

2τr dμ
— dθ^ l'(r).
dr

Since α ( 0 ) = 0, and Z'(O) = 2 77 by (2 .31), we have equality in (3 .22) for r = 0.

The derivative of the function

Γ(r) + Koa{r) -2π

is S/(r), which is nonnegative by Lemma 3.1; hence the left member of (3.22)

is monotonic nondecreasing, and (3.22) holds. It is readily seen that equality

holds in (3.22) if and only if S is a K0-surface.

THEOREM 3.3 . Let S be an analytic sub-K0 surface, and let l(r) denote

the length of the circumference of CΓ. Then the function

φ^r) Ξ l(r) __ lo(r) (r > 0 on S ) ,

satisfies Condition C .

Proof. The functions μ{r9 θ) and μQ(r> 0) associated with the surfaces S

and So, respectively, both satisfy (2.31), and are such that

d2μ
— 1 + Kμ = 0 (r > 0 on S ) ,

dr2

2 + X o μ o = 0 ( r > 0 on 5 ) ,

dr2

where K < Ko* By Sturm's oscillation theorems [8, Chap. X], it follows that

μ(r, θ) - μQ(r, θ) > 0 (r > 0 on S ) ,

and

- ϋ ί ^ > 0 ( r > 0 o n S ) .
5 ^
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Hence we. find that ^ ( 0 ) = 0, φ^ir) = 0 on S if and only if S i s a K 0 - s u r f a c e ,

and

Γ2ττldμ dμΛ
# ( Γ ) = Z ' ( Γ ) - Z ' ( Γ ) = / — ) dθ > 0 ( r > 0 o n S).

1 υ Jo \dr dr /

Then calculation shows that

Gφ^r) = SZ(r),

whence

Qφ^r) > 0 (r > 0 on 5 ) ,

by Lemma 3.1. Thus, by Theorem 1.2, φ^r) satisfies Condition C.

COROLLARY 3.4. If S is an analytic sub-K0 surface^ then l(r) is a mono-

tonic increasing sub-K0 function of r and satisfies the inequality

l(r) > lo{r) ( r > 0 on S);

I ( r ) is a strictly sub-K0 function if and only if S is not a K0-surface.

Proof. The inequality follows from Theorem 3.3 and the identity

l(r) = lo(r) + φ^r) ( r > 0 on S).

REMARK. The function φ ( r ) may be modified to form a new function in

the following way: rep lace the function lo(r) (Lemma 2 . 4 ) in Φι(r) by i t s

Maclaurin s e r i e s expansion from which h a s been de le ted any finite or infinite

number of terms. The new function so obtained is a nonnegative9 monotonic

increasing^ sub-K0 function of r. In l ike manner, s imilar functions may be formed

from s u b s e q u e n t φ functions which involve subtract ive functions lo(r) and

cio(r). We omit proofs.

3.3. Ί h e area function. On a surface where K '< KQ9 the area function a(r)

for a g e o d e s i c c irc le Cr h a s proper t ie s s imilar to those given for / ( r ) .

THEOREM 3.5. Let S be an analytic sub-K0 surface, and let a(r) denote

the area of Cr. Then the function

φΛr) Ξ a(r) - α o ( r ) (r > 0 on S)
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satisfies Condition C.

Proof. Verification is immediate by use of Lemma 3.2 and Theorem 1.2.

COROLLARY 3.6. If S is an analytic sub-K0 surface, then a(r) is a mono-

tonic increasing sub-KQ function of r and satisfies the inequality

a(r) > ao(r) (r > 0 on 5 ) ;

a (r ) is a strictly sub-K0 function if and only if S is not a KQ-surface.

Proof. The inequality follows from Theorem 3.5 and the identity

a(r) = ao(r) + φ2{r) (r > 0 on S).

We shal l find additional theorems for the functions a{r) and φ {r) showing

certain subfunction properties of these functions when an additional assumption

is made for the surface S. In the sequel we use the following lemma, which

shows that certain conditions which clearly imply the sub-&0 function property

for a function also imply this property for its square root.

LEMMA 3.7. // g(r) is a nonnegative function for which g'"{r) exists in

the interval Cί < r < β, and g(r) satisfies

(3.31) A(α) s 2g(α)g"(α) - [g ' (α)] 2 + 4K0[g(a)]2 > 0

and

g'"(r) + 4K0g'(r) > 0 {a<r<β),

then [ g ( r ) ] ' is a sub-K0 function in CX < r < β and is a strictly sub-K0 func-

tion there provided

( 3 . 3 2 ) g'"(r) + 4 K 0 g ' ( r ) > 0 (<X < r < β).

Proof. If we l e t f (r) = [ g ( r ) ] ι / 2 , t h e n a t p o i n t s w h e r e f (r) £ 0 w e h a v e

Moreover,

(3.33) Λ'(r) =
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so that from the hypotheses we get

A(α) > 0, A'(r) > 0 (<x < r < β),

whence h(r) > 0. Thus G/(r)> 0 at points where f(r) 4" 0. And, since the non-

negative function f{r) satisfies the subfunction inequality (1.12) for points

where f(r)=O, it follows that the continuous function f(r) is a sub-X0 function

for α < r < β.

With (3.31) and (3.32) the nonnegative sub-X0 (and hence convex) function

g(r) can vanish at no more than one point of Cί < r < β, whence, by (3.33),

we have h ( r) > 0 ((X < r ^ β ). It follows that we have Qf(r) > 0 except for

at most one point of (X < r < β, so that f(r) is a strictly sub-^ 0 function for

α < r < β. This completes the proof of the lemma.

An additional assumption on the surface S causes certain functions im-

mediately to satisfy (3.33) for r > 0 on S. Thus, if S satisfies K <_4>K0 for

its Gaussian curvature, then a modification of the proof of Theorem 3.3 indicates

that we have

a'"(r) + 4K0a'(r) = l"(r) + 4K0l (r) > 0 (r > 0 on S ) ,

with equality holding if and only if S is a 4& 0 -surface. We now determine some

functions which have certain subfunction properties in common; these properties

are collected in:

CONDITION D. For a given sub-4X 0 surface S and for a given pole P of

the geodesic polar coordinates on 5, a function ψ(r) of the geodesic radius

r sat is f ies Condition D provided: \jj ( 0 ) = 0; for r > 0 on S, φ (r) is a continuous

monotonic nondecreasing sub-A0 function of r; and ψ ( r ) is a strictly sub-K 0

function except possibly when S is a 4K 0-surface.

T H E O R E M 3 . 8 . Let S be an analytic sub-4<K0 surface, and let a(r) denote

the area of the geodesic circle CΓ. Then

and

Φ2(r) ^ [φ2(r)]1/2

 Ξ [a(r)~ α o ( r ) ] ι / 2

satisfy Condition D, and ψ t ( r ) is a K0-function if S is a 4>K0-surface.
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Proof. We have

a'(r) = l(r), a"{r) = l'{r\ a'"(r) = l"(r);

hence, beside α ( 0 ) = 0, we have

α ' ( 0 ) = 0 , a'"(r)> 0 (r > 0 on S ) ,

with

α ' " ( r ) + 4K o α'(r) > 0

for r > 0 on S unless K = 4A0. Then for r > 0 on S, a (r) satisfies the hypo-

theses on g{r) of Lemma 3.7, so that φ ( r) satisfies Condition D for r > 0 on

S, and is a strictly sub-A0 function if S is not a 4X0-surface. If S is a 47̂  0~

surface, then

1 2 77 , I / 77 \ 1 / 2I 1 / 2 / 77 \
= )

-I \-Λ0/

and thus it is a K0-fundtion.

The proof for Φ2(r) is similar in method and is omitted.

We can find other functions which satisfy Condition D. Let l^ir) and a^ir)

denote the length of circumference and area, respectively, of the geodesic

circle CΓ on a 4Λ0-
SUΓface Formulas for ^(r) and aί{r) can be written (see

Lemma 2.4), and these expressions serve to define l{{r) and aι{r) for a sur-

face S having arbitrary curvature. If S is a sub-4&0 surface, then, by methods

analogous to those of Lemma 3.1 and Lemma 3.2, we find the relations

Γ(r) >2π- iKoa(r) (r > 0 on S ) ,

and

Z' /(r) + 4A0Z(r) > 0 (r > 0 on 5 ) ,

with the equality sign holding for r > 0 on S if and only if S is a 4/£0-surface;

that is,

(3.34) /;(/•)= 2 τ 7 - 4 X o α 1 ( r ) ,

and
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l('{r) + 4K 0 /!(r) = 0 .

THEOREM 3,9. Let S be an analytic su6-4X 0 surface, and let l(r) and

a{r) denote the circumference and area function, respectively, of Cr on S. Then

the functions

φ3(r) = l(r) ~ l^r),

Φ4(r) = a(r) ~aχ ( r ) ,

and

0 s ( r ) s lair) - α o ( r ) ] ι / 2

satisfy Condition D.

Proof. The method is that used in earlier theorems wherein now we apply

the four relations which immediately precede Theorem 3.9.

REMARK. It was indicated earlier that our Condition C reduces to Condition

A of [4, p. 289] if Ko = 0. Now if Ko = 0, the assumption that S satisfies K < 4>K0

imposes no new requirement upon the surface. In fact, our Condition D becomes

Condition A if Ko — 0 and if the function φ (r) is identically zero when the sur-

face is developable.

The role played by the condition K < 4X0> when Ko φ 0 for "square root"

functions is indicated in the following theorem.

THEOREM 3.10. Let S be an analytic sub-K0 surface, and let a{r) denote

the area of CΓ on S. Then in order that the function

be a sub-K0 function of r for every possible pole P, it is necessary and suf-

ficient that S be a sub-4<K0 surface.

Proof. The sufficiency has been established in Theorem 3.8.

Now let Pi be a point of S where Kv > 4K0, and let PL be the pole of a

geodesic polar coordinate system. Since S is analytic, there exists a neighbor-

hood of Pi in which K > 4>K0, and hence a value r t > 0 such that the geodesic

circle of radius rγ lies entirely within this neighborhood. In this coordinate

system we have
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<92μ
+ 4 £ 0 μ < 0 (0 < r < r t on 5 ) ,

dr2

and then it easily follows that

l"{r) + 4K0Z(r) < 0 (0 < r < rx on S).

By calculation we get that

iQφ(r) = i α - 3 / 2 [ 2 α Z / ~ I2 + 4 £ V ] s i α ' 3 / 2 Λ ( r ) ,
4 4

w h e r e h(r) i s t h e b r a c k e t e d e x p r e s s i o n . T h e n w e h a v e t h a t A ( 0 ) = 0 , a n d

0 ( 0 < r < r Λ o n S ) ;

hence A ( r ) < O f o r O < r < r 1 , and thus also

S 0 t ( r ) < 0 (0 < r < r t on 5 ) .

Then by Theorem 1.2, φχ{r), when evaluated in a coordinate system with such

a pole, cannot be a sub-X0 function.

IV. T H E I S O P E R I M E T R I C I N E Q U A L I T Y AND R E L A T E D F U N C T I O N S

4.1. The isoperimetric inequality. Let L and A denote the perimeter and

area, respectively, of a simply connected region bounded by an analytic curve

on a surface of nonpositive curvature. The isoperimetric inequality

L2

(4.11) θ = A > 0
477

holds for such a region. In fact, the following theorem [6, p. 670-672] has

been established:

For an analytic surface S, a necessary and sufficient condition that (4.11)

hold for all simply connected regions bounded by analytic curves on S is that

K <^0 on S. Further, if K < 0 but K φ 0 on S$ then the strict sign of inequality

holds in (4.11); while if K = 0 on S, then the sign of equality holds in (4.11)

only for geodesic circles on S.
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We shall study the function θ of (4.11) and some modifications of it for

sub-#0 function properties when S is assumed to be a sub-i(0 surface and the

region is that determined by a geodesic circle, A well-known generalization

of the function θ for geodesic circles on surfaces of constant negative curva-

ture Ko is the function

I2(r) K0a
2(r)

(4.12) φ (r) = + a(r),
3 477 47Γ

which we shall call the isoperimetric function.

THEOREM 4.1. Let S be an analytic sub-K0 surface, and let l(r) denote

the length of the circumference, and a(r^ the area, of the geodesic circle Cr on

S. Then the isoperimetric function φΛr) satisfies Condition C.

Proof. Squaring the inequality (3.22) and using (3.21), we obtain

4πGφ3(r) > [I'2 + Kol
2 - 4 τ 7 2 ] = A ( r ) ,

where h(r) is the function in brackets. Then we see that Λ(0) = 0, and that

λ ' ( r ) > 0 for r > 0 by (3.21); hence &φ3(r) > 0 for r > 0 on S, and thus

Φ3(r) is a sub-^o function by Theorem 1.2. The other requirements of Condition

C are easily found to be satisfied by φ (r),

C O R O L L A R Y 4 . 2 . If S is a n analytic sub-K0 surface, and l ( r ) and a ( r )

as in the theorem, then the function

θtir)^1-^! _ α ( r )
477

is a continuous monotonic nondecreasing sub-KQ function of r.

Proof. It follows from the proof of Lemma 3.2 that a(r) is a continuous

monotonic nondecreasing sub-X 0 function of r, and then that a (r) a lso has

these properties by Theorem 1.5. Then, using the positive coefficient - A o / 4 77,

we may apply Theorem 1.4 and get

K0a
2(r)

0 , ( r ) S φ{r) ,

so that θί(r) has the properties stated in Corollary 4.2.
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COROLLARY 4.3 If S is an analytic sub-K0 surface, then

( 4 . 1 3 ) l—L - a { r ) > ί - l l + " ' " - g ( r ) > 0 ( r > O o » S ) ,
477 4 77 4 77

where the sign of equality holds for r > 0 on S if and only if S is a Resurface.

Proof. This corollary is an immediate consequence of Theorem 4.1 and

Corollary 4.2.

4.2. Modifications of the isoperimetric function. We shall consider modi-

fications of the isoperimetric function, φ Ar), which are produced by adding

certain functions to it and/or by replacing l(r) by Z 0 ( Γ ) O Γ %πr and a(r) by

ao(r) or zero. For example, the function ( ^ ( r ) may be considered a modification

of φ3(r) formed by replacing the a2(r) function in φs(r) by zero.

THEOREM 4.4. Let S be an analytic sub-K0 surface, and let l(r), lo(r\

and a{r), ao{r) denote length and area functions associated with the geodesic

circle Cr. Then the functions

lo(r)l(r) Koa
2{r)

< A * ( Γ ) Ξ Ξ + : α ( r )
477 477

a n d

lo(r)l{r) K Q a Q ( r ) a { r ) ao{r) a ( r )
+ — — — — — — — — —•——— —

/ 5 4ττ

satisfy Condition C.

Proof. We establish the result that

(4.21) lol' - llζ = lol' + KQaol - 2πl > 0 (r > 0 on 5 ) .

The function on the left is zero when r = 0, and its derivative is the nonnegative

(by Lemma 3.1) function lo(r) Gl(r); hence (4.21) holds.

Now <£4(0) = 0, and φ^{r) > 0 by (4.21) and Theorem 3.3; thus φ4(r) is

monotonic nondecreasing. The calculation for S φ4(r) may be arranged so that

4π Qφ4(r) = [1OQI - Kol(l - l0) - 2Koao(l'- lό)

- 4 πK0(a - aQ) + K0(IQ + Ko a\ - 4 πa0)].
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Then we have &φ4(r) > 0 for r > 0 on S, since each parenthesis above is non-

negative by previous results —the last one, in particular, being identically zero

according to Corollary 4.3. Thus φ4ir) is a sub-#0 function by Theorem 1.2.

Finally, φ4(r) satisfies Condition C since the signs of equality hold in the

relations above if and only if S is a A0-surface, and obviously φXr) = 0 if S

is a K0-surίace,

For φ-(r), we find that <άc(0) = 0 and that φ'(r) > 0 by Lemma 3.2. We
c> o o

may arrange the calculation so that

r) ^ [Z0SZ + (Γol'+ Kolol - 2πΓ0 - 2πKoao)]

where h(r) is the function after the inequality sign. Clearly Λ ( 0 ) = 0 , and we

find that

Λ ' ( r ) EE Z Q S Z > 0 .

Hence, h(r) > 0 for r > 0 on S, and then Theorem 1.2 ensures that Φ5(r) is a

sub-K0 function. The other conditions to complete the proof are easily verified.

Theorem 4.4 then admits a corollary which is analogous to the isoperimetric

inequality for the functions φ ( r) and φAr); we omit its statement, but we re-

mark that the inequality for Φ5^
r) l s sharper than the isoperimetric inequality

(4.13) in that it presents a better estimate (greater lower bound) for Z(r).

The next theorem presents another function determined by the modification

process.

THEOREM 4.5. For a surface and functions as in Theorem 4.4, the function

rl(r) rlo(r) Γ

^ 6 ( Γ ) Ξ _ L - : _ α ( Γ ) + ao(r) = -lUr) - ίo(r)] - [a(r) - ao(r)]
I £ L

satisfies Condition C.

We omit the computations and also the corollary stating the inequality satis-

fied by φ (r)

It may be noted that with Φ6(r) satisfying Condition C it readily follows that

Φ4(f) does. For if the function
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(lo-2πr) (l-l0),
477

which satisfies Condition C (in part by Theorem 1.6), is added to φ6(r), we

obtain φ^ir), which then sat is f ies Condition C (in part by Theorem 1.4).

Theorem 4.5 suggests a consideration of the substitution of l(r) - lo{r)

and a(r) - ao(r) for the functions l(r) and a(r). When this substitution is

made in the isoperimetric function, we find that the new function does not sat is-

fy our conditions. Nevertheless, in the next theorem we have a result of this

procedure.

THEOREM 4.6. For a surface and functions as in Theorem 4.4, the function

φΛr) S — U(r) - lo(r)]2 + — [a(r) - α o ( r ) ] 2

satisfies Condition C.

Proof. We find that φy{0) = 0 and that φ'7(r) > 0 by Lemma 3.2 and Theo-

rem 3.3; thus φy(r) is monotonic nondecreasing. By computation we find that

4 τ τ S < / > 7 ( r ) > L 2 ( Z ' - I Z ) W + K o a - 2 π ) + K Q ( l - l Q ) 2 + K 2

0 ( a - α 0 ) 2 ] ^ h ( r ) ,

where h(r) i s the b r a c k e t e d e x p r e s s i o n . We s e e t h a t Λ ( 0 ) = 0, and t h a t i t s

der iva t ive s a t i s f i e s

Λ ' ( r ) > 2 [ ( l " - K ' ) ( l ' + K o a - 2 π ) + K Q ( l - l o ) ( l ' - l £ ) + K 2

0 ( a - a o ) ( l - l 0 ) ]

= 2 ( l " + K Q l ) { l ' + K Q a ~ 2 π ) > 0

by Lemmas 3.1 and 3.2. Hence h{r) > 0 for r > 0 on S, with equality holding

if and only if S is a #0-surface. It follows that φ7ir) satisfies Condition C

since obviously φy(r) = 0 if S is a i^0-surface.

Theorem 4.6 admits refinements of the inequalities which appear in Corol-

lary 4.3 and Corollary 3.4.

COROLLARY 4.7. Let an analytic sub-K0 surface S be referred to a geo-

desic polar coordinate system with pole P. Then, for geodesic circles, the

isoperimetric function φ (r) and the functions φΛr^ an^ Φy^r^ satisfy the

inequalities



352 PAUL A. CLEMENT

(4.22) φ3(r) > 2φs(r) > 0

and

Φ3(r) > φy(r) > 0,

where the signs of equality hold for r > 0 on S if and only if S is a K0-surface,

in which case all functions are identically zero.

Proof. It is easily seen that

Φ7(r) = Φ3(r)- 2φ5(r),

and the cbrollary then follows from Theorems 4.6 and 4.3.

COROLLARY 4.8. Let an analytic sub-K0 surface S be referred to a geo-

desic polar coordinate system with pole P. Then the length of the circumference

of a geodesic circle of radius r satisfies the inequality

(4.23) l(r) > lo(r) + V 3 ^ U ( r ) - ao(r)],

where the sign of equality holds for r > 0 on S if and only if S is a K0-surface.

Proof. Since Ko < 0, 4>πφ7(r) has real factors. The factor φ&(r), where

φ8ir) = I - lQ + yJ-K0 (a - aQ), satisfies φg(r) > 0 by Corollaries 3.4 and

3.6; hence so also does the other factor by Corollary 4.7. This other factor

yields (4.23).

Less precise relations may be obtained from the isoperimetric function by

using the theorems of § 1.3.

THEOREM 4.9. Let S be an analytic sub-K0 surface with length and area

functions relating to geodesic circles on S as previously defined. Then the

functions

φg(r) Ξ _ [I2(r) - / o

2 (r)] - [ α ( r ) - ao(r)],

φ ( r ) Ξ — [ Z 2 ( r ) - Z 2 ( r ) ] + — t α 2 ( r ) - o 2 ( r ) ] ,

4 77 477
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φu(r) = I2(r) - Z n

2 (r) Ξ I2(r) - 4 τ τ α ( r ) c o s h

satisfy Condition C.

Proof. We refer to § 1.3 and merely indicate the verification of the desired

subfunction property of these functions. Thus, φ ( r) results from adding the

function -(Kύ/4>π)[a2(r)- a2 ( r ) ] , which satisfies Condition C, to the isoperi-

metric function Φ3(
r) The function φί0(r) is obtained by adding the function

φ2(r) = a(r) — ao(r) to φ(r). And the function φ (r) is obtained by adding

~Koa{r)[a(r) - ao{r)]9 which satisfies Condition C, to 4>πφ3{r).

4.3. Another kind of modification. The properties of the isoperimetric func-

tion and its modifications which we have developed now enable us to introduce

new functions which satisfy our conditions. These new functions are produced

by replacing each term of an expression by its square root.

THEOREM 4.10. Let S be an analytic sub-4<K0 surface with length and area

functions relating to a geodesic circle on S as previously defined. Then the

functions

and

satisfy Condition D.

Proof. We have φy{0) = 0, and

k
> 0

for r > 0 on S by the properties of φ ( r ) of Theorem 4.9, s ince now lι(r) and

a^r) behave analogously to lo{r) and ao(r) of that theorem. Hence ψ7(r) i s

a monotonic nondecreasing function of r. Then using (3 .34) and the isoperi-

metric identity satisfied by lι(r), we get

Qψ7{r) =
-3/2

[2aΓ- I2 + 4 K 0 α 2 ] > 0
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for r > 0 on S, since the function in brackets is identical with that which would

occur for the function ψt(r) of Theorem 3.8. Thus ψy{r) satisfies Condition D.

The proof for Ψ6(r) is similar to this for φy(r).

The next theorem presents a modification of the function φ ( r) of Theorem

4.9.

THEOREM 4.11. Let S be an analytic sub-K0 surface with length and area

functions relating to geodesic circles on S as previously defined. Then the

function

Φί2(r) Ξ Z(r)Vαo(r) - lo(τ)y/7(r)

satisfies Condition C.

Proof. We first establish the inequality

(4.31) 2 α ( r ) Z ' ( r ) - I2(r) + Koa
2(r) > 0 (r > 0 on S ) ,

where the sign of equality holds for r > 0 on S if and only if S is a K0-surface.

The result is immediate, since the function on the left in (4.31) is zero at

r = 0, and its derivative is nonnegative for r > 0.

Clearly <£ ι 2(0) = Q, and Φl2(r) > 0 for r > 0 on S since Φn(r) satisfies

Condition C. Then, by substituting for Γ(r) and IQ(Γ) from (4.31), we find

that

mus Φl2(
r) i s monotonic nondecreasing. Then using (3.21) we find that

/ Z o ' \ / Z0'Z l 2

0 l l ' o l

V° / \V«o

Now using (4.31) in the last two parentheses, we get
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2 Γa~ \ 2

> — μ ' W - -"ό > — U'zo-"o').

Hence, by (4.21), it follows that &Φi2(r) > 0 for r > 0 on S. Thus, on citing

Theorem 1.2 and the obvious fact that Φΐ2(r) = 0 if S is a X0-surface, we have

shown that Φl2(
r) satisfies Condition C.

V. EXTENSIONS AND GENERALIZATIONS

5.1. Geodesic circular sectors. The generalization from a basic configura-

tion of geodesic circles to one of geodesic circular sectors is indicated in

[4, p. 296], and its relations apply immediately to this study.

We state some representative results.

THEOREM 5.1. Let S be an analytic sub-K0 surface, and let l(r; βu θ2)

and a(r; θl9 θ2) denote respectively the length of the bounding arc and the

area of the geodesic circular sector on S with fixed pole P, fixed angle from

θι to θ2, θγ < θ29 and geodesic radius r. Then the functions

φί3(r) = / ( r ; θl9θ2) - Z0(r; θi9 θ2),

φl4(r) = a(r; θl9 Θ2)~ao(r; θl9 θ2 ) ,

and

I2(r; θι9 θ2) Koa
2(r; θl9 θ2)

φ (Γ) = + . - a(r; θi9 θ2),
9 l 5 ' 2(θ2 ~ θt) 2(θ2 - θ,) l 2

(r> 0, θt <θ< θ2 on 5 ) ,

satisfy Condition C

The proof for each function is similar to the proof of the analogous result

for the corresponding function for geodesic circles, and will not be given here.

Other functions which satisfy Condition C or Condition D for geodesic cir-

cular sectors (the analogues of those for geodesic circles) obviously could be
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written. It is clear that, as corollaries, we then obtain certain inequality re-

lations between the length and area functions for a suitably restricted surface.

5.2. Regular super-/£0 surfaces. The preceding results concerning sub-&0

surfaces hold in the large and are unaffected by singular points. We now de-

scribe somewhat analogous results for surfaces whose Gaussian curvature

satisfies K > Ko; such surfaces will be called super-K0 surfaces. We still

assume Ko < 0, although some of the results hold, in the small, for Ko any

constant. In general, our results will hold only on parts of S where there are no

singular points of the surface, or of the family of geodesies, other than at the

pole of geodesic polar coordinates; and some of the results hold only in the

small even where there are no singular points.

A function f(x) is said to be a super-K0 function provided ~f(x) is a

sub-X0 function.

A surface S given in geodesic coordinates, or in geodesic polar coordinates,

will be said to be regular provided there are no singular points on 5 except, in

the case of geodesic polar coordinates, at the pole P.

Lemma 2.1 holds if we add the restriction that S is regular, and replace

"sub-X0" kv "super-# 0." Theorems 2.2 and 2.3 hold with the same alterations,

and the inequality relations given by (3.21), (3.22), and (4.21) hold with the

inequality signsreversed.

THEOREM 5.2. Let S be a regular analytic super-K0 surface, and let l{r)

and a(r) denote the length and area functions for a geodesic circle CΓ. Then

the functions ~φ.{r) (j = 1, 2, 4, 5, 6, 8 ) satisfy Condition C.

Proof. The theorem follows in routine fashion by an examination of earlier

calculations for these functions in relation to (3.21), (3.22), and (4.21) with

the inequality signs reversed.

Now consider the isoperimetric function φ3(r). We compute φ'3(r), and find

that φ ( r ) is monotonic nonincreasing on any regular suρer~K0 surface S, and

is monotonic decreasing if S is not a Resurface. Actually, s ince Z ' ( 0 ) = 277,

it follows from a consideration of &φ3ir) that there is an r 0 = ro{S, P) such

that Φ3(r) is a super-X 0 function for 0 < r < r 0 .

From the properties of the functions φ{r) we obtain resul t s for l(r) and

a(r). We have

l(r) = lo(r) + φ^r),
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Π r ) = lό(r) + φ[(r),

and

6/(r) = Gφ^r).

Since the functions -φ.(r) satisfy Condition C on regular super-K0 surfaces,

we have

φt(r) < 0s Όφ^r) < 0 ( r > 0 o n S).

It fo l lows t h a t on regular analytic super-K0 surfaces the function I ( r ) is a

super-K0 function and satisfies l(r) < lo{r); l(r) is a strictly super-K0 func-

tion and satisfies the strict inequality for r > 0 on S if S is not a K^-surface.

A l s o , on t h e s e s u r f a c e s we h a v e <^'(0) = 0, s o t h a t , s i n c e φ ( r ) i s a s u p e r - K 0

function, for a given regular analytic super-K0 surface and for a given pole P

on S, either l(r) is monotonic increasing on S or there is an r0 - ro(S$ P) > 0

such that l{r) is monotonic increasing for 0 < r < r0 and monotonic decreasing

for r > r0 on S.

Again, we have

a ( r ) = a o ( r ) + φ 2 ( r ) 9

a\r) = / 0 ( r ) + φχ{r) = Z ( r ) ,

and

S α ( r ) = 2 77 + S φ2(r).

On r e g u l a r a n a l y t i c s u p e r - K 0 s u r f a c e s we h a v e

Φ2(r) < 0, φ'2'{Q) = 0, Gφ2(r)

H e n c e on regular super-KQ surfaces, a(r) satisfies a(r) < ao(r); the strict

inequality holds for r > 0 on S if S is not a KQ-surface. Further, for a given

regular analytic super-K0 surface, and for a given pole P on S9 either a(r) is

a strictly sub-K0 function, or there is an r 0 = ro(S9 P) > 0 such that a{r) is

a strictly sub~K0 function for 0 < r < r 0 and a strictly super-K0 function for

r > r 0 on S. T h e i n t e r v a l 0 .< r < r 0 on w h i c h a{r) i s a s u b - K 0 funct ion co in-

c i d e s wi th t h e i n t e r v a l on w h i c h l{r) i s i n c r e a s i n g .
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From the properties of φ Ar), Φ5(
r) and φΛr) described in Theorem 5.2,

we deduce some inequalities of interest. Thus, on regular analytic super-K0

surfaces we have the inequalities

a(r) > — [lo{r)l(r) + K o α o

2 ( r ) ] ,
4

α ( r ) > Uo(r)l(r) - 2πao(r)],
loir)

and

a(r) > ao(r) ~-[lo{r) - l(r)],

associated with φ^{r), φs(r), and φ6(r) respectively, with the signs of e-

quality holding for r > 0 on S if and only if S is a Resurface.

When the proof in Theorem 4.6 is examined in light of the new basic in-

equalities for regular analytic super-/£0 surfaces, we find that φ Ar) remains

a monotonic, nondecreasing sub-/£0 function. The function 4 77<^7(r) is factor-

able in such a way that φ (r) is a factor; then, by Theorem 5.2, the other

factor satisfies the inequality

Hr) - lo(r) - y/^Γ0 [a(r) - ao(r)] < 0 .

Hence, using this last relation, on regular analytic super-KQ surfaces we have

the inequalities

l(r) < lo(r) - ^ΠΓ0 [ao(r) - a(r)] < Z 0 ( r ) ,

and

ao(r) >_a(r) > ao{r) = = r U0(r) - l(r)],

with the signs of equality holding for r > 0 on S if and only if S is a K0-surface.

The φ functions related to geodesic circular sectors (see Theorem 5.1) have

analogous properties on regular super-A0 surfaces.

5.3. Surface characterization. Heretofore we have assumed S to be either
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a sub-X0 surface or a super-A0 surface. In certain instances we have obtained,

in the two cases, conclusions which are distinct except for the dividing class

of K0-surfaces. Thus by logical exclusion we obtain several characterizations

of the indicated classes of surfaces.

For example, a regular analytic surface S is a super-K0 surface, but not a

K0-surface9 if and only if for each pole P on S we have

(5.31) l(r) < lo(r)

for all r > 0 on S.

Proof. In § 5 . 2 we have shown that the condition K > KQ9 K φ Ko, on 5

implies ( 5 . 3 1 ) . Conversely, if we should have A!t < KQ at some P L on S9 then

we would have K < Ko throughout some neighborhood of Pl9 and therefore, in

the neighborhood, we would have l(r) > lo(r); a lso, if we should have K = Ko

on S, then we would have l(r) = lo(r); hence (5 .31) implies K > Kθ9 K φ Ko

on S.

In the same way we could establish similar resu l t s for each function in the

following theorem.

THEOREM 5.3. The regular analytic surface S is i) a sub-K0 surface, but

not a K0-surface9 ii) a super-K0 surface, but not a K0-surface9 or iii) a Ko~

surface9 if and only if we have

(5.32) i)φj(r)>0, n)φfr)<0, or i i i) fy(r) = 0,

( ; = 1 , 2, . . . , 6 , 8,9, . . . , 1 5 ) ,

respectively, for all poles P and all r > 0 on S.

By Theorem 1.2, it is evident that we might replace (5.32) with the dif-

ferential conditions

i) Qφj(r) > 0, ii) Gφjίr) < 0, or iii) S ^ (r) = 0

(/ = 1, 2,4, 5, 6, 8, 13, 14).

5.4. Geodesically similar curves. The preceding theory may be applied to

more general configurations than geodesic circles and sectors. Thus we may

study comparison functions which involve length and area functions relating

to a class of curves upon an arbitrary surface S as compared to the correspond-

ing curves upon a X0-surface or in the plane.
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It is evident that r has heretofore played a dual role: it has served as the

parameter for the family of geodesic circles ( s e c t o r s ) on S with centers at the

pole P, and it also has been a variable of the geodesic polar coordinate system*

We now rephrase the previous conditions in terms of the parameter of the family

of curves to be considered.

CONDITION A(k) For a given surface S of nonpositive Gaussian curva-

ture, and for a given one-parameter family of curves C(k), a function λ(k) of

the parameter k satisfies Condition A (A;) provided: λ ( 0 ) = 0; for k > 0, λ(k)

is a continuous monotonic nondecreasing convex function of k; λ(k)= 0 if S

is a developable surface, but otherwise is monotonic increasing and strictly

convex.

CONDITION C(A ). For a given sub-X0 surface S, and for a given one-

parameter family of curves C(k)9 a function τ(k) of the parameter k satisf ies

Condition C(k) provided: τ ( 0 ) = 0; for k > 0, τ ( k) is a continuous monotonic

nondecreasing sub-X0 function of k; τ{k)= 0 if S is a K 0-surface, but other-

wise τ(k) is a strictly sub-A0 function of k.

On a surface S referred to geodesic polar coordinates (r, θ) with a given

pole P, we first consider the family of curves C(k) of parameter k given by

(5.41) r = kf(θ\ k > 0,

where f(θ) admits a continuous derivative and f(θ) > l We remark that the

condition f(θ) > 1 is merely a normalization; for, if f(θ0) <_ 1 and f{θ) ^ 0

in a closed interval, CX < θ < β, then f{θ) is bounded away from zero in

(CX, j8), say f(θ) > m > 0 in ((X , β). Then a new parameter kι may be intro-

duced by setting k = mkγ, so that

T = kj^θ) = k^

and t h i s r e p r e s e n t a t i o n s a t i s f i e s our r e q u i r e m e n t s . It may be n o t e d t h a t f{θ)= 1

p r e s e n t s the c a s e of g e o d e s i c c i r c l e s ( s e c t o r s ) . T h e c u r v e s C(k) of t h e

family given by ( 5 . 4 1 ) are s a i d to be similarly situated or homothetic, and we

s h a l l c a l l them g e o d e s i c a l l y s i m i l a r .

THEOREM 5.4. Let S be an analytic surface of nonpositive Gaussian curva-

ture referred to geodesic polar coordinates with given pole Po. Let lp(k; CX , β)

and l$(k; Cί, β) denote the lengths of the curve of the family C(k) of (5.41)

from θ = (X to θ = β, (CX < β), for the parameter value k in the plane and on

the surface S, respectively, and let ap(k; CX , β) and a$(k; CX , β) denote the
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areas of the sectors formed by the curve of the family C(k), θ = 0i9 and Θ = β

(Cί < β)9 for the parameter value k in the plane and on the surface S respective-

ly. Then the functions

λi(k; α , β) Ξ ls(k; Cί, β) - lP(k; Cί, β)

and

λ2{k; α , β) = as(k; Cί, β) - ap(k; Cί, β)

satisfy Condition A{k).

Proof (outlined). For θ0 fixed and a < θ0 < β, let

where r = r{θ) is given by (5.41). We find that λo(O, θ0 ) = 0, and that dλo/dk

and d2λQ/dk2 are nonnegative since μ(r9 ΘQ) is a convex function of r. On

verifying the other requirements, we have that, for each fixed value θ0, λo(k, θ0)

satisfies Condition A (A;).

Since

λ tU; a, β) Ξ fβ λo(k, θ)dθ,
J a

it follows (See [4, Theorem 1, p. 287].) that λι(k; (X, β) satisfies Condition

A(k). If the function l$(k; Cί, β) alone is considered, then the relations used

also indicate that ls(k; (X, β) is a convex function of k, that it is strictly con-

vex if S is not a developable surface, and that it is linear (as a function of A;)

if S is developable.

Now, with (5.41),

λ 2 U ; Cί,/3) Ξ / fr [ μ ( p , θ ) - pλdpdθ,
Ja JO

and its first and second derivatives are found to be nonnegative by use of the

convexity of μ(r, θ) The remainder of the argument is direct.

We find other results for the area functions:
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THEOREM 5.5. Let S be an analytic sub-K0 surface referred to geodesic

polar coordinates with given pole Po. Let a${k; CX, β), as (k; (X, β), and

ap(k; CX, β) denote the areas of the sectors formed by the curve of the family

C(k) of (5.41) for the parameter value ft, 0= (X, and θ = β (CX < β) on the

surface S? the K0-surface Sθ9 and in the plane respectively. Then the function

λ 2 U ; CX, β) = as(k; Cί, β)-aP(k; CX, β)

is a monotonic nondecreasing sub-K0 function of k9 and the function

r^k; α , β) = as(k; CX, β) - aSQ(k; CX, β)

satisfies Condition C(ft).

Proof. By Theorem 5.4, λ2(ft; Cί, β) is nonnegative and monotonic non-

decreasing. By calculation,

Γβ Γr r d2μ
S / c λ 2 ( Z ; ; (X, β)= / / [Qpμ + — ^ - (f2 -l)-Kop] dpdθ > 0

•/α JO dp

for r > 0 (k > 0) on 5 since f(θ) > 1. Hence X2{k; CX, /3) is a sub-X0 function

of A:.

For the other function, we find that

- Γ Γ = [β[μ(r,θ)-μ(r,θ)]f(θ)dθ
dk J a υ

and

Si.r. (ft: α, /3)

These are nonnegative by the proof of Theorem 3.3, and the rest of the argument

is immediate.

5.5. The Steiner configuration. Let C be an arbitrary closed convex curve

in the plane, of length L and area F9 and let C(p) be a curve parallel to C

at a distance p from it, p being measured along the outward normal to C, of

length L{p) and area F ( p ) . The family of curves C(p) will be called a Steiner

configuration; it is a classical result of Steiner [2, p. 128] that
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L (p) = L + 2πp

and

F (p) = F + p L + πp2 .

Generalizations of these formulas for curves lying on a curved surface have

been given in [ 1 ; 2], and explicit formulas found in the case of surfaces of

constant curvature. We shall establish the sub-#0 function property of some

functions which involve the L{p) and F(p) functions for the Steiner configura-

tion associated with a suitable curve C on an arbitrary sub-/£0 surface, Ko < 0.

It is evident that our preceding theory for geodesic circles of center P o

 o n $ i s

obtained from a Steiner configuration on Sr if the curve C is a geodesic circle

of center Po on S.

Let the curve C be a simple, closed, bounding, and differentiate curve on

the surface S. Introduce a geodesic representation with coordinates (u, v) in

which u - 0 is the curve C, and v = constant are the geodesies orthogonal to

C; further, let v be the arc length of C measured positively for motion on the

curve which keeps the bounded area to the left, and let u be the arc length of

geodesies normal to C. Sufficient conditions for the validity of such a coordinate

system in a region of S have been given [ l ; 2] We shall assume that our co-

ordinate system is valid and term admissible those curves which satisfy the

above conditions.

Then, for an admissible curve C of length L and area F9 and for p fixed, the

length L ( ρ ) of C ( p ) is given by

(5.51) L(p) = / μ(p, v)dv,

a n d t h e a r e a F ( p ) of C (p) i s g i v e n by

(5.52) F(p) = F + / / μ(u9 v)dudv.

For a 2£0-surface, Ko < 0, Abascal [ l , p. 843] has shown that these relations

simplify to (in our notation)

(5.53) 0 ( P ) + 0 ( p )
2 7T

and
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Lίo(p) K0Fa0(p)
(5.54) F0(p)= F + ao(p)

2π 2π

where lo(p) and ao(p) are given in Lemma 2.4.

LEMMA 5.6. The functions L0(ρ) and F0(ρ) satisfy the relations

L'0(p) + K0F0(p) - 2π = 0,

£ 0 " ( p ) + K0L0(p)= 0,

and

L2

0(p) K0F*(p)
(5.55) + F0(p) = M = constant

4 π 4>π

for p >_ 0 on the K^-surface S o .

Proof. The first two relations follow easily from (5.53), (5.54), and the

properties of IQ{P) and ao{p). The third relation is immediate since the deriva-

tive of its left member is zero.

THEOREM 5.7. Let S be an analytic sub-K0 surface, and let C(p) denote

the curves of the Steiner configuration for an admissible curve C on S. Then

the length function L(p) is a sub-K0 function of p; L(p) is a strictly sub-KQ

function if S is a strictly sub-K0 surface9 and it is a KQ-function of p if S is a

K0-surface. Further, the area function F(ρ) is a strictly sub-K0 function.

Proof. These properties of L (p ) were established in Theorem 2.2.

By calculation from (5.52) we get

(5.56) SoF(p)= f fP Quμdudv + f ( — \
H Jc Jo JC \du I

For our geodesic representation, it is known [7, p. 188] that

KΛv) =

where Kg{v) is the geodesic curvature of C. By the Gauss-Bonnet theorem

[7, p. 191], noting that C has no exterior angles, we get
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(5.57) J Kg(v)dv = 2π - jjKμdudυ > 2π - K0F.

C F

since K < Ko. With Qu μ > 0 and (5.57), it follows from (5.56) that

(5.58) S p F ( p ) Ξ L'{P) + K0F(p) > 2π,

and then Theorem 1.2 ensures the result of the theorem.

We shall now make comparison between the length and area functions for

Steiner configurations on a sub-K0 surface S and on the Ko-surface. However,

our expressions may be considered to be functions formed with respect to S

alone because of (5.53), (5.54), and the known formulas for / 0 (p) and ao(p).

THEOREM 5.8. Let S be an analytic sub-K0 surface, and let C(p) denote

the curves of the Steiner configuration for an admissible curve C of length L

and area F on S. Let C0(ρ) denote the curves of the Steiner configuration for

any admissible curve Co of length Lo = L and area FQ = F on the K0-surface

So. Then the functions

τ2(p)= L(p)- L0(P)

and

τ3(p) = F(P)~ F0(p)

satisfy Condition C ( p ) , where p is the parameter of the family.

Proof. There i s equal i ty in ( 5 . 5 7 ) if S i s a A' 0 -surface, and the proof u s i n g

( 5 . 5 1 ) and ( 5 . 5 2 ) is s imilar to t h o s e of Theorem 3.3 and Theorem 3.5.

Theorem 5.8 admits the corol lary t h a t the functions L(p) and F(p) satisfy

the inequalities

l * o l
L(p) >L0(p) = L + lo(P) + ίFlo(p) + Lao(P)]

2 77

and

Llo(p) \K0\Fa0(p)
> F0(p) = F +ao(p) +

2 77 2 77

both functions are strictly sub-K0 functions and satisfy the strict inequalities
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for p > 0 on S if S is not a K0-surface, and they satisfy the equalities if S is

a K0-surface. We remark that the conditions Lo = L and Fo = F were imposed

to meet the requirements of Condition C ( p ) . The sub-Z£0 function properties

and inequality relations above would hold equally well for any admissible C o

such that Lo < L and Fo < F.

We shall now establish some results for functions involving L(p) and F (p)

which are analogous to the isoperimetric function and to its modifications.

THEOREM 5.9. Let L(p) and F(p) be the length and area functions, re-

spectively, of the curves of a Steiner configuration on an analytic sub-K0 sur-

face S, Then the function

L2(p)
θ(p) Ξ — - F(p)

477

is a positive monotonic strictly increasing sub-K0 function of p; further, if

Co on the Resurface So satisfies Lo = L and FQ — F, then the function

L2{p)-L2

0{p)
τ4(P) = [F(p)-F0(P)]

477

satisfies Condition C(p)

Proof. It is known [6] that θ(ρ) > 0 on sub &o surfaces. With (5.58) and

Theorem 5.7, routine computations show that θ'(p) and Gθ(p) are positive,

establishing the properties of θ(p). The properties of τ4(p) are established in

routine manner by the use of (5.58) and Theorem 5.8.

THEOREM 5.10. Let L(p) and F{p) be the length and area functions,

respectively, of the curves of a Steiner configuration on a sub-K0 surface S,

and let L0{p) and F0(p) be the length and area functions, respectively, of the

curves of a Steiner configuration on a K0-surface So. Let the admissible curve

Co on So satisfy LQ — L and Fo = F. Then the function

TS(P) -
L2(p) K0F

2(p) I Γ L O

2 ( P ) K0F0Hp)
F(p)\ - — + F0{p)

satisfies Condition C (p ).

Proof. Obviously τ s (0) = 0, and using (5.55) we get τ'5{p) > 0 by (5.58).
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By another calculation we find that

- 4πK0F(p)-4πK0M\,

where the constant M is given by (5.55). We then use (5.58) just as we used

(3.22) in the proof of Theorem 4.1, and we get

( 5 . 5 9 ) 4 τ 7 δ r 5 ( p ) > [L'\p) + Ko L 2 ( p ) ~ 4 π2 - 4πK0 M ] EE h(p)

where h(p) is the function in brackets. By (5.53) and (5.54), we verify that

M = L'2(p) + K0L
2(p) - 4ττ 2 ,

and when this i s substituted in ( 5 . 5 9 ) , it follows that h(0) > 0 since / / ( 0 ) >

L Q ( 0 ) by ( 5 . 5 8 ) . By computation and use of Theorem 5.7 we find that h'{p)> 0

for p > 0; hence h(p) >_ 0 for p > 0, and τ5{p) is a sub-& 0 function. Since

further considerations show that the s igns of equality hold above if and only if

5 is a A!0-surface, we have, with the final remark that τs(p) = 0 if 5 is a KQ-

surface, the result that τs{p) sat is f ies Condition C ( p ) .

We remark that the las t two theorems imply inequalit ies for the functions

L(p) and F(ρ) somewhat similar to (4 .13) ; we omit the formal s tatements .

Let the symbol Φ/^p) denote the new functions produced from the functions

( ^ ( r ) when the functions r, a(r), aQ(r), l(r), and lQ(r), associated with geo-

desic circles, are replaced by the functions p, F ( p ) , F0(ρ), L(p), and L0(ρ),

respectively, associated with the Steiner configuration of an admissible curve

C For example,

τ s ( p ) s Φ3(p)- M,

where M is the constant of ( 5 . 5 5 ) . It may then be verified (indeed almost solely

by inspection of the proof that the corresponding φ(r) function sat isf ies Con-

dition C ) that the functions

Φk(p) - M (k = 4, 5 ) ,

and

ΦΛp) U = 6, 7, 8,9, 10, 11),
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satisfy Condition C ( p )

Again, we might formulate a Condition ΐ)(p) which is analogous to Condition

D in the way that Condition C (p) corresponds to Condition C Then large parts

of the theory in § 3.3 on "square-root" functions are found to apply to similar

functions associated with a Steiner configuration. Finally, it may be shown that

much of the theory in § § 5.2, 5.3 can be generalized to hold for appropriate

functions associated with Steiner configurations.
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