
SOME THEOREMS ON THE SCHUR DERIVATIVE

L. C A R L Ϊ T Z

1. Introduction. Given the sequence { am \ and p ^ 0, Schur [ 5 ] defined the

derivative a' by

( 1 . 1 ) < = Δαm = (am + ι -am)/pm + ι;

higher derivatives are defined by means of

a^"ιh α ( o ) - aam ) , am - am .α - a
am - am

In particular if p is a prime, a an integer and am = aP , then by Fermat's theorem

is integral. Schur proved that if p \ α, then also the derivatives

are all integral. Moreover if αj = 0 (mod p) then all the derivatives ΔraP are

integral, while if αj ^ 0 (mod p) then every number of &PaP has the denomi-

nator p.

A. Brauer [ l ] gave another proof of Schur's results. About the same time

Zorn [6] proved these results by p-adic methods and indeed proved the follow-

ing stronger theorem. For x = 1 (mod p), define

and as above let SrXm denote the r-th derivative of Xm; then

u.2> « „ . <P-»<^»•••<••'-•> A ϊ . ( r

provided r < p; for r < p - 2, the congruence (1.2) holds (mod p m + 1 ) . It is also

shown that Schur's theorem is an easy consequence of Zorn's results.
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In the present paper we shall give a simple elementary proof of Zorn's con-

gruences. In addition we prove, for example, that for r < p,

(1.3) ΛV™ , - ί aPm

q'm
 i=* P

i ) f (modp"),

where

for r < p - 1, (1.3 ) holds (mod p m + ι ) .

We next ( § 4 ) extend Schur's and Zorn's theorems to algebraic numbers. In

§ 5 we consider a generalization of another kind suggested by the arithmetic

function ( see for example [ 2, p. 84-86])

(1.4) F(a, m) = Σ μ(d) a6.

de-m

Finally ( § 6 ) , we give some applications of Schur's theorem to the Euler and

Bernoulli polynomials and numbers; the results are analogous to Kummer's con-

gruences [ 3 , Ch. 12]. In particular ΔrE m is integral (mod p) for p > 2,r< p,

r < m; also ΔΓ ( B^+ m/( k + p m )) is integral (mod p ) for p — 1 )( k + 1, r < p,

r < m. Here E^ and B^ denote the Euler and Bernoulli numbers in the notation of

Nδrlund [ 3 ] .

2. Formulas for Δ Γ α m . We shall require some preliminary results.

LEMMA 1. The following identity holds:

(2.1) ΓI ( * - P £ ) = Σ (-1)' Φ p
i = 0 i = 0

' Φ p ί ( ί '- l ) / 2 *r"\

where

(2.2) φ = ( p Γ " l H p ~ 1 ] ' " i P . " 1 } = [ / _ , ] , [Γ

o] = 1.

L E M M A 2. Puί

k

i = o



SOME THEOREMS ON THE SCHUR DERIVATIVE 323

where (m ) denotes a binomial coefficient. Then

0

(2.3) * k,r

(r<k)

Γ-l

k(k-ι)/2

Γ !

where Ui is an integer.

Lemma 1 is will known. To prove Lemma 2, we note first that the binomial

coefficient ( x ) is a polynomial in x of degree r. Since by (2.1)

k k-i

Σ ( - 1 ) ' φ P

i{i~ι)/2

 P

r{k-i] = Π (pr~pι)>
i = o i = 0

the several parts of (2.3 ) follow without much difficulty.

LEMMA 3. For an arbitrary sequence { am \,

(2.4)

i = 0

This formula, which is given by Schur, is easily proved. In view of (2.1) it

can be put in the following symbolic form:

( 2 . 5 )

i =0

a iwhere it is understood that after expansion of the right member a is to be re-

placed by α,.

Suppose now that p \ a and put

(2.6) a^P-^Pm = I + pm + ιqm,

so that q is integral. Then by the binomial theorem we have

Pr

i ) m + s Λ ) )p \ Λ

i = 0
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and by ( 2 . 4 ) this implies

s = 0

Σ p(m+ι)'?i έ
1 = 0 5 = 0

l = 0

1 prm+r(r+i)/2 ^ pj

i = r + i l '

by (2.3); ϋ r / and Ur ι have the same meaning as in Lemma 2. We thus get

1 r ' i PT l

r ! m . . / ! m »

We next set up a similar formula for ΔΓσ , where ί7 is defined by (2.6). In-

deed substitution in (2.4) gives

5 =0

Γ P Γ

= S ^ ( _ χ ) Γ - 5 [ Γ ] p ( r - s ) ( r - s - 0 / 2 - ( t f i + s + l ) \ ^ / p s

s - o / = i

i = 1 s = o

T Γ

p rm+r(r+0/2 ^ Γ + l T̂ Γ

i = 1

F -
i = r + 2 ι '
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by a slight modification of Lemma 2; the coefficient UΓ ι is integral and is de-

fined by

J _ Dr(r-i)/2 ij' . = y*

i\ r'1 *-"
1 5 = 0

Hence

(2.8) Δ V = — ^ C 1 Π ( P ' - D + t -T P ( l B + 0 ( i - Γ - ι ) d £/;..

Using the same method we can also evaluate ί\rapm. It follows from (2 .6)

that

(2.9) aPm + s = aPm ( 1 + p -

and thus substitution in (2 .4) yields

Γ

p(r-5)(r-s-i)/2 V^

s = 0 ί = o

er r

i=o 5 = o

Since ( s ) is a polynomial in ps of degree i, the same reasoning as before ap-

plies and we get after a little manipulation

( 2 . 1 0 ,

where {/ . is integral.

Comparison of ( 2 . 7 ) and (2 .10) shows that ( 2 . 7 ) is included in ( 2 . 1 0 ) . In-

deed it is easy to set up the following formula which includes both ( 2 . 7 ) and

(2.10) :
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2.11) Δ rα*Pm = — akPm qr kr

r ! m

Π = 1 ( p ι ' - υ

^ , i ^ Vm r,ι

where F Γ > , = F . ^ is integral and k > 1. The proof of (2.11) is exactly like the

proof of (2.10); the first step is to raise both members of (2.9) to the A -th power.

3. The main results. In order to make use of (2.7) and (2.10) it is evidently

necessary to examine p ' m + ι ' ^ "~ Γ ' / i ! . We suppose i > r, r<p. Then in the first

place it is easily seen [6, p. 462] that pι~Γ/i\ is integral (mod p ) , and a simple

discussion shows that pι~τ / i\ is divisible by p unless ( i ) i = p, r = p - 1, or

( i i ) ί = p + 1, r = p. We now state:

THEOREM 1. The derivative Λ Γ α ^ p ~ 1 ^ m is integral for 1 < r < p - 1, w/u'Ze

Δ ^ α ^ " " 1 ^ " 1 Λαs the denominator p provided aP~ι £ 1 (mod p 2 ); i/ α ^ " 1 = 1

(mod p 2 ) ί/ierc αZZ Δ Γ α ^ p " L ^ m are integral.

T H E O R E M 2. For l < r < p, m > 0,

(3.1) Δ r > - ι > P m

 s i q

r

m Π ( p ' - D (modpm);

1 = 1

if r < p - 1, ίΛe congruence is valid (mod p m + x ) .

THEOREM 3. The derivative Δ Γ a p m is integral for 1 < r < p - 1, whileΔpapm

has the denominator p provided aP~ι φ 1 (mod p 2 ); if aP~ι = 1 (mod p 2 ) then all

Δr

a(p-i)pm

 a r e integral

T H E O R E M 4. For 1 < r < p, m > 0,

χ Π^^p^-l)
( 3.2) Δ Γ aP m

 Ξ — aP m / (mod pm )
r] " (P-IY

if r < p - 1, the congruence is valid ( m o d p m + ι )

If we make use of (2 .11) rather than ( 2 . 7 ) or (2 .10) we get the following

more general result .

T H E O R E M 4' . For I < r < p, m > 0
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if r < p - 1, the congruence is valid (mod

To apply (2.8) we first examine pι~r~ι/i\ for i > r + 1, r + 1 < p. We have:

THEOREM 5. The derivative ΔΓί7 is integral for 1 < r < p - 2, while Δp~ιq

Λαs ίAe denominator p provided aP~ι ^ 1 (mod p 2 ) ; if aP~ι = 1 (mod p 2 ) ί/iê z all

Δrq are integral.

T H E O R E M 6 . For 1 < r < p - 1 , m > 0 ,

(3.3) Δ ' ? m a ^ - L ^ ,; + 1

if r < p - 2, the congruence is valid (mod p m + 1 ) .

Theorem 3 is of course Schur's theorem; Theorems 5 and 6 are due to Zorn.

The remaining theorems are presumably new.

4. Generalization for algebraic numbers. Let k be an algebraic number field

of degree n and let *p denote a prime ideal of k; also let

(4.1) Λ φ = p / ; μ e | P , Ϊ3e + 1 + p;

for simplicity we assume p > n. If OC A; is integral (mod Jo) and ^/p (X, then by

Fermat's Theorem

(4.2) α ^ " 1 = 1 + β, β = 0 (mod ^ ) .

It follows from (4.2) that

(4.3) α ( P / - 1 ' P m = 1 + βm,

while (4.3) implies

Pr

(4.4) a(Pf-

Then, exactly as in § 2,

22 (
= o
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r pr

p (r+i)/2 ^r a(pf-l)pm

 = y* (_ ]_ )Γ-s j-r-j (r-s) (r-s-1)/2 y* (p s ) ni

S = 0 i = 0

= Σ &m Σ ( - i Γ φ ( p )p(r"s)(r"s

i = o s = o

application of Lemma 2 now leads to

) £ r(m + l)

ι = l i = r+i " *

where ωΓji is integral. Note that for e > 1 the right member of (4.5) need not be

integral. Accordingly we assume e = 1; the assumption p > n is then no longer

needed.

We now have:

T H E O R E M 7. Let N\) = p^, !p2 Jf p, ^ α; ίΛerc ΔΓ oSp ι^pm is integral for

1 £ Γ ^ P ~~ 1» while SP θSp ~ι'P has the denominator p provided oP ~ι φ 1

(mod )θ2 ); if ap ~ι = 1 (mod )θ2 ) ί^ezi α/Z ΔΓ COP " ^ ^ are integral.

THEOREM 8. With the hypotheses of Theorem 7,

I I βm \r Γ

(4.6)

for r < p; if r < p — 1 ίAe congruence is valid (mod jθm + 1 ) .

In order to extend Theorems 3 and 4" it is convenient to suppose that \) is a

prime ideal of the first degree. The following two theorems may be proved.

THEOREM 9. Let /V£ = p, }θ2 \ p, ^ CX; ίAen ΔΓ α p m is integral for \<r <

p - 1, ^/ii'Ze Δ p α p Aαs ίΛe denominator p provided θP~x 4 1 ( m o d £>2 );if θP~ι =

1 (mod ίp2 ) then all Δ Γ θP are integral.

THEOREM 10. With the hypotheses of Theorem 9,

1 IkβmV Π = 1 ( p ' - 1 )
4.7)

r ! \ p m + ι

for r < p; if r < p - 1 the congruence is valid (mod
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For brevity we omit the extension of Theorems 5 and 6 for algebraic numbers.

5. Another generalization. Changing slightly the notation (1.1) we put

(5.1) Δ o = (α - α . ) / p / + ι ,

P mpι mpι+ι mpι

and

Δ Γ α . = ( Δ Γ ~ ι α . , - Ar~la .)/pi+ί.
P mpι P mp1*! P mpι V

Then clearly ΔpΔ^ = Δ^Δp. If a and k are arbitrary integers then if follows from

a well-known theorem concerning (1.4) that

(5.2) 8ka
k = Δ P i •••ΔPsα

/c (k = p\ι ...pe/)

is integral. In view of Schur's theorem we can state the following generalization.

THEOREM 11. Let (a9k) = 1 and let r < the smallest prime dividing k; define

(5.3) 8r

ka
k = δ A δ p α * .

Then δί.α, is integral (or k > 1.

Indeed because of the commutativity of the operators Δp we need only ob-

serve that (5.2) and (5.3) imply

(5.4) S^-Δ^. .Δ;/

and the theorem follows immediately.

The restriction (a9k) = 1 can be removed by taking k sufficiently large as we

shall see below.

A slight extension of Theorem 11 is contained in:

THEOREM 12. Let

{a,k) = 1, k = p\ι . . . pe

s

s ,

and let r.<p., / = 1, , s; ίAerc

(5.5) ^ - ^ ' /

is integral for all k > 1.

We rejnark that the function defined in (5.2) can also be expressed in the form
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where μ{d) is the Mδbius function and

similarly (5.3) becomes

1 d \ k

Formulas of a different kind can be obtained by applying ( 2.4 ) to ( 5.4) and (5.5);

for example, (2.5) suggests the following symbolic formula:

8r

Lak = k~r F T P Γ ( Γ + O / 2 Π «*'" Π ( « / - P ) ,
7 = 1 7 = 1 i=o

where after expansion a ι a s is to be replaced by am,

A similar but slightly more complicated formula can be stated for (5.5). We shall

omit the generalization of Theorems 11 and 12 to algebraic numbers.

6. Applications. In the theorems of § 2 it is assumed that p Jf a. However

Theorem 3, for example, is easily extended to the case p | α. We can state that

ΔΓα^ is integral for r < p — 1 and arbitrary a provided m > r. For let p | a; then,

in view of (2.4), it is only necessary to verify that

m+r-i + i ; ( £ _ ! ) > rm + i Γ ( Γ + D
2 2

for 0 < i < r < p - 1, r> m. This can be proved by induction with respect to m. In

the next place since Theorem 11 is a direct consequence of Theorem 3 we infer

that it also holds for all a provided r < min ( e l f , e s ) in the notation of

Theorem 11.

Now consider the number

(6.1) C A -
a = l
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where Aa denote integers (mod p) and n > 1 is arbitrary. Then

(6.2) Δ Γ ^ + - = Σ Aa^ak+Pm U > 0 ) ,
P a = l

so that by the remark in the previous paragraph ΔΓ C m is certainly integral

(mod p) provided r < p — 1 and r < m. In the second place we may apply the oper-

ator 8r

k defined in (5.2) and (5.3) and get

we infer that <5̂  C, is integral provided r < the smallest prime dividing k and

r< min (il9 ••• , is ), the notation being that of (5.2). Indeed a somewhat more

general result can be obtained by applying Theorem 15, namely,

(6.4) Δjj . Δ ^ C ^ <Λ>0)

is integral provided rt < pt,
 r

t < e

t9 t - 1, , s .

As an instance of (6.1) we take the well-known formula for the Euler poly-

nomial

m Λ sΛ

(6.5) Em(x) = Σ, — Σ, (-
s = 0

2 s —

(We use the notation of Norlund [4] for the Euler and Bernoulli polynomials.) If

p > 2 and x is integral (mod p) the preceding discussion applies. In particular

using (2.4) we have:

THEOREM 13. Let p > 2 and x be integral (mod p). Then

k+p i : (-I)'' φ p ^ - ^ Ek+pm-ά*)
i =0

7*5 integral (mod p) provided r < p, r <m.

For brevity we omit the generalizations corresponding to (6 .3) and ( 6 . 4 ) .

The special case

(6 .6) Σ μ(d) Ek+e(x) = 0 (moάm)
de - m
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may be noted

As for the Bernoulli polynomials, it can be shown that if p \ a and x is inte-

gral (mod p) then a formula of the type (6.1) holds for

(6.7)

(See for example Nielsen [3, Ch. 14 ].) Thus it follows that

Δ ' 0 * + P » ( ί ί ) = p- m " r ( r + 1 ) / 2 £ (-i) ' Φ p t ( i"1 ) / 2 % » - , ( * )
1 = 0

is integral for r < p, r < m. If now we assume p - 1 /f k and take α a primitive root

(mod p) such that aP~ι = 1 (mod pΓ) we get:

THEOREM 14. Lei p > 2 am/ Λ; &e integral (mod p); pw£ ^fc(
x) = β .̂ (x)/k.

Ί hen if p — 1 J( fc + 1,

r

i = o

is integral for r < p, r < m

Finally corresponding to (6.6) we state

for βk(x) as defined in (6.7).
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