SOME THEOREMS ON THE SCHUR DERIVATIVE

L. CARLITZ

1. Introduction. Given the sequence $\{a_m\}$ and $p \neq 0$, Schur [5] defined the derivative a'_m by

(1.1)
$$a'_m = \Delta a_m = (a_{m+1} - a_m)/p^{m+1};$$

higher derivatives are defined by means of

$$a_m^{(r)} = \Delta^r a_m = \Delta(a_m^{(r-1)}), \quad a_m^{(0)} = a_m.$$

In particular if p is a prime, a an integer and $a_m = a^{p^m}$, then by Fermat's theorem

$$a'_m = (a^{p^{m+1}} - a^{p^m})/p^{m+1}$$

is integral. Schur proved that if $p \nmid a$, then also the derivatives

$$\Delta^2 a^{p^m}$$
, $\Delta^3 a^{p^m}$, ..., $\Delta^{p-1} a^{p^m}$

are all integral. Moreover if $a_0' \equiv 0 \pmod{p}$ then all the derivatives $\Delta^r a^{p^m}$ are integral, while if $a_0' \not\equiv 0 \pmod{p}$ then every number of $\Delta^p a^{p^m}$ has the denominator p.

A. Brauer [1] gave another proof of Schur's results. About the same time Zorn [6] proved these results by p-adic methods and indeed proved the following stronger theorem. For $x \equiv 1 \pmod{p}$, define

$$X_m = (x^{p^m} - 1)/p^{m+1},$$

and as above let $\Delta^r X_m$ denote the r-th derivative of X_m ; then

(1.2)
$$\Delta^{r} X_{m} \equiv \frac{(p-1) (p^{2}-1) \cdots (p^{r}-1)}{(r+1)!} X_{m}^{r+1} \pmod{p^{m}}$$

provided r < p; for $r , the congruence (1.2) holds (mod <math>p^{m+1}$). It is also shown that Schur's theorem is an easy consequence of Zorn's results.

Received November 16, 1951.

Pacific J. Math. 3 (1953), 321-332

In the present paper we shall give a simple elementary proof of Zorn's congruences. In addition we prove, for example, that for $r \leq p$,

(1.3)
$$\Delta^{r} a^{p^{m}} \equiv \frac{1}{r!} a^{p^{m}} q_{m}^{r} \frac{\prod_{i=1}^{r} (p^{i} - 1)}{(p-1)^{r}} \pmod{p^{m}},$$

where

$$a^{(p-1)}p^m = 1 + p^{m+1}q_m;$$

for $r , (1.3) holds (mod <math>p^{m+1}$).

We next ($\S 4$) extend Schur's and Zorn's theorems to algebraic numbers. In $\S 5$ we consider a generalization of another kind suggested by the arithmetic function (see for example [2, p. 84-86])

(1.4)
$$F(a, m) = \sum_{de=m} \mu(d) a^{e}.$$

Finally (§6), we give some applications of Schur's theorem to the Euler and Bernoulli polynomials and numbers; the results are analogous to Kummer's congruences [3, Ch. 12]. In particular $\Delta^r E_{k+p^m}$ is integral (mod p) for p>2, r< p, $r\leq m$; also $\Delta^r (B_{k+p^m}/(k+p^m))$ is integral (mod p) for $p-1 \nmid k+1$, r< p, $r\leq m$. Here E_k and B_k denote the Euler and Bernoulli numbers in the notation of Nörlund [3].

2. Formulas for $\Lambda^r a_m$. We shall require some preliminary results.

LEMMA 1. The following identity holds:

(2.1)
$$\prod_{i=0}^{r=1} (x-p^i) = \sum_{i=0}^{r} (-1)^i \begin{bmatrix} r \\ i \end{bmatrix} p^{i(i-1)/2} x^{r-i},$$

where

LEMMA 2. Put

$$W_{k,r} = \sum_{i=0}^{k} (-1)^{i} \begin{bmatrix} k \\ i \end{bmatrix} (p_{r}^{k-i}) p^{i(i-1)/2},$$

where $\binom{m}{r}$ denotes a binomial coefficient. Then

(2.3)
$$W_{k,r} = \begin{cases} 0 & (r < k) \\ \frac{1}{r!} \prod_{i=0}^{r-1} (p^r - p^i) & (r = k) \\ \frac{1}{r!} p^{k(k-1)/2} U_{k,r} & (r > k), \end{cases}$$

where $U_{k,r}$ is an integer.

Lemma 1 is will known. To prove Lemma 2, we note first that the binomial coefficient $\binom{x}{r}$ is a polynomial in x of degree r. Since by (2.1)

$$\sum_{i=0}^{k} (-1)^{i} \begin{bmatrix} k \\ i \end{bmatrix} p^{i(i-1)/2} p^{r(k-i)} = \prod_{i=0}^{k-1} (p^{r} - p^{i}),$$

the several parts of (2.3) follow without much difficulty.

LEMMA 3. For an arbitrary sequence $\{a_m\}$,

(2.4)
$$\Delta^{r} a_{m} = p^{-rm-r(r+1)/2} \sum_{i=0}^{r} (-1)^{i} \begin{bmatrix} r \\ i \end{bmatrix} p^{i(i-1)/2} a_{m+r-i}.$$

This formula, which is given by Schur, is easily proved. In view of (2.1) it can be put in the following symbolic form:

(2.5)
$$\Delta^{r} a_{m} = p^{-rm-r(r+1)/2} a^{m} \prod_{i=0}^{r-1} (a-p^{i}),$$

where it is understood that after expansion of the right member \boldsymbol{a}^k is to be replaced by \boldsymbol{a}_k .

Suppose now that $p \not\mid a$ and put

$$a^{(p-1)p^m} = 1 + p^{m+1}q_m,$$

so that \boldsymbol{q}_{m} is integral. Then by the binomial theorem we have

$$a^{(p-1)p^{m+s}} = \sum_{i=0}^{p^r} {p^s \choose i} p^{(m+1)i} q_m^i \qquad (r \ge s),$$

and by (2.4) this implies

by (2.3); $W_{r,i}$ and $U_{r,i}$ have the same meaning as in Lemma 2. We thus get

$$(2.7) \quad \Delta^{r} a^{(p-1)p^{m}} = \frac{1}{r!} q_{m}^{r} \prod_{i=1}^{r} (p^{i}-1) + \sum_{i=r+1}^{p^{r}} \frac{1}{i!} p^{(m+1)(i-r)} q_{m}^{i} U_{r,i}.$$

We next set up a similar formula for $\Delta^r q_m$, where q_m is defined by (2.6). Indeed substitution in (2.4) gives

$$p^{rm+r(r+1)/2} \Delta^{r} q_{m} = \sum_{s=0}^{r} (-1)^{r-s} \begin{bmatrix} r \\ s \end{bmatrix} p^{(r-s)(r-s-1)/2 - (m+s+1)} (a^{(p-1)p^{m+s}} - 1)$$

$$= \sum_{s=0}^{r} (-1)^{r-s} \begin{bmatrix} r \\ s \end{bmatrix} p^{(r-s)(r-s-1)/2 - (m+s+1)} \sum_{i=1}^{p^{r}} (p^{s}) p^{(m+1)i} q_{m}^{i}$$

$$= \sum_{i=1}^{p^{r}} p^{(m+1)(i-1)} q_{m}^{i} \sum_{s=0}^{r} (-1)^{r-s} \begin{bmatrix} r \\ s \end{bmatrix} (p^{s}) p^{(r-s)(r-s-1)/2 - s}$$

$$= \frac{1}{(r+1)!} p^{rm+r(r+1)/2} q_{m}^{r+1} \prod_{i=1}^{r} (p^{i} - 1)$$

$$+ \sum_{i=r+2}^{p^{r}} \frac{1}{i!} p^{(m+1)(i-1)+r(r-1)/2} q_{m}^{i} U'_{r,i},$$

by a slight modification of Lemma 2; the coefficient $U_{r,i}^{\prime}$ is integral and is defined by

$$\frac{1}{i!} p^{r(r-1)/2} U'_{r,i} = \sum_{s=0}^{r} (-1)^{s} \begin{bmatrix} r \\ s \end{bmatrix} (p_{i}^{r-s}) p^{s(s-1)/2 - (r-s)}.$$

Hence

$$(2.8) \ \Delta^{r} q_{m} = \frac{1}{(r+1)!} \ q_{m}^{r+1} \ \prod_{i=1}^{r} \ (p^{i}-1) + \sum_{i=r+2}^{p^{r}} \frac{1}{i!} \ p^{(m+1)(i-r-1)} \ q_{m}^{i} \ U'_{r,i}.$$

Using the same method we can also evaluate $\Delta^r a^{p^m}$. It follows from (2.6) that

(2.9)
$$a^{p^{m+s}} = a^{p^m} \left(1 + p^{m+1} q_m\right)^{e_s} \qquad \left(e_s = \frac{p^s - 1}{p - 1}\right),$$

and thus substitution in (2.4) yields

$$p^{rm+r(r+1)/2} \Delta^r a^{p^m} = a^{p^m} \sum_{s=0}^r (-1)^{r-s} \begin{bmatrix} r \\ s \end{bmatrix} p^{(r-s)(r-s-1)/2} \sum_{i=0}^{e_r} {e_s \choose i} p^{(m+1)i} q_m^i$$

$$= a^{p^m} \sum_{i=0}^{e_r} p^{(m+1)i} q_m^i \sum_{s=0}^r (-1)^{r-s} \begin{bmatrix} r \\ s \end{bmatrix} {e_s \choose i} p^{(r-s)(r-s-1)/2}.$$

Since $\binom{e_s}{i}$ is a polynomial in p^s of degree i, the same reasoning as before applies and we get after a little manipulation

(2.10)
$$\Delta^{r} a^{p^{m}} = \frac{1}{r!} a^{p^{m}} q_{m}^{r} \frac{\prod_{i=1}^{r} (p^{i} - 1)}{(p-1)^{r}} + a^{p^{m}} \sum_{i=r+1}^{e_{r}} \frac{1}{i!} p^{(m+1)(i-r)} q_{m}^{i} U_{r,i}^{"},$$

where $U_{r,i}^{"}$ is integral.

Comparison of (2.7) and (2.10) shows that (2.7) is included in (2.10). Indeed it is easy to set up the following formula which includes both (2.7) and (2.10):

(2.11)
$$\Delta^{r} a^{kp^{m}} = \frac{1}{r!} a^{kp^{m}} q_{m}^{r} k^{r} \frac{\prod_{i=1}^{r} (p^{i} - 1)}{(p-1)^{r}} + a^{kp^{m}} \sum_{i=r+1}^{e_{r}} \frac{1}{i!} p^{(m+1)(i-r)} q_{m}^{i} V_{r,i},$$

where $V_{r,i} = V_{r,i}^{(k)}$ is integral and $k \ge 1$. The proof of (2.11) is exactly like the proof of (2.10); the first step is to raise both members of (2.9) to the k-th power.

3. The main results. In order to make use of (2.7) and (2.10) it is evidently necessary to examine $p^{(m+1)(i-r)}/i!$. We suppose i > r, $r \le p$. Then in the first place it is easily seen [6, p.462] that $p^{i-r}/i!$ is integral (mod p), and a simple discussion shows that $p^{i-r}/i!$ is divisible by p unless (i) i = p, r = p - 1, or (ii) i = p + 1, r = p. We now state:

Theorem 1. The derivative $\Delta^r a^{(p-1)p^m}$ is integral for $1 \le r \le p-1$, while $\Delta^p a^{(p-1)p^m}$ has the denominator p provided $a^{p-1} \not\equiv 1 \pmod{p^2}$; if $a^{p-1} \equiv 1 \pmod{p^2}$ then all $\Delta^r a^{(p-1)p^m}$ are integral.

THEOREM 2. For 1 < r < p, m > 0,

(3.1)
$$\Delta^{r} a^{(p-1)p^{m}} \equiv \frac{1}{r!} q_{m}^{r} \prod_{i=1}^{r} (p^{i} - 1) \pmod{p^{m}};$$

if r < p-1, the congruence is valid $(\bmod p^{m+1})$.

THEOREM 3. The derivative $\Delta^r a^{p^m}$ is integral for $1 \le r \le p-1$, while $\Delta^p a^{p^m}$ has the denominator p provided $a^{p-1} \not\equiv 1 \pmod{p^2}$; if $a^{p-1} \equiv 1 \pmod{p^2}$ then all $\Delta^r a^{(p-1)p^m}$ are integral.

THEOREM 4. For $1 \le r \le p$, $m \ge 0$,

(3.2)
$$\Delta^{r} a^{p^{m}} \equiv \frac{1}{r!} a^{p^{m}} q_{m}^{r} \frac{\prod_{i=1}^{r} (p^{i} - 1)}{(p-1)^{r}} \pmod{p^{m}};$$

if $r , the congruence is valid <math>(\text{mod } p^{m+1})$.

If we make use of (2.11) rather than (2.7) or (2.10) we get the following more general result.

THEOREM 4'. For 1 < r < p, m > 0

$$\Delta^{r} a^{kp^{m}} \equiv \frac{1}{r!} a^{kp^{m}} q_{m}^{r} k^{r} \frac{\prod_{i=1}^{r} (p^{i} - 1)}{(p-1)^{r}} \pmod{p^{m}};$$

if $r , the congruence is valid <math>(\text{mod } p^{m+1})$.

To apply (2.8) we first examine $p^{i-r-1}/i!$ for i > r+1, $r+1 \le p$. We have:

Theorem 5. The derivative $\Delta^r q_m$ is integral for $1 \le r \le p-2$, while $\Delta^{p-1} q_m$ has the denominator p provided $a^{p-1} \ne 1 \pmod{p^2}$; if $a^{p-1} \equiv 1 \pmod{p^2}$ then all $\Delta^r q_m$ are integral.

THEOREM 6. For $1 \le r \le p - 1$, $m \ge 0$,

(3.3)
$$\Delta^{r}q_{m} = \frac{1}{(r+1)!} q_{m}^{r+1} \prod_{i=1}^{r} (p^{i}-1) \pmod{p^{m}};$$

if $r , the congruence is valid <math>(\text{mod } p^{m+1})$.

Theorem 3 is of course Schur's theorem; Theorems 5 and 6 are due to Zorn. The remaining theorems are presumably new.

4. Generalization for algebraic numbers. Let k be an algebraic number field of degree n and let β denote a prime ideal of k; also let

$$(4.1) N \mathfrak{p} = p^f; \mathfrak{p}^e \mid p, \mathfrak{p}^{e+1} \nmid p;$$

for simplicity we assume p > n. If α k is integral (mod β) and $\beta \not \downarrow \alpha$, then by Fermat's Theorem

(4.2)
$$\alpha^{p^{f-1}} = 1 + \beta, \quad \beta \equiv 0 \pmod{\mathfrak{p}}.$$

It follows from (4.2) that

(4.3)
$$\alpha^{(p^{f}-1)p^{m}} = 1 + \beta_{m}, \quad \beta_{m} \equiv 0 \pmod{p^{me+1}},$$

while (4,3) implies

(4.4)
$$\alpha^{(p^{f}-1)p^{m+s}} = \sum_{i=0}^{p^{r}} {p^{s} \choose i} \beta_{m}^{i} \qquad (r \geq s).$$

Then, exactly as in $\S 2$,

$$p^{rm+r(r+1)/2} \Delta^{r} \alpha^{(p^{f}-1)p^{m}} = \sum_{s=0}^{r} (-1)^{r-s} \begin{bmatrix} r \\ s \end{bmatrix} p^{(r-s)(r-s-1)/2} \sum_{i=0}^{p^{r}} (P_{i}^{s}) \beta_{m}^{i}$$

$$= \sum_{i=0}^{p^{r}} \beta_{m}^{i} \sum_{s=0}^{r} (-1)^{r-s} \begin{bmatrix} r \\ s \end{bmatrix} (P_{i}^{s}) p^{(r-s)(r-s-1)/2};$$

application of Lemma 2 now leads to

$$(4.5)\Delta^{r} \alpha^{(p^{f-1})p^{m}} = \frac{1}{r!} p^{-r(m+1)} \beta_{m}^{r} \prod_{i=1}^{r} (p^{i}-1) + \sum_{i=r+1}^{p^{r}} \frac{1}{i!} p^{-r(m+1)} \beta_{m}^{i} \omega_{r,i},$$

where $\omega_{r,i}$ is integral. Note that for e > 1 the right member of (4.5) need not be integral. Accordingly we assume e = 1; the assumption p > n is then no longer needed.

We now have:

Theorem 7. Let $N\mathfrak{p}=p^f, \ \mathfrak{p}^2 \not p, \ \mathfrak{p} \not \alpha;$ then $\Delta^r \ \alpha^{(p^f-1)p^m}$ is integral for $1 \leq r \leq p-1, \ while \ \Delta^p \ \alpha^{(p^f-1)p^m}$ has the denominator p provided $\alpha^{p^f-1} \not \equiv 1 \pmod{\mathfrak{p}^2};$ if $\alpha^{p^f-1} \equiv 1 \pmod{\mathfrak{p}^2}$ then all $\Delta^r \ \alpha^{(p^f-1)p^m}$ are integral.

THEOREM 8. With the hypotheses of Theorem 7,

(4.6)
$$\Delta^{r} \alpha^{(p^{f-1})p^{m}} \equiv \frac{1}{r!} \left(\frac{\beta_{m}}{p^{m+1}} \right)^{r} \prod_{i=1}^{r} (p^{i} - 1) \pmod{p^{m}}$$

for $r \leq p$; if $r the congruence is valid (mod <math>p^{m+1}$).

In order to extend Theorems 3 and 4'it is convenient to suppose that \$\pi\$ is a prime ideal of the first degree. The following two theorems may be proved.

THEOREM 9. Let $N \mathfrak{p} = p$, $\mathfrak{p}^2 \not\models p$, $\mathfrak{p} \not\models \alpha$; then $\Delta^r \alpha^{p^m}$ is integral for $1 \leq r \leq p-1$, while $\Delta^p \alpha^{p^m}$ has the denominator p provided $\alpha^{p-1} \not\equiv 1 \pmod{\mathfrak{p}^2}$; if $\alpha^{p-1} \equiv 1 \pmod{\mathfrak{p}^2}$ then all $\Delta^r \alpha^{p^m}$ are integral.

THEOREM 10. With the hypotheses of Theorem 9,

(4.7)
$$\Delta^r \alpha^{kp^m} \equiv \frac{1}{r!} \left(\frac{k \beta_m}{p^{m+1}} \right)^r \frac{\prod_{i=1}^r (p^i - 1)}{(p-1)^r} \pmod{p^m}$$

for $r \leq p$; if $r the congruence is valid <math>\pmod{p^{m+1}}$.

For brevity we omit the extension of Theorems 5 and 6 for algebraic numbers.

5. Another generalization. Changing slightly the notation (1.1) we put

(5.1)
$$\Delta_{p} a_{mpi} = (a_{mpi+1} - a_{mpi})/p^{i+1},$$

and

$$\Delta_{p}^{r} a_{mp\,i} = (\Delta_{p}^{r-1} a_{mp\,i+1} - \Delta_{p}^{r-1} a_{mp\,i})/p^{i+1}.$$

Then clearly $\Delta_p \Delta_q = \Delta_q \Delta_p$. If a and k are arbitrary integers then if follows from a well-known theorem concerning (1.4) that

$$\delta_k a^k = \Delta_{p_1} \cdots \Delta_{p_s} a^k \qquad (k = p_1^{e_1} \cdots p_s^{e_s})$$

is integral. In view of Schur's theorem we can state the following generalization.

THEOREM 11. Let (a,k) = 1 and let r < the smallest prime dividing k; define

$$\delta_k^r a^k = \delta_k \delta_k^{r-1} a^k.$$

Then $\delta_k^r a_k$ is integral for k > 1.

Indeed because of the commutativity of the operators Δ_{p_i} we need only observe that (5.2) and (5.3) imply

(5.4)
$$\delta_k^r a^k = \Delta_{p_1}^r \cdots \Delta_{p_s}^r a^k$$

and the theorem follows immediately.

The restriction (a,k) = 1 can be removed by taking k sufficiently large as we shall see below.

A slight extension of Theorem 11 is contained in:

THEOREM 12. Let

$$(a,k) = 1, \quad k = p_1^{e_1} \cdots p_s^{e_s},$$

and let $r_i < p_i$, $j = 1, \dots, s$; then

$$\Delta_{p_1}^{r_1} \cdots \Delta_{p_s}^{r_s} a^k$$

is integral for all k > 1.

We remark that the function defined in (5.2) can also be expressed in the form

$$\delta_k a^k = \frac{(-1)^s}{k_1} \sum_{d \mid k} \mu(d) a^{dk},$$

where $\mu(d)$ is the Möbius function and

$$k_1 = p_1^{e_1+1} \cdots p_s^{e_s+1};$$

similarly (5.3) becomes

$$\delta_k^r a^k = \frac{(-1)^s}{k_1} \sum_{d \mid k} \mu(d) \, \delta_k^{r-1} a^{dk}.$$

Formulas of a different kind can be obtained by applying (2.4) to (5.4) and (5.5); for example, (2.5) suggests the following symbolic formula:

$$\delta_k^r a^k = k^{-r} \prod_{j=1}^s p_j^{r(r+1)/2} \cdot \prod_{j=1}^s a_j^{e_j} \prod_{i=0}^{r-1} (a_j - p_j^i),$$

where after expansion $a_1^{f_1} \cdots a_s^{f_s}$ is to be replaced by a^m ,

$$m = p_1^{f_1} \cdots p_s^{f_s}.$$

A similar but slightly more complicated formula can be stated for (5.5). We shall omit the generalization of Theorems 11 and 12 to algebraic numbers.

6. Applications. In the theorems of § 2 it is assumed that $p \not = a$. However Theorem 3, for example, is easily extended to the case $p \mid a$. We can state that $\Delta^r a^{p^m}$ is integral for $r \leq p-1$ and arbitrary a provided $m \geq r$. For let $p \mid a$; then, in view of (2.4), it is only necessary to verify that

$$p^{m+r-i} + \frac{1}{2} i(i-1) \ge rm + \frac{1}{2} r(r+1)$$

for $0 \le i \le r \le p-1$, $r \ge m$. This can be proved by induction with respect to m. In the next place since Theorem 11 is a direct consequence of Theorem 3 we infer that it also holds for all a provided $r \le \min(e_1, \dots, e_s)$ in the notation of Theorem 11.

Now consider the number

$$(6.1) C_k = \sum_{a=1}^n A_a a^k,$$

where A_a denote integers (mod p) and $n \ge 1$ is arbitrary. Then

(6.2)
$$\Delta^{r} C_{k+p^{m}} = \sum_{a=1}^{n} A_{a} \Delta^{r} a^{k+p^{m}} \qquad (k \ge 0),$$

so that by the remark in the previous paragraph $\Delta^r C_{p^m}$ is certainly integral $(\bmod p)$ provided $r \leq p-1$ and $r \leq m$. In the second place we may apply the operator δ^r_k defined in (5.2) and (5.3) and get

(6.3)
$$\delta_k^r C_{h+k} = \sum_{a=1}^n A_a \delta_k^r a^{h+k};$$

we infer that $\delta_k^r C_k$ is integral provided r < the smallest prime dividing k and $r \le \min (i_1, \dots, i_s)$, the notation being that of (5.2). Indeed a somewhat more general result can be obtained by applying Theorem 15, namely,

$$\Delta_{p_1}^{r_1} \cdots \Delta_{p_s}^{r_s} C_{h+k} \qquad (h \ge 0)$$

is integral provided $r_t < p_t, r_t \le e_t, t = 1, \cdots, s$.

As an instance of (6.1) we take the well-known formula for the Euler polynomial

(6.5)
$$E_m(x) = \sum_{s=0}^m \frac{1}{2^s} \sum_{i=0}^s (-1)^i {s \choose i} (x+i)^m.$$

(We use the notation of Nörlund [4] for the Euler and Bernoulli polynomials.) If p > 2 and x is integral (mod p) the preceding discussion applies. In particular using (2.4) we have:

THEOREM 13. Let p > 2 and x be integral (mod p). Then

$$\Delta^{r} E_{k+p^{m}}(x) = p^{-rm-r(r+1)/2} \sum_{i=0}^{r} (-1)^{i} \begin{bmatrix} r \\ i \end{bmatrix} p^{i(i-1)/2} E_{k+p^{m-i}}(x)$$

is integral (mod p) provided $r < p, r \le m$.

For brevity we omit the generalizations corresponding to (6.3) and (6.4). The special case

(6.6)
$$\sum_{de = m} \mu(d) E_{k+e}(x) \equiv 0 \pmod{m}$$

may be noted

As for the Bernoulli polynomials, it can be shown that if $p \nmid a$ and x is integral (mod p) then a formula of the type (6.1) holds for

(6.7)
$$\beta_k(x) = \frac{a^{k+1} - 1}{k+1} B_{k+1}(x).$$

(See for example Nielsen [3, Ch. 14].) Thus it follows that

$$\Delta^{r} \beta_{k+p^{m}}(x) = p^{-rm-r(r+1)/2} \sum_{i=0}^{r} (-1)^{i} \begin{bmatrix} r \\ i \end{bmatrix} p^{i(i-1)/2} \beta_{k+p^{m-i}}(x)$$

is integral for r < p, $r \le m$. If now we assume $p - 1 \nmid k$ and take a a primitive root \pmod{p} such that $a^{p-1} \equiv 1 \pmod{p^r}$ we get:

THEOREM 14. Let p > 2 and x be integral (mod p); put $H_k(x) = B_k(x)/k$. Then if $p - 1 \nmid k + 1$,

$$\Delta^{r} H_{k+p^{m}}(x) = p^{-rm-r(r+1)/2} \sum_{i=0}^{r} (-1)^{i} \begin{bmatrix} r \\ i \end{bmatrix} p^{i(i-1)/2} H_{k+p^{m-i}}(x)$$

is integral for r < p, $r \le m$.

Finally corresponding to (6.6) we state

$$\sum_{de=m} \mu(d) \beta_{k+e}(x) \equiv 0 \pmod{m},$$

for $\beta_k(x)$ as defined in (6.7).

REFERENCES

- 1. A. Brauer, Über eine Erweiterung des kleinen Fermatschen Satzes, Math. Z. 42 (1937), 255-262.
 - 2. L. E. Dickson, History of the theory of numbers, vol. 1, Washington, 1919.
 - 3. Niels Nielsen, Traité élémentaire des nombres de Bernoulli, Paris, 1923.
 - 4. N. E. Nörlund, Differenzenrechnung, Berlin, 1924.
- 5. I. Schur, Ein Beitrag zur elementaren Zahlentheorie, Sitzungsberichte der Preussischen Akademie der Wissenschaften (1933), 145-151.
- 6. Max Zorn, p-adic analysis and elementary number theory, Ann. of Math. (2) 38(1937) 451-464.

DUKE UNIVERSITY