
PLANE GEOMETRIES FROM CONVEX PLATES

MARLOW SHOLANDER

1. Introduction. It is shown below that to each member of a general class of

two-dimensional convex bodies there corresponds an affine geometry in the sense

of Artin [ l ] and an S. L. space in the sense of Busemann [ 4 ] .

A two-dimensional convex body is called a convex plate. For the few ele-

mentary properties of such plates assumed here, see [ 3 ] .

Let K be a convex plate, and let K° denote its boundary curve. All construc-

tions are to be made in the plane E of K. Consider an arbitrary direction φ in E

and the two lines of support to K in this direction. Let t0 be the line of support

whose associated half-plane in the direction φ + π/2 contains K. Let ί t be the

other line of support. For 0 < i < 1, let ίj be the line parallel to t0 which divides

line segments extending from t0 to t± in the ratio of i to 1 — i. Let t{ cut K° at

points Ri and T( so that the directed segment R( 7\ has direction φ.

For 0 < i < 1 and 0 < / < 1, let S/y be the point which divides R{ Ί\ in the

ratio of / to 1 - /. The set Sj = Uf Sη is an open Jordan arc whose endpoints are

points of contact of t0 and tι with K. A set Sj is called a strut. Other struts may

be obtained by varying φ. When the direction needs emphasis, the above nota-

tions are modified by affixing the angle in parentheses, for example, R{(φ) or

Sj(φ). Two struts with no common points or all points in common are called

parallel. Clearly s.{φ) and s^iφ) are parallel.

Under the name Durchlinien, Zindler [6] studied struts of the form sί/2(φ).

It is easy to see that sι/2(φ) halves the area of K9 and that the centroid of K

is contained in the convex hull of this strut.

2. A preliminary theorem. This section is devoted to a proof of the following

theorem. An edge of K is defined as a (maximal) line segment in K°.

THEOREM. If for distinct directions φ and ψ9 struts Sjiφ) and Sj(ψ) meet

at distinct points P and Q, they meet at all points of the segment PQ. Such seg-

ments of intersection occur if and only if K has at least two edges.
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Proof. Let i ~ l/( 1 + a) and / = l/( 1 + b). From the affine invariant nature

of the problem, we may assume φ and ψ are respectively the positive x- and

positive y-directions in E, where P has been chosen as the origin. We may as-

sume the chords passing through P along the axes are P3P L and P\P'2, where

P l9 P2, P3, and P 4 have respectively the coordinates (α, 0), (0, b), (-1, 0 ) ,

and (0, -1) . If P4Pt is parallel to P3P29 l e* n be the line parallel to these lines

which passes through P. Otherwise let n be the line on P and the point of inter-

section of these lines. Finally, we may assume that Q lies In the first quadrant

on or above the line n. Let Q have coordinates (r, s).

Let the chords through Q parallel to the axes be Q3Qχ and Q4Q2 Coordin-

ates of Ql9 Q2, Q3, and Q4 have respectively the form (r + ap, 5), (r, s + bq),

(r - p, s), and (r, s - q). We note that P4Pl9 n, and P3P2 have respectively

the equations

ay = x — a , a ( b + l ) y - b ( a + I ) x , a n d y - b x + b .

Since Q i s on or above n9

( 1 ) 6 ( α + l ) r < α(fc + l ) s .

Because K is convex, (̂ 2 cannot be above P2P^3; that i s ,

( 2 ) s + bq ζ ό ( r + l ) .

Multiply ( 2 ) by α and add to ( 1 ) . This gives

( 3 ) τ~a s a ( s - ^ ) ;

that is, <24 is on or above Px P 4 . Moreover, equality in (3) implies equality in

( l ) a n d ( 2 ) .

Consider first the case r < a. Here, since Q4 cannot be above P\P4, it lies

on PXPA. Thus equality holds in (2) , and Q2 lies on P2P3 Since P4, Q4, and

P t are distinct and collinear, they are on an edge of K. Similarly, Q2, P 2 ,and

P 3 lie on an edge.

In the case r ^ a,

slope PAPX <; slope ^ 4 ^ ! , I/a < q/ap, and p < q.

lί s < b, Q3 cannot be below P 2 P 3 ; that is,

(4) b(r+l) £ s + bp.

T o g e t h e r w i t h ( 2 ) t h i s y i e l d s q £p. H e n c e p = q, a n d e q u a l i t y h o l d s in b o t h ( 2 )
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and (4). This shows that Q2, P2, Q3, P3 are collinear, and hence on an edge of

K. Furthermore, slope P4P ι - slope QΛQΪ$ and P 4 , Pl9 Q4, Qi are on an edge.

If s > b, Q3 cannot be above P2^3> slope Q3Q2 < slope P3P2> bq/p < b, and

q < p. Again p = q, slope P4 P x = slope Q4 Q l9 and slope P3P2 = slope @3 @2 .

An edge of K contains P 4 , Pl9 Q49 and (? l f and another edge contains Q2, Q3,

P2, and P 3 .

3. Affine geometries. Consider a convex plate K with the properties:

(i) K has at most one edge;

(ii) K has no corners.

Let / be the set of inner points of K. Consider distinct points P and Q in /.

Assume, for a given φ9 that P is on Sj(φ) and Q is on sk(φ)9 j < k. Clearly P

is on Sj-yίφ + 77), and φ is on S ^ ^ ^ + TΓ). From considerations of continuity,

there exists a direction ^ such that P and Q are on a strut sι(ψ). From this and

from the previous section we have the following result.

PROPERTY I. Two distinct points in / lie on one and only one strut.

Consider now a strut Si(φ) and a point P in /. The strut Sj(φ) which passes

through P is parallel to $i(φ). On the other hand, let Sjc(ψ)$ φ £ φ$ pass through

P. Since sι(φ) and s^(ψ) have endpoints which separate one another on K°.

these struts have some point of / in common, and the following holds.

PROPERTY II. Given a strut s and a point P in /, there is one and only one

strut through P and parallel to s.

PROPERTY III. There are three points of / not on a strut.

These three properties are Axioms I, II, and III of Artin [ l ] . Listed in Lattice

theory [2, p. 110] as APGl, APG2, and APG3, they classify / as a plane affine

geometry.

It would be of interest to know what sets / satisfy Artin's Axiom IV (see

Appendix), or even what sets have nontrivial dilatations. An ellipse K yields an

/ with all the desired properties. To show this it is sufficient to consider the

case where K is the circle

Consider the sphere

x2 + y2 < a2 ,

S: x2 + y2 + ( z - α ) 2 « a2,
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resting on the origin of the #;y-plane E. The line

x cos φ + y sin φ — R

in E projects from the center of 5 into a great half-circle on S. This half-circle

projects perpendicularly on E into a half-ellipse, the strut Sj(0), where

2* = 1 + R/y/R2 + α 2 .

Thus the mapping which takes (r, θ) in / into the point (R, θ) of £, where

places the struts in one-to-one correspondence with straight lines. In this ex-

ample, we have a finite model for Euclidean geometry.

4. Other geometries. In general we may obtain a plane projective geometry

from a plane affine geometry by adjoining an ideal line (see [2, p. 110]). In this

case K° serves as the ideal line. The affine and projective geometries associ-

ated with K are examples of matroid lattices.

In § 3 we mapped an elliptical / onto the Euclidean plane £. A similar map-

ping may be defined for any / so that struts map on curves in E which satisfy the

hypotheses of [4, p. 89, Th. l ] . It follows that a metric may be introduced (in E

and hence) in / which makes of / an S. L. Space of Busemann: / will be finitely

compact, convex in the sense of Menger, externally convex in the sense of

Busemann, and the struts will be geodesies under this metric. This S. L. space

also satisfies the Euclidean Parallel Axiom. In fact, all Hubert's (plane) Axioms

[5] are satisfied except the congruence axioms. The determination of the condi-

tions under which the latter hold is an open problem.

5. Appendix. Artin's Axiom IV, not readily available to all readers, is given

below after necessary introductory material. Using Axioms I-IV, we may assign

coordinates ( 01, β) to points so that the equation of a "strut" is linear.

The set of points considered is called a plane. A mapping σ associates with

every point P a point P = σ{P) A mapping is called a dilatation if to each pair

of points P, Q correspond parallel struts s and s ' such that P and Q lie on s,

and P and Q lie on s'. The identity mapping of the plane is denoted by 1. A

translation is a dilatation which is either 1 or else has no fixed points. A trace

of a dilatation o is a strut which contains a point P and its image P . (If P ^ P ,

there is a unique trace on P.) A homomorphism is a correspondence from trans-

lation T to translation Tα such that each trace of T is a trace of Tα and such that
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AXIOM IVa. Given P and (), there exists a translation carrying P into Q.

AXIOM IVb. Given translations Ίx and T2 (neither equal to 1) with the same

traces, there exists a homomorphism Tαsuch that T? = T2 .
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