
DERIVATIVES OF INFINITE ORDER

L E E L O R C H

1. Introduction. The major purpose here is to reexamine, chiefly from the

standpoint of summation by Borel's exponential means, a number of problems

concerning the existence and form of

Hm fM(x),
n —> oo

for x a real variable in an interval. Several articles have been contributed on

this topic [5, 6, 11, 16], all of which take the limit process involved to be

ordinary convergence. In one [ 5 ] , however, Boas and Chandrasekbaran point

to the desirability of interpreting the limit process in a more general sense

and state without proof that one of their results (the case (X = 1, λn = 1 for

all n, of Theorem 4 below) can be established by their method for any (pre-

sumably linear) summation method T having the property that, as n —»oo,

(1) Γ-lim sn exists and equals s implies 7-lim sn. t exists and equals s.

Borel's method of exponential means, like his integral method, possesses

property (1) although, curiously, not its converse, as Hardy [cf. 9, pp.183,

196] pointed out. Methods satisfying both (1) and its converse include ordinary

convergence and the summation methods of Abel, Cesaro, Euler, Holder, and,

when regular (see below), Voronoi-Nδrlund

It is not clear from [5] just how their proof of the cited result (that

f^n'(x)—> g(x) dominatedly in (a9 b) implies g(x) = kex) can really be

carried over to all linear summation methods of type (1) . Since the transform

\Fm{x)\, m discrete or continuous, of the sequence {f^n'(x)\ converges

dominatedly, it follows that

lim
JTl —» o c/

x fx

Fm(t)dt - I g(t)dt9 uniformly for c$ x in (α, b).
Jc
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774 LEE LORCH

But further argumentation is needed to justify interchanging (in the left mem-

ber) the integral and whatever limit process may be involved in defining Fm (x)

in terms of \ f^nHχ)\, which would seem to be the next step in the proof.

Where Fm{x) is a finite linear combination of /(#),••• , f^m'(x)9 as in the

Cesaro, Euler, Holder, and Voronoi-Nδrlund methods, this is trivial. In the

Abel and Borel methods, for example, however, the transforms involve infinite

series. The usual difficulties incident to an interchange of limits therefore

intrude themselves at this point of the argument. Perhaps this difficulty can

be overcome; but [ δ ] does not suggest how.

In the case of Borel's exponential means these difficulties can be avoided

and more complete results obtained otherwise by rather simple arguments which

get to the heart of the problem more directly. Borel's exponential means provide

a natural tool for working with the problems at hand; for, when applied to the

sequence \ f^n'(x)}, they give rise to the Taylor expansion of f(x). Repeated

use can then be made of the property that the value to which the Taylor series

of an analytic function converges is independent of the point around which

the expansion is taken, since the hypotheses of most of the theorems below

either assume or imply that f(x) is analytic.

A sequence {sn i, n - 0, 1, 2, , is said to be Ba'Sumτnable to the value

s if

(2)

When (2) is satisfied, it is also written as

(3) βα- lim sn = s.
n-*oo

This method is regular (sometimes called permanent) in the sense that any

sequence 1 sn \ converging in the ordinary sense to a value s is also βα-sum-

mable and to the same value s.

If Cί = 1, the definition (2) describes summation by Borel's exponential

means. #t-summation is denoted simply as β-summation, and, when (X = 1,

(3) is written BΊim sn = s.

Z?α-summation possesses property (1) when Oί is a positive integer, since

β-summation does: Let βα-lim sn = s and define t^ to be &sn when k - Cίn and

to be 0 otherwise. Then β-lim t^ - s and, upon OC applications of (1), β-lim

tj€ma= s. But this last is the same as asserting Ba-lim sn.ι = s, completing
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the proof.

2. Borel limits of the sequence of derivatives. We shall establish the

following result.

THEOREM 1. If f(x) is analytic in the real interval (o, b), and if

β-lim fM(xQ) = keX°
n —» oo

for a single x0 in (a, b), then

β-lim fM(x) = kex

n—*oo

for each x in (α, b). The convergence is uniform if the interval (a$ b) is finite.

Proof. The function fix) can be represented by its Taylor series in (α, b),

being analytic in that interval. Thus

°° / ( n ) U o )
(4) f(t) = T {t-xo)

n ioτt,x0in(a,b).

The power series has an infinite radius of convergence in ί for xQ in (α, b),

since the existence of the Borel limit of f (XQ) may be written (with r-t—x^)

oo f ^ \ x 0 )
( 5 ) lim e'(t'Xo) T (t-xo)

n = ke*°.

T h u s f{t)9 t in ( α , 6 ) , p o s s e s s e s a u n i q u e a n a l y t i c e x t e n s i o n φ ( t ) , a n d t h i s

f u n c t i o n i s an e n t i r e f u n c t i o n . T h u s ( 5 ) c a n be w r i t t e n a s

( 6 ) l i m e"c φ ( t ) = k .
ίί-»oc

Expanding φ(t) about an arbitrary point x in (α, b), multiplying both sides of

(6) by ex, and placing r - t — x completes the proof of the theorem, except for

the part dealing with uniform convergence.

To prove that the convergence is uniform when (a, b) is finite, let e > 0

be given and find t0 (whose existence is assured by (6)) such that

\e"t φ ( t ) - k\ < e for t > t0 .
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Then

\e'{tmχ)φ(t)-kex\ < eex < e e

for t > tQ and all x in (α, b), and

.-<-*)

n=0

for t > t0 and all x in (o, 6).

Hence, putting r = ί - x, we get

n\
-ke* < e e

for r > tQ — a and all x in (α, 6). This completes the proof.

An examination of this proof makes it clear that the point x0 and the in-

terval (a, b) do not have to be required to be real. What is essential is to

have the quantity t - x0 become positively infinite through real values, to

conform to the definition of Borel summation. With this in mind, we can re-

phrase Theorem 1 in the following somewhat more general form:

THEOREM 1/ // f{x + iγQ \ regarded as a function of the real variable

x> is analytic for a < x < b, γQ fixed9 and if

β-lim / (# + iyQ ) exists and equals ke ° °

for a single x0 in {a$ b), then

δ-lim f^n\x + iγ ) exists and equals ke* iγ°
n —• oo

for each x in (a9 b). The convergence is uniform if the interval (a9 b) is

finite.

This theorem enables one to pass from a fixed point z0 — x0 + iy0 in the

complex plane to any other point in a certain interval on the horizontal line

passing through z o B u* w n a * about points z not on this line? The proof of

Theorem 1 is not adequate to cover this situation, since it must be shown that
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the limit in (6) exists and has the value k as r=t — z becomes positively

infinite through real values. (Here the complex value z replaces the real

number x.) This is required by the very definition of Borel summation. In turn,

moreover, this necessitates establishing that the limit (6) exists and equals

k as t becomes infinite to the right, not only on the given horizontal line

y = yQ, but also on other horizontal lines. This can be done in certain circum-

stances.

THEOREM l ' ' Let f(z) be analytic in S, a horizontal half-strip, quadrant,

or half-plane, opening to the right:

z = x + iy9 x = a, c < y < d.

Let f(z) = 0(ez) as z becomes infinite in S. Suppose that

B-lim f 0
n —»oo

for a single z0 in S. Then

β-lim / ' Λ ' ( z ) exists and equals kez

for all z in S. If c and d are finite, then the convergence is uniform in c + 8 <

y < d - δ for any positive δ. // S is a quadrant or half-plane, then the con-

vergence is uniform in any half-strip in its interior.

Proof, In the preliminary discussion, it has been noted that only one issue

needs be settled in order to extend the proof of Theorem 1 to this theorem as

well: That is the existence and value of the limit in (6) as ί - z , z an arbi-

trary point in S, becomes positively infinite through real values, where the

imaginary parts of z and z0 may be unequal. This limit, for z arbitrary in S,

does exist and have the value k under the assumption made here that f{z) =

0{ez) as z—»oo in S. This follows from MonteΓs theorem [15, p. 170],

after that theorem has been expressed in terms of the horizontal strips in-

volved here, rather than the vertical strips used in [15]. The conclusion con-

cerning uniformity is also a consequence of this formulation of Montel's theo-

rem.

THEOREM 2. // f(x) belongs to a Denjoy-Carleman quasi-analytic class

in the (open) interval (a, b) and if
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-Iim / \Xo )
n-*oo

for a single XQ in the open interval (a, b)9 then f(x) is analytic in (α, b)

(and

β-lim fM(χ) = kex

n —»oc

for all x9 a < x < b).

Proof. It is sufficient to prove the first half of the conclusion, the ana-

lyticity of f(x)', the other half is then a consequence of Theorem 1.

As in the previous proof, the Borel summability of the sequence {f^n'(xo)\

implies that the right hand member of (4) has an infinite radius of convergence,

and so defines an entire function φ(t). Expanding φ(t) in a Taylor ser ies

about the point x0 in (α, b) shows that

rh^i r } — f(n^ (T } (n — Cί λ 9 •)
<p \XQ ) ~~ J V-*o ' \n — \J9 ±9 Δ7 * j

The analyticity of f(x) in (a9 b) is a consequence of the following result of

Bang [ 1, p 84], as quoted in [6]: *'••• If f(x) belongs to a quasianalytic

class on a < x < b and g(x) is analytic, then f {XQ) = g (XQ) for all

n and a < χ0 < b implies f(x) = g(x) . " This completes the proof.

The next theorem provides a simple set of necessary and sufficient con-
ditions on the structure of f(x) as well as on that of g(x) That these con-
ditions are not sufficient if convergence is used instead of Borel summation
is shown by the example

f(x) = kex + sin x.

The Borel limit of the sequence of derivatives exists and equals kex for all

xf whereas the (convergence) limit of this sequence does not even exist.

Analyticity is not assumed in the necessity part of the theorem, but is in-

ferred as in Theorem 1 of [5].

THEOREM 3. A set of necessary and sufficient conditions that

β-lim fM(x) = g(x)
n —»oo

for each x in (a, b)9 where g(x) is finite, is ( i ) that f(x) coincide in (a, b)
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with an entire function φ(x), having the property that

φ(x)- kex + o(e*),

as x becomes infinite, and ( i i ) that

g(x) = kex

9 x in (a, b) •

Proof of sufficiency. Here

0 ( 0 = Ae* + o ( e ' ) ; 0 ( 0 = / ( O , f o r ί i n ( α , 6 ) ,

and 0 ( 0 is an entire function. Then

^ ^ ( ) (t~x)n, x in (a,b).
~ n!

By hypothesis,

lim e- ( ί -* } 0(O = Ae*,
ί-»oo

whence, with r = t - x9

completing the proof of sufficiency.

Necessity. Putting r = t - xf wje can write the assumption of Borel sum-

sumability as follows:

lim e~^tmχ' Ύ\ — (t - x)n = g(x) for each x in (α, b)
'-00

This implies that the radius of convergence of the power series above is in-

finite for each x in (α, ό). Hence f(t) is analytic in (α, b), as a consequence

of a theorem of Pringsheim [13] for which a complete proof was supplied

first by Boas [4] and again later by Zahorski [17]. In fact, f{t) has as ana-

lytic continuation an entire function, 0 ( O Then
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lim e'^"x^ φ{t) = g(x) for each x in (α, b),
t—* oo

whence

lim e" φ(t) = e~* g ( # ) for each Λ; in (α, 6 ) .
t-*oo

The left side is independent of x since <£(ί) is, and this is the case because

the values of an analytic function do not depend on the point in the region of

analyticity around which the function is expanded. Hence the right side must

be a constant k. This completes the proof.

3. Subsequences of \f^nHx)\ For the proof of the theorem below, the

following lemma is needed. The proof given first is due to Julian H. Blau.

LEMMA 1. If a sequence of polynomials, \Pn(x)\9 defined in the closed

interval [ c , d\ each of which is of degree at most β9 has a limit h(x) in

[ c, d\ then this limit is likewise a polynomial of degree at most β.

Proof of lemma (by induction). Let each Pn(x) be written as a polynomial

in x — c.

(i) The lemma is obvious for β = 0.

(ii) Assume that the result is valid for all integers y, 0 < γ < β . Let

{Pn(x)\ be a convergent sequence of polynomials of degree at most y + l

Then

Pn(x) - Pn(c)—>h(x) ~ h(c).

The left s ide is divisible by x - c, giving a sequence \Qn(x)\ of polynomials

of degree at most y , and

Pn(x)-Pn(c) h(x)-h(c) . . .

Q() U έ )
X — C X — C

From the induction hypothesis, the right member is a polynomial of degree at

most y. Hence h(x) is a polynomial of degree at most γ + l This completes

the induction.

The referee suggests the following alternative proof of the lemma: If

Pn(x) converges pointwise, so does Δ^+ 1 Pn(x); but these differences are
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all zero, and so Δ^ + ι A(Λ;) = 0 (for all spans )• It is well known that the

polynomials of degree < β are characterized among measurable functions by

the property of having vanishing (β + l)th differences; and h{x) is even of

the first Baire class

He also comments that the lemma is well known, but that, like the author,

he can think of no specific reference.

The case (X = 1, λn = 1 (all n) of Theorem 4 below is proved in the opening

remarks of [ 5 ] . Theorem 3 of [ 5 ] is also included in Theorem 4 below, which

gives somewhat more precise information than is formulated in the statement

of Theorem 3 of [ 5 ] , even for the case α = 1, which is the case analyzed in

Theorem 3 of [5]. The proof below is fashioned after that of the latter theorem.

THEOREM 4. Let \λn] be a given sequence of constants; let (X be a

fixed positive integer; and let

f(an)(x)
( 7 ) lim = g(x) dominatedly in a < x < i.

Then the following statements are true for a < x < b.

(i) //

lim _ _ _ = 0 ,
n -~»oo Xn

then g(x) = 0 almost everywhere. If ( 7 ) holds uniformly, then g{x) = 0.

( ϋ ) //

lim = L £ 0 ,
n-*oo Xn

L finite, then Lg^Hx) = g(x )

(i i i ) // the sequence {λn-ι/λn} has an infinite limit-point, then g ( # ) =

Λz-i (χ)f where Pa~γ (x) is a polynomial whose degree does not exceed OC - 1.

(iv) // the sequence \λn-ι/λn\ has at least two limit-points, of which

at least one is finite, then g{x) = 0.

Proof. T h e common h y p o t h e s i s g i v e s the f o l l o w i n g e x t e n s i o n of ( 3 ) of
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[ 5 ] in all four cases, since the sequence obtained by integrating a dominatedly

convergent sequence converges uniformly [10, p. 290, p. 304], whence suc-

cessive termwise integrations are valid for x9 c in [α, £>]:

lim
n —»00

(8) - i
λ

Λan

f{an'a)(x) f{an"a)(c)

/ I . . . / g(xx)dxι
Jc Jc Jc

Moreover,

dx

( * - c )

g{x),

since implies s^-i — > s

To prove ( i ) , note that the first term of the left member of ( 8 ) approaches

zero. Then, from Lemma 1, the combined remaining terms have as their col-

lective limit a polynomial Pa-ι(x) whose degree does not exceed Ot — 1. Dif-

ferentiating both sides of ( 8 ) Ot — 1 times, under these circumstances, shows

that / c* g{t)dt is constant for all x in [α, 6 ] , whence g(x) - 0 almost every-

where, as asserted in the first part of ( i ) . If (7 ) holds uniformly, then g(x)

is continuous and hence identically zero.

To prove ( i i ) , note that ( 8 ) becomes, as above,

Lig{x)-g(c)]-Pa,ι(x)~ f*a ... Γ
Jc Jc

dxa

Differentiating both sides (X times with respect to x completes the proof of

(ϋ).

To prove ( i i i ) , rewrite ( 8 ) by using λn.ι/λn as a factor of all the terms

within the brackets and not just of the terms in the braces. Then the (new)

expression inside the brackets must approach zero (since the right member of

( 8 ) is finite) as n becomes infinite through a subsequence for which the cor-

responding λn.ι/λn becomes infinite. Using Lemma 1 again shows that
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g(x) - g(c) - Pa-iix) = 0;

and, of course, g(c) can be absorbed in Pa-ι(χ)f completing the proof of

( i n ) .

To prove (iv), consider first the case in which there are exactly two limit-

points, one of which is zero. The presence of the zero limit-point implies (by

use of an appropriate subsequence of { λ π . ι / λ n \ in the proof of ( i ) ) that

g(x) = 0 almost everywhere. The other limit-point may be finite or infinite.

If finite, the same modification is introduced into the proof of ( i i ) , showing

g(x) to be continuous. If infinite, ( i i i ) applies directly, again showing g(x)

to be continuous. Hence, in this case, g(x) = 0.

In the remaining ("general") case of ( iv), there is a finite nonzero limit-

point L, whence, modifying ( i i ) as above, we obtain

( 9 ) Lgia)(x) = g(x)

and either another finite nonzero limit-point M9 implying

with L Φ- M, or an infinite limit-point, in which eventuality g(x) is a poly-

nomial whose degree does not exceed Ot - 1, from ( i i i ) . Comparing either of

these alternatives for g(x) with ( 9 ) shows that g(x) = 0.

This completes the proof of (iv ) and of the theorem.

Theorem 4 ( iv) does not exclude the possibility that

lim inf

may be zero. For the case Cί = 1, therefore, it overlaps —and partially gener-

alizes—Theorem 3 ( i ) of [ 5 ] in which it is assumed, instead of (7 ) , that

uniformly in [α, b]t as in Theorem 4 ( i ) here, in order to infer that g(x) = 0.

This casts further light on the significance of counter-examples connected

with Theorem 3 ( i ) of [ δ ] (which is the case (X = 1 of Theorem 4 ( i ) above).
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One is due to Boas and Chandrasekharan [5], another to Bang [ l ] , described

also in the final paragraph of [6] . Each exhibits a sequence \f '{x)/λn\

converging dominatedly to g(x) in [σ, b] with lim (λn.ι/λn) = 0 and g(x) not

identically zero there, although, of course, it is zero almost everywhere. In

their examples, in fact, g{x) is zero except for a single point.

In addition to the examples due to these authors, Philip Davis has called

attention to earlier constructions [ 2a; 3; 7, pp. 38-42; 8; 12, p. 244; 14] of

functions differentiate infinitely often on an interval and analytic on that

interval except for one or more interior points at which the successive deriva-

tives increase arbitrarily rapidly. Taking λn to be the nth derivative at a

singular point converts these constructions into examples of the phenomenon

described above.

R. P. Boas, who transmitted Davis's information to the author, added a

reference to another exposition [2b] of S. Bernstein's examples.

Theorem 4(iv) shows, i. α., that it is impossible to construct similar

counter-examples in which the condition on the λn 's is weakened to

lim inf = o

with lim (λn'i/λn) nonexistent.

This last remark can be inferred also from a consideration of formula (3)

of [ δ ] , which is valid for dominatedly convergent sequences and which reads

as follows:

λπ-i \ f{n'ι)(x) f{n"l)(c) ,
lim \ \ = / g{t)dt, a < c < b.

n-*oo An I An. i ">n-l

Γx
I g{t)dt,a

Jc

Choose c to be a point such that g ( c ) ^ 0 , x a point at which g(x) = 0.

The right member is zero, s ince g(x) = 0 almost everywhere. Thus

λ n -i
lim — - g(c) = 0, g(c) £ 0 ,

n->oo λn

whence

n 1
lim = 0.

JI-+00 λn
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When λn = 1 for all n, Theorem 4 (of which only part ( i i ) is now relevant)

can be extended readily to certain summation methods. Consider the trans-

formation

(10) T: tr(x)= £ cn(r)sn(x),
n=o

where r is continuous or discrete.

DEFINITION. The transformation Tol (10) will be said to be of dominated

type in the interval (α, b) with respect to a sequence of Lebesgue integrable

functions {sn(x)\f defined in (α, 6), if the infinite series (10) taking the

sequence { s n ( % ) } into tΓ(x) converges dominatedly (in the sense that all its

partial sums are uniformly less, in absolute value, than a fixed Lebesgue

integrable function) in (α, b) for each sufficiently large r.

Any row-finite or row-bounded matrix transformation is of dominated type

with respect to all sequences of Lebesgue integrable functions. This includes

all Hausdorff and Voronoi-Norlund methods, in particular Cesaro's and Euler's.

All regular (or even merely convergence-preserving) transformations given

by (10) are of dominated type with respect to any sequence of Lebesgue in-

tegrable functions dominated as a whole by a single Lebesgue integrable

function.

LEMMA 2. Let T be a summation method of dominated type with respect

to the sequence of Lebesgue integrable functions {sn(x)\ in (σ, b) Suppose

that {sn(x)\ is dominatedly T-summable in (a, b) to s (x). Then

(11) Γ-lim [* sn{t)dt = [* s{t)dt9

Jc Jc

uniformly for c9 x in (α, b).

Proof. The transformation T being of dominated type, it follows [ 10,

pp.290, 304] as in the justification of (8), that

I sn(t)dt= I Σ, cn(r)sn(t)dt9
J c Jc n=o

uniformly for c, x in (α, b), for each sufficiently large r. In turn, the right

member approaches the right member of ( 1 1 ) uniformly for c, * in (o, i ) as
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r—»oo, s ince the integrand approaches s(t) dominatedly. The left member is

the Γ-transform of the integral of sn(t). Hence the lemma is es tabl i shed.

THEOREM 5. Let T be a summation method satisfying (1) and of dom-

inated type with respect to the sequence \f \x)\9 x in (α, 6), where OC is

a fixed positive integer. If

T-lim f(an)(x) - g ( * ) ,

dominatedly in (α, b)9 as n —>oo, then g(x) satisfies the differential equation

Proof. By CC applications of Lemma 2 we obtain

OO

lim Y, cn{r) [f{an-a)(x) - / ( α "- α ) (c)]
Γ - * OO

- li» £ cn(r)

fxa f
/ ••• /

Jc Jc

x2
^ ( ^ ^ ^ i . . . dxa

uniformly for c, x in (α, ό). Lemma 2 actually gives the existence and value

of the limit of the difference of the two sums, rather than the difference of

the limits of the individual sums, as written above. However, once the exis-

tence of the first limit above is established, that of the second is immediate.

Writing (λn — (X as (X(n - 1), we see from (1) that the first limit exists and

is g(x) - g(c). Lemma 1, with β = Ot — 1, shows that the second limit, whose

existence is now assured, is a polynomial in x — c of degree at most CC — 1,

say Pα_ t (x — c ), vanishing for x - c. Then

/

x fxa Γ*2

/ •*• /
J c Jc

Continuity and then OC-fold differentiability follow from this equation. Dif-

ferentiating α times completes the proof.

Some open questions. If lim / (x)f n —*oo, (X a fixed positive integer,

exists, and is finite for each x in (α, b)9 then must the convergence necessarily
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be dominated or perhaps even bounded or uniform? If this is not the case for

general indefinitely differentiate functions, would it be true for f(x) in a

quasi-analytic class? If not then, what if f(x) is analytic? If (X = 1, then the

answer to the first (and hence to all) of these questions is affirmative. If the

answer to any of these questions is affirmative for other Oί, it would then fol-

low, from Theorem 4 ( i i ) , that the limit, g{x), satisfies the differential equa-

tion g (x) ~ g{x). Similar questions can be framed for more general se-

quences of λn's.
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