
ON SUMS OF SERIES OF COMPLEX NUMBERS

HAIM HANANI

1. Introduction. We recall certain facts about the convergence of series.

l . l Let Σ ° l 1 α be a series of real numbers, a^ —»0. Then it is obvious

that a sequence of signs e. = + 1 (i = 1, 2, ••• ) may be chosen so that

ΣI°C

=1 βj a. is convergent. It is, furthermore, well known that all the possible

sums so obtained form a perfect set, and if Σ ° l t | ai \ - oc then any preassigned

sum may be obtained.

1.2. The first statement remains true also for complex numbers. Aryeh

Dvoretzky and the author [2] proved that if Σ ° l 1 c^ is a series of complex

numbers with CN —» 0, then a sequence of signs ei = ± 1 (i = 1, 2, •• ) may

be chosen so that Σ ^ l , £• c converges and

1 = 1

< V 3 max I c. I (n = 1, 2, ) .

1.3. The object of the present paper is to determine the sets of points which

may be sums of the series Σ^L. e c when suitable sequences e. are chosen.

2. Notation and definitions. In this paper the following notations and defi-

nitions will be used.

2.1. N O T A T I O N .

c = a + ib denotes a term of a (finite or infinite) series of complex num-

bers, a being its real and ib its imaginary part;

C = A + iB also denotes a complex number;

γ ~ α + iβ denotes a direction in the plane of complex numbers, and also

a unit vector in the same direction;

(C, C ) is the scalar product of the vectors C and C"; that is (C, C ) =

AA* + β β ' ;
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y ' denotes a direction perpendicular to y; that is, (y, y ' ) = 0;

e denotes ± 1;

Σ without summation limits denotes summation by the summation index

from 1 to oo. In any other cases the summation limits will be indicated.

2.2. DEFINITION. C will be called an attainable point of the series Σ c ^

if a sequence 6. (i = 1, 2, ) exists, such that Σ e. c^ = C.

2.3. DEFINITION. Let Σc^. be a series of complex numbers with ci —> 0

and Σ | c I =oo. We say that y is a direction of divergence of the series **cι if

a subseries Σ ci * of Σ ci exists such that

and

*,-*» y)
0 .

If y is a direction of divergence, then clearly also the inverse direction — y is

such. The directions y and — y form an axis of divergence. It can easily be seen

[3, p. 93] that if Σ | CN | = OO, then Σ c . has at least one axis of divergence.

2.4. DEFINITION. Let Σ c be a series of complex numbers with c^ —-> 0

and Σ I c { I = oo. We define the convergence strip of Σ c { as follows:

If Σ ci has at least two axes of divergence, the convergence strip is the

whole plane.

If Σ c . has exactly one axis of divergence, then the convergence strip is

composed of all the lines parallel to this axis which contain attainable points

of the series Σ[γ'(ci9γ')], where y ' is a unit vector perpendicular to the

axis of divergence.

According to 1.1, the convergence strip is either i ) a cartesian product of a

perfect set by a straight line or i i) the whole plane. It is obvious that every

attainable point of Σ c> is a point of the convergence strip.

3. Theorem. We shall establish the following result.

3.1. THEOREM. Let Σ c . be a series of complex numbers which tend to
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zero, and let Σ | ci \ - oc; then the attainable points of Σ c form a set which

is dense in the convergence strip of Σ c { . s and within this strip is dense on

every straight line not parallel to the axis of divergence of Σ c .

Proof. We may, without restricting the generality of the theorem, suppose

the axis of divergence to be the real axis.

The following statement is clearly equivalent to our theorem: Let C - A + iB

be any point of the convergence strip, 8 any real number, and η any positive

number however small; then there exists an attainable point C ' = A' + iB*

of Σ c such that | C ^ C ' | < η and A - A' = 8(B - B'). This will now be

proved.

Put

Let Nι be such that \c>\ < η' for every i > Λ\ According to 1.1 , there exist

N2 2l ^ ι a n d a sequence e^ ( i ' = 1, 2, ••• , N2 ) such that

We put

ct = Σ v <*'•

It is evident [3] that the series Σ ^ ^ + 1 c can be separated into two

subseries Σ c . " and Σc/// so that for Σ c // we have
A A; \

oo and 2-^| b- " \ < η' .
K

According to 1.2, there exists a sequence ε t " ' (k = 1, 2, ••• ) such that the

series Σ €.//> c.^^ converges and
ιk ιk

I ^ e . ̂ /̂  c. ̂ / I < y/Ίϊ η ' .
k Ίc

Let us put C = C + Σ e ^ / " ĉ ./*/. Now, according to 1.1 there exists a
K K
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sequence € • " (k = 1, 2, ) such that Δ* e•" {a- " — δb " ) converges and
ιk ιk ιk ιk

Σ,e » U " - δb.») = U-A2) - 8 ( B - B 2 ) .
ιk ιk ιk

P u t t i n g C = C2 + e ^ ' c ^ / / , w e g e t A - A ' = δ ( B - B ' ) a n d
k k

whence

\C - C'\ < η

The series Σ ê  cf is composed of a finite subseries Σ ^ ^ e^ c ,̂ and two

interwoven subseries Σe.// c . " and Σe./// c.^^ which are evidently con-
k lk lk lk

vergent and in which the order of terms remains unchanged. Consequently

3.2. In special cases every point of the convergence strip can be an attain-

able point of ^ C;, but generally this is not true. A few examples are given

showing the possibility that the attainable points do not cover the convergence

strip and even are not dense on every straight line parallel to the axis of di-

vergence:

a) For

1 1

3
C"=-n+Tnl>

on every line parallel to the axis of divergence (real axis) there is at most

one attainable point.

b) When the convergence strip is connected, a similar example may serve,

namely:

1 1

n 2

n

cn = ~ + — ι •

Here on every line parallel to the real axis there are at most two attainable

points.

c) The case when the convergence strip covers the whole plane is more

complicated. The following example may suit:



ON SUMS OF SERIES OF COMPLEX NUMBERS 699

l i ni:[ .2 " .2

n 10"2 ;=o ;=°

No attainable point is, for example, on the line through (0, i/9) parallel to the

real axis. For let us suppose that C* = /4* + i/9 is such a point; then

C * = 2 - t J — + i , where | tn \ < 10" .

On the other hand, there exists N* such that for

N* .2

hi > Σ, l0> (£ = 1, 2)
/•o

we have | c^ - c^ | < 1. Consequently, for re > W*, we have | tn \ < n. It follows

that l 2

where \tn\ < n for n > /V*, which clearly is impossible.

4. Plane of attainable points. We now turn to the special cases in which

every point of the complex plane is an attainable point.

4.1. THEOREM. Let Σ c be a series of complex numbers which tend to

zero, and let Σ | c J =00. // Σ ^ has at least two axes of divergence, then

every complex number C is an attainable point of Σ,c.

Proof. By an affine transformation the two axes of divergence may be identi-

fied with the real and imaginary axes respectively.

The definition of axes of divergence implies the existence of two disjoint

subseries Σ-c ' and zLc " of L c such that:
k k

V
— * 0, Σ | α ' j =00 and α > ^ 0 U = 1, 2, •),

a* k k

ιk

ai"

— I > 0, Σ I V I = °° a n d bi " ± ° (A: = 1, 2, . . . ) .
6.̂ / k k

l
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We shall now fix finite subseries

Σ ci'U) a n d Σ ci"M ( n ~ I

of Σ c ' and Σ c ^ , respectively, and Nn (n = 1, 29 » ) as follows:

a) for every i > Nn > I cι I < 2

b ) for e v e r y i'. > N , 16 ./ / α * | < 2" 7 1 , a n d
Λ n ιk ιk

for every if' > A n̂, | α. ̂  / 6. *, \ < 2"n

Λ n ιk ιk

n- 1 n-1

- ί=i ιχ - ί-i ιz

From b) and d) we obtain

We denote by Σ ci "* what remains of the series Σ ^ after the subseries
K

T. Σ c.'{n) and y y c.,,U)

are removed.

According to 1.2, there exists a sequence e^** (&= 1, 2, ••• ) such that

Σ e^" c^" converges. We put C^ = Σ e^** c^". We construct by induction

a sequence of points CR {n = 1, 2, ). Sίuppose that we have already fixed

C t, C2, ,Cn; we proceed to construct CΛ + 1 We fix signs e^(n) (Z = l , 2, kn )

so that, by addition of — €-/(n) «j'(n) t 0
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this expression either diminishes in absolute value or changes sign*. We put

then

Similarly we put

c = c + T
n n ί—*

1 = 1

Cή

where £;"(„) (Z= 1, 2, ••• , &w")are fixed so that, by adding -e.»(n) bi » (n) to

q = \

this expression either diminishes in absolute value or changes sign*. The series

Σ,€- cf. is composed of three interwoven subseries

Σ, βi'(n) C;'(n)» Σ Σ €i;
//(n) c /^ (n) , and

l l l l
^ i
k k

which evidently are convergent and in which the order of terms remains un-

changed. Consequently Σ* e^ ci converges; and, as Cn —> C, also Σ e . c. = C.

4.2. THEOREM. Let 2*c be a series of complex numbers which tend to

zero? having exactly one axis of divergence. If Σ ci can be separated into two

subseries Σ cj- and Lcj=, such that the convergence strip of Σ c r is the

whole plane, and the attainable points of Σ C T 1 cover a segment not parallel

to the axis of divergence? then every complex number C is an attainable point

ofZc..

This theorem is a direct outcome of Theorem 3.1.

4.3. THEOREM. Let Σ c . be a series of complex numbers which tend to

zero, having exactly one axis of divergence, and let y' be a direction perpen-

dicular to this axis. If ΊZc^ can be separated into two subseries Σ c . / and
K

4 Whenever this expression equals zero we put the next € equal to + 1.
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ΣL c " such that the convergence strip of Σ c / is the whole plane, Σ | c »
lk lk k

converges9 and

(1) 0 <
ιk

(γ',y')| = l , 2,

then every complex number C is an attainable point of iLc..

Proof. As usual, we assume that the axis of divergence is the real axis.

Let 2^ c~"(i) be a tail of the series Σ c " such that
l

and let η be any real number satisfying

(2) 0 < n < I hrr,.

We form finite subseries

kή

of Σ C N / so that the following conditions are satisfied:

for every term ci /(ra) (Z = 1, 2, , k^ τι = 1, 2, « ) , we have

l, 2,

( 3 ) I o, '(»)•! < 2'rπ-3

and

0 <
"ij'ί")

ty-n-2 .
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K
(4) 1 < Σ !«,•'<»> I < 1 + 2 - n " 3 .

ί-i '

Consequently we have also

( 5 ) Σ I *,•'(») I < 7 2 - n - 1 .

We denote by Σ c^ '" what remains from the series Σ c. after the series

Σ Σ ci0(n) a n d / .cj"(ι)
n / = ι

are removed. In consideration of

we get

and consequently also

The convergence strip of Σ c. >» is therefore the whole plane. By Theorem

3.1, there exists a sequence e^" (k = 1, 2, ) such that Σ 6^" CN >// = C {9

with

(6) A, =A, IB'- δ, I < η .

We denote by Σ / = x

 c

ι

 / /(n) some head and by Σ^. c r ^ ( Λ + l ) the corresponding

tail of Σcj-//( π ), and we construct by induction a sequence of points Cp,

a increasing sequence of integers np and a sequence of integers kp' (p= 1,2, •• •)

having the following properties:
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(7) \A-A \< Σ K"(p-i) l + I"*'2'1 inml = nQ = 0),

B-Bp\ < i

1 ' 2 ^ **" ( p )

It can easi ly be verified with the use of ( 6 ) , ( 2 ) , and ( 1 ) that ( 7 ) , ( 8 ) ,

and ( 9 ) hold for p = 1.

L e t us now suppose that we have already

nq and Σci"W (<7 ~ 1> 2, , p - 1 ) and C (q = 1, 2, , p ) ,

and we proceed to construct

^ > 2 3 ci"(p) ' a n d ^p + i*

We fix ^ ' ( n p i l + l) (Z = 1, 2, ••, A^ + ι - 1) so that by addition of

q=i * y

this expression either diminishes in absolute value or changes sign. Now
ei'(n -i + 0> where Q = k^ + 1 , is fixed so that

B _ / v £ V ( n p i + o V ( n p i

We put then

a
Cp = Cp + Σ, %'inp.
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and fix n > n m{ so that

( 1 0 ) η . 2 n p < -

We proceed as before and fix "e^^ (Z = 1, 2, •••, k'\ q = n +2, Λ + 3 , >

) h dd fn ) so that by addition of

' + Σ Σ ? 'c)β 'w+ Σ ? '(ί)« '(β))l

this expression either diminishes in absolute value or changes sign. If

np kg

w e l e a v e e . / ( g ) = ^ . - ' ( σ ) * o t h e r w i s e w e p u t € ^ ( q ) = - e.'(q). I n e i t h e r c a s e ,
, I I I I

we denote

kq

By (8), (5), and (9), we have

| β- f l p " i <

2 " > l p " r l < 7 Σ I * ϊ : -
4 A:

On the other hand we have, by (10), | B - B*' \ > \ B - B£ \ > 677 2'Up . Conse-

quently,

( I D 6 , . 2"^ < | β - δ p " | < 7 Σ,\b7"(p)\
^ 4 k

We now fix ê  //(p) so that
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[ β - ( β " + β , , ( p ) fc,^(p))]. (B-B") < 0,
P *! ι

t P

and e^/(p) (Z = 2, 3, , k") so that by addition of

r i lΊ

1 1 l * q=l Q Q

this expression diminishes in absolute value without changing sign, b. "{

being the last term of Σ6τ//( p ) for which such operation is possible, P

Such b.»(Ό\ exists in view of (11) and (1).
ιk"

p

We put

A "

The construction of n , Σ^fχ

 cj"(p)> and C + is thus completed. It re-

mains to show that conditions (7)-(9) are fulfilled for these indices.

We have

but in view of (7), (4 ), and (3 ),

and

Z=i
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Consequently,

kfcp

l = ι

so that (7) holds for this index.

For (8), we note that clearly

and therefore, in view of (1),

Finally, if

+ e .« ( p ) ύI "(p))] ( β - β p " ) > 0,

then in view of (11) we have

i

1

4

If, on the other hand

[β - (β p " + e.« ( p) 6^( P ) ) ] (β - δ p " ) < 0,

then by (1) and (11) we have

Thus (9) holds in either case.

In order to prove that Σ e t Cί converges it is sufficient to point out that this

series is composed of three interwoven subseries
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Σ,βi'''Ci'" > ΣL Σ βif(n) V( Π ), and £ > ; " ( ! ) C "
k k n 1=1 l L k k

( l )

which are evidently convergent and in which the order of the terms remains

unchanged.

As, according to (7) and (8) above, we have C —> C, it follows that

Σe^-C.

4.4. The following examples illustrate the way in which the above result

may be applied:

a) Let

be the series in question.

If we put

* k k\yf¥ 2k I

that is, the subseries of those terms for which n is a power of 2, and Σ ^ cn ',

the remaining subseries, then the assumptions of Theorem 4.3 are fulfilled,

and therefore every complex number C is an attainable point of our series.

b) The terms of the subseries Σ ; c /* may be composed of two or more

terms of the series Σ c , as the following example shows:

where

If we put

0 < an + ι - an (^ = 1> 2, • • • ) , % —>0, and naR —> ω .
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and Δ-*ι cn' the remaining subseries, the assumptions of Theorem 4.3 are fulfil-

led, and in this case too every complex number C is an attainable point of CJ.

5. Further considerations. We make the following observations.

5.1. For an absolutely convergent series Σ c of complex numbers, the

attainable points form a perfect set. The proof does not vary from the proof of

a well-known similar theorem for series of real numbers (see 1.1).

5.2. Instead of e = ± l , more general convergence- and sum-factors have

been introduced by E. Calabi and A. Dvoretzky [ l ] They call a set Z of com-

plex numbers a sum-factor set if, given any series Σ c. ( Σ | ci \ - oc, ci —»0),

and any number C, there exists a sequence ζn £ Z (n - 1, 2, ) for which

Σ n ζn cn- C. It was shown by them that a bounded set Z is a sum-factor set

if and only if 0 is an interior point of its convex hull.

5.3. All the theorems proved in this paper may reasonably be extended to

results concerning vectors in ^-dimensional Euclidean spaces.
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