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1. Introduction. We consider the equation

(1) K{y)uχχ + Uyy = 0,

where K(y) is a monotone increasing, twice differentiate function of y with

K(0) = 0. The equation is elliptic for y > 0, hyperbolic for y < 0, and γ = 0

is a parabolic line. Equations of this type have been of interest recently be-

cause of certain problems arising in transonic flow. The equations for the com-

pressible flow of an ideal fluid when transformed to the hodograph plane lead,

in the transonic case, to an elliptic-hyperbolic equation of the above type.

In this paper the existence and uniqueness of the solution of a certain

boundary value problem are discussed. It will be clear from the methods em-

ployed that estimates can be obtained for the solution in terms of the boundary

values, although these estimates are not stated explicitly.

Equation (1) has real characteristics in the lower half-plane given by the

equations

dy 1
(2a) _ ! « + _ _ ,

dx

dy

(2b) J L =

dx

Let γχ be the characteristic of (2b) passing through (0, 0), and y2 the member

of (2a) passing through (2, 0). Then the segment 0 < x < 2, along with yχ and

γ2, will enclose a domain which we denote by D'. Let Γ, given by y = h(x)9

be a curve lying in D ' and emanating from the point (2, 0). It will be assumed

that h(x) intersects each characteristic of (1) at most once, and that there

are two positive constants m and M such that 0 < m < h'{x) < M. We call
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PQ(XO» y0) the point where Γ intersects γt

The following problem is treated. Let

F 0 ( x ) , ( 0 < x < 2 ) , G o ( x ) , ( x o < x < 2 ) ,

be two given functions possessing continuous derivatives of the fifth order.

A solution u(x? y) of (1) is sought in D' which satisfies the conditions

u(x,y) = F0(x) ( 0 < * < 2 ) a n d u[x, h(x)] = G0(x) (x0 < x < 2). We

denote by D the domain bounded by γχ, Γ, and the segment 0 < x < 2. Then

clearly all considerations may be confined to D instead of D' For, once u{x, y)

is determined in D9 the Cauchy problem may be solved with the function u and

its first derivatives prescribed along h(x) and this will yield u in the remainder

of D'. The solution of this problem is well known for the case of purely hyper-

bolic equations [2] The case where Γ coincides with one of the characteristics

has been treated earlier [3], and under those circumstances certain simplifica-

tions take place and some of the hypotheses can be weakened.

2. The step-function case. Suppose K*(y) is a nondecreasing step-function

with m steps:

-λ?, y^y^y^ (i = 1, 2, . . . , m).

We will take

λf > 0, yQ = 0, and ym = c < 0.

The boundary value problem proposed in § 1 will first be solved for the equation

(3 ) K*{y)uxx + uyy = 0.

The characteristic curves of equation (2) are polygonal arcs, and the domain

D ' will be divided into strips in each one of which the solution u{x, y) will

satisfy the wave equation with the appropriate constant λ?.

Thus by a solution of (3) we mean a function u(x9 y) which satisfies the

equation

λfUχX - Uyy = 0

in the ίth strip, and in addition u, ux, and Uy are continuous throughout D ' In

the ith strip a solution of (3) will have the form
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and this is valid for y. < y < y ^ To preserve continuity of u9 uX9 Uy at the

junction of two strips we have

/. (x + λ.y.) + g.(* - λ.y.) = /.+ ι (x + λ . + ι y . ) + g. + ι (* ~.λ + ι y )

λ i //<* + V * ) ~ \ g/(* - xiJi) = λ. + 1 /r + 1 u + λ.+ 1y.) - λ ί + 1 g/ + 1 u - λ . + 1 y . ) .

With a proper adjustment of constants this yields the relations

(4)
2λ. + 1

 ι ι ι 2 λ i + ι

Without loss of generality we may suppose FQ (2) = GQ(2) — 0. We denote by

yj and y^ ^ e characteristics of (3) which pass through (0, 0) and (2, 0),

respectively, and which intersect. Then Dm will designate the domain bounded

by y\m\ Γ, and the segment of the %-axis, 0 < x < 2. Let P{

Q

m)(x(

Q

m\ y(

Q

m)) be

the point where Γ and y | intersect. Since our ultimate purpose is to select

a sequence of step-functions Kn(γ) converging to K(γ) it is no restriction to

select K* (y) so that Dm lies entirely in the domain D^ consisting of γχ ,

γ[m) and 0 < x < 2.

LEMMA. Let F0(x) ( 0 < x < 2) and GQ {x) (x0 < x < 2) be given func-

tions with continuous first derivatives with F 0 ( 2 ) = G 0 ( 2 ) = 0. Then there

exists a unique solution u(x9 y) o / ( 3 ) in D^ satisfying the conditions

ΊI ( r fl)- F f r ^ ( 0 < Y < *?} nnd i ι \ r h ( r ) λ — (I ( r ) ( r ^ m ^ < x < 2 )

Further, for y1 < y < 0, w(%, y) may 6e represented in the form

u(x9 y) = / X ( Λ ; + λ χ y ) + gχ ( x - λ χ y ) ,

awe? ίAe functions fι 9 g t satisfy the inequalities

\ f \ < - \ g \ < -I Λ I < λ i . l β ι l i λ ι .
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where M is a constant depending on the slope of h(x) and the maximum of

\ F 0 ( χ ) \ , | F 0 ' ( * ) | . | G 0 ( * ) I , | G S ( * ) | .

Proof. The existence and uniqueness will be established simultaneously

by constructing the solution. The solution itself will be obtained in a step-by-

step process, and the method for constructing the first few steps will be shown

in detail. From this it wjjl be clear how to continue until the complete solution

is obtained in a finite number of steps. Let Qi9 Q2»
 β β β » Q^ (k < m) be the

points of intersection of y = h(x) with the lines y = y^ y -y2, •••, y^y^

respectively. Draw the characteristic Qι Rx (see figure). The determination of

the solution of (3) in the trapezoid ^ o ^ i ^ i ^ i w ^ t n data g i γ e n along two

noncharacteristics is a classical problem for the wave equation. However, since

certain estimates are needed for the functions fγ and gi9 this solution will be

obtained explicitly. Let P (x, y) be a point in the trapezoid Λo AiQ tRt lying

above Γ. Then fγ{x + λty) is constant along the characteristic through P paral-

lel to RιQι. This characteristic intersects Γ at, say, Si, and we have

Ao(2, 0)
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From S t draw the characteristic parallel to Λ0Aι intersecting the Λ -axis at 7\.

Then

and consequently

Through 7\ draw the characteristic parallel to RiQi intersecting Γ at S2.

Through S2 draw the characteristic parallel to A0Aι intersecting the Λ -axis

at T2 Continuing in this way we find

iχ{P) = Σ, G0(Sn)~

or

ft(P) = Σ n[G0(S») - G0(SnU)] - £ n[F0(Tn) - F0(Tn+ι)].
n=l

The convergence of these series under the hypotheses of the lemma follows

easily. Let

Λf,« π > a x ( | F 0 ' ( * ) | , | G 0 ' U ) | ) ,

and denote the length of the line segment from Tn to Tn+ι by \ Tn — Tn + ι | Then

an application of the theorem of the mean yields

\fί\<Mι

To obtain an estimate for fχ we first note that the lengths | Tn - TΛ+i | and

I Sn~ Sn +1 I f° r m geometric progressions. Let L denote the length of that part

of Γ between AQ and Q\. For simplicity we may replace the arc AQQι by the

chord and let k be the tangent of the angle this chord makes with the horizontal.

In the actual case k is replaced by a variable for which we have upper and

lower bounds. Construct the perpendiculars from the points Sn to the %-axis



104 M. H. PROTTER

and denote these lengths by bn. It is easi ly seen that these lengths are given by

Lk

( 1 + λ χ A ) "

and hence

2λ t Lk
Tn-1 ~ Tn I

S i n c e a s imilar es t imate holds for the lengths \Sn - Sn + ι |, we find

UXCL

where C i s a constant depending only on the slope of h(x) To determine

gι{x - λiy) we proceed in a similar way. From the point P in the trapezoid

Ao AiQi Rι lying above Γ we draw the characteristic parallel to A0Ait and

denote by tί the point where this characteristic meets the #-axis. Through tγ we

construct the characteristic parallel to Rγ Q± intersecting Γ at sx. The se-

quences { t n \ and { s n } are constructed as before, and we obtain

Hence

oo oo

g ι ( P ) - 2 : F0(tn)- Σ G0(sn)

A similar estimate to that made for fι yields

MXCL

The solution u(x$ y ) is now completely determined in that part of the trapezoid

^ o ^ i ί i ^ i lying above Γ However, from the fact that fχ i s constant along

the characteristics x + \xy = const., and gt along the characteristics x - λty =

const., we see that u is completely determined in the remainder of AQAχ Q\R\

From the compatibility relations ( 4 ) this determines the solution in the triangle

(or trapezoid) AχBιQχ (See figure.) Construct now the characteristics @ i # 3 ,
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Rί B2, and B2 B4. Since gt is a function of x - λ t y , the determination of gt in

^ o ^ i ^ i ^ i defines it also in the triangle RιQ\B2 and in particular along the

segment Qx B2 This together with the fact that u is prescribed along the arc

Q1Q2 enables us to determine u throughout the triangle Q\B2 β 4 . Let P (x, y)

be a point on the segment Q\B2. From (4) we have

where we have set

Through P construct the characteristic parallel to B2B4 and intersecting

Q1Q2 a t t n e point Γ£. From rt we next draw the characteristic parallel to Qt B3

and meeting Q\B2 at the point Vγ Continuing this process we obtain the se-

quences \rn\ along Q1Q2 converging to Ql9 and { vn } along QιB2 converging

to QΛ. Then, by the same argument employed above,

9 \ 2λ
2 i [v v * 2 k ° I \ \

λ 2 + λ i Λ2 + Λi

and

2λ 2

G0{τι)-gι{υι)-afι{vι)

λ 2 )
£B4 * ' ^ l τι'

This yields not only the complete determination of fχ on the segment Qχ B2 but

also the estimate
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where M2 depends only on the given data and Γ. Knowledge of the function

fχ along QχB2 together with relations (4) yields the solution u in the triangle

QιB2B^ Draw now the characteristic # 2 # 2

 a s s ' l o w n Since / is a function

of x + λχyf we now know fι in the parallelogram ^ 1 ^ 3 1 ^ 2 ^ 2 * Along RιR29

gγ = FQ — fχ , and thus gχ and therefore u is determined in this parallelogram.

The transition from the second to the third step is completely analogous and

may be carried out in the same way. The estimates for / and g are easily

obtained by an induction argument that parallels that given in [3] and need

not be repeated. The bounds show that the solution obtained is unique.

We note that ux(x, γ) also satisfies equation (3). Therefore we may consider

again the same problem treated in the lemma with the following data:

F 0 'U) (0 < x < 2, y = 0)

and

/ U + λ / A O O W g / U - λ ί Λ U ) ) ( x {

o

m ) < x < 2 , a l o n g y = h ( x ) ) .

To do this we assume that F0(x), G0(x) possess continuous second deriva-

tives. If the argument employed in the lemma is repeated and the relation

Go'(*) = fflx +λih(x)] [ l + λ iλ 'OOl+g U - λ i Λ U ) ] [l-λ,-A'(*)]

is employed then estimates of the form

A l

may be obtained. Here M$ depends only on max | X * ( y ) | , the given data, and

h{x). In the first strip, that is, the strip bounding the #-axis, we have

u γ ( x 9 γ ) = λ ι f [ ( x + λ i γ ) ~ λ ί g ϊ ( x - λ ι y ) .

Hence the estimates for /[ and g[ show that uγ(xf y) is uniformly bounded

with the bound depending only on the given data, the domain, and max | K* (y) | .

3. The limiting process. We now consider a sequence Kn(y) of nondecreas-
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ing step-functions, each with a finite number of steps, which converges uni-

formly to K(y). The fact that u(x9 0) and uy(x9 0) are uniformly bounded for

all n enables us to employ the following theorem of Bers [ l ] :

THEOREM (Bers). Let r(x) and v(x) be once continuously differentiable

functions defined for 0 < x < 2. Then there exists a unique solution u(x9 y)

of equation (1) in D' satisfying the initial conditions

u{x9 0) = r(x)9 uγ(x9 0) = v(x) (0 < x < 2).

In D'9 u(x9 y) satisfies the inequalities

\u\ < T + \y\N, \uy\ <AT'+ BN'9

where

A = A (y) = ΛJ-K(γ), B = x+ \y\A(y), T = max | r(x)\, N = max j v(x)\,

I ' = max I τ'{x) | , Λ ' B max | ι / ( * ) | .

The theorem of Bers applies equally well to equation (3) . Employing this

theorem together with the bounds we obtained for f^ and g^, we obtain uniform

bounds for the solution u(x9 y) in D ' in terms of F o , Go, and their first two

derivatives.

Denote by u^n'(x9 y) the solution of the boundary value problem corres-

ponding to Kn (y ) . Then

uin)(x,0) = FQ(x)

for all n, and {u^ (x9 0)1 is a uniformly bounded sequence. The assumption

that Fo and Go possess continuous fourth derivatives gives us a uniform bound

on { u^J (x9 0)}; hence the sequence {u^1' (x9 0)5 is equicontinuous, and there

exists a convergent subsequence. Let Uγ{x9 0) be the limiting value. This

fact together with the estimates obtained above allows us to apply a lemma of

the author [3, p.427] and conclude that a subsequence of \un{x9 y)i converges

to a function u(x9 y) which satisfies (1) . It is clear that u{x9 y) assumes the

proper boundary values as each un(x9 y) does.

To determine the uniqueness of the solution, a method previously exploited

[4] may be used. We assume that u(x9 y) is a solution which vanishes on the

%-axis, 0 < x < 2, and on Γ. We consider the integral
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2 \\ {aux + buy + cuz)(Kuxx + uyy)dxdy = 0,

D

where α, 6, and c are functions yet to be determined. In this case we may take

o = 0 and b and c constant. An application of Green's theorem yields

u2dx0= [2c(x, 0)u*(x,0) dx + fίcK'ul
Jo y JJ

-Kuχ-2uxuy+—uy)

An appropriate selection for b and c makes all these integrals have the same

sign* This can only happen if u vanishes identically.

The preceding has proved the following:

T H E O R E M . Let F0(x) ( 0 < * < 2 ) , G0(χ) {χo<χ<2) be functions

with continuous fifth derivatives and F 0 ( 2 ) = G 0 ( 2 ) . Let y-h(x) and D be

defined as in § 1. Then there exists a unique solution u(x9 y) of ( 1 ) in D

satisfying the boundary conditions u(x, 0) = F0(x) ( 0 < # < 2 ) and

u[x9 h(x)] - G0(x) (x0 < x < 2 ) . Further, estimates for u(x, y) may be ob-

tained in terms of the given data.
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