
SETS OF RADIAL CONTINUITY OF ANALYTIC FUNCTIONS

F R I T Z HERZOG AND GEORGE PIRANIAN

1. Introduction. A point set E on the unit circle C ( | z \ = 1) will be called

a set of radial continuity provided there exists a function / (z ), regular in the

interior of C, with the property that lim,-^ i /(re* ) exists if and only if e is

a point of E. From Cauchy's criterion it follows that the set E of radial con-

tinuity of a function f (z) is given by the formula

£= Π ΣΠE
fc-l n = l J

where the inner intersection on the right is taken over all pairs of real values
Γi? r2 with 1 — \/n <. τ\ < Γ2 < 1. From the continuity of analytic functions it

thus follows that every set of radial continuity is a set of type Fσ$. The main

purpose of the present note is to prove the following result.

THEOREM 1. If E is a set of type Fσ on C% it is a set of radial continuity.

The theorem will be proved by means of a refinement of a construction which

was used by the authors in an earlier paper [2] to show that every set of type

Fσ on C is the set of convergence of some Taylor series.

2. A special function. That the set consisting of all points of C is a set of

radial continuity is trivial. In proving Theorem 1, it may therefore be assumed

that the complement of E is not empty. In order to surmount difficulties one at a

time, we begin with a new proof of the well-known fact that the empty set is a

set of radial continuity (see [ 1, vol. 2, pp. 152- 155]).

Let
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11 + z/ωni + (z/ωj2

 + ...
n *

(z/ωn2 ) 2 +

( 1 )

here

nj

and } kn \ is a sequence of nonnegative integers which increases rapidly enough

so that no two of the polynomials Cn(z) contain terms of like powers of z, and

so that a certain other requirement is met; the positive integer /V, which is the

lower limit of the foregoing series, will be determined later.

If z is one of the points ωnj, then | Cn(z) | = 1. On the other hand, let z lie

on the unit circle, and let Tn(z) be any sum of consecutive terms from (1) . If

z is different from each of the roots of unity ωnj that enter into Vn(z), and 8

denotes the (positive) angular distance between z and the nearest of these

ωnj , then

Λi
(2) | Γ π ( z ) | < — ,

3n2

where Aγ is a universal constant (see [2, Lemma A]) . Now, if

( 3 ) z = e i θ ω n j , \θ\ < —2 ,

n

and Rn;(z) denotes the sum of the terms in the /th row of ( 1 ) (including the

factor 2 k n / n 2 ) , then

, x s ί n U 2 < ? / 2 )
( 4 ) Λ n / ( z ) | = - >A2,

π 2 sin (θ/2)

where A2 is again a positive universal constant. But if the angular distance
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between z and ωnj is l e s s than π/n2, the angular d i s tances between z and the

remaining nth roots of unity are all greater than 1/n, and therefore ( 3 ) implies

that, for sufficiently large n, by ( 2 ) and ( 4 ) ,

\Cn(z)\ > A2- 2Aι/n > 5 ^ 3 ,

where Λ3 = A2/6 We now choose N so large that the second of these inequali-

ties holds whenever n >_ N.

Let ICN - 0; let r# be a number (0 < r/γ < 1) such that

\CNireiθ)-CN(eiθ)\ < —

for r/v < r < 1 and all θ. Next, let kjy+ γ be large enough so that

for all θ; and let r/y+i be greater than r/γ, and near enough to 1 so that

\CN+ι(reiθ)-CN+ι(eiθ)\ <jj^jy]

for r/v +1 < r < 1 and all θ. Let this construction be continued indefinitely.

Now let L be a line segment joining the origin to a point eι , and let n be

an integer such that n > N and

(5) \Cn(eiθ)\ > 5 Λ 3 .

Vve then write

f (rne
iθ) - f (rn.ιe

iθ)= Cn(eiθ) + [Cn(rne
iθ) - Cn(eiθ)] - Cn(rn.ιe

iθ)

+ Σ \^Cj(rne
iθ)-Cj{eiθ)λ-VCj{rn.ϊe

iθ)-Cj(eiθm
j=N

and obtain from the inequalities above
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>Λ £ 2 £ 25 --I - 2, - 2 £ 2 - 2

> A3A 3 [ 5 - 2 ( e - l ) ]

It follows that, if there exist infinitely many integers n for which (5) is satisfied

f(z) does not approach a finite limit as z approaches eι along the line L. But

for each real θ there exist infinitely many integers n with the property that, for

some integer j ,

Θ In

2π n

1

2n 2

(see [3, p. 48, Theorem 14]), so that each z on C admits infinitely many repre-

sentations (3) . It follows that limr_> ι f {re1 ) does not exist for any value θ.

3. Closed sets of radial continuity. Let E be a closed set on C, and let G

denote its (nonempty) complement. Again, let f(z) be the function defined in

§ 2 , except for the following modification. In the polynomial Cn(z), let ωnl,
ωn2> * * * 9 ωnp denote those nth. roots of unity which lie in G and have the ad-

ditional property that the angular distance of each one of them from E is greater

than n 2. The exponent of z in the factor outside of the brackets in the last row

of the right member of ( 1 ) becomes (p — \)n . And the p rcth roots of unity

ωnj that occur in Cn{z) must be so labelled that their arguments increase as the

index / increases, with arg ωnl > 0 and arg ωnpn < 2π. Then every partial

sum Vn(z) of consecutive terms of Cn(z) satisfies the inequality | Γw ( z ) | <

Λιπ"3//2 for all z belonging to E, and therefore the Taylor series of f(z) con-

verges on E. On the other hand, let the exponents kn in ( 1 ) be chosen in a man-

ner similar to that of § 2, and let L be a line segment joining the origin to a

point eι in the (open) set G. Then there exist infinitely many integers n for

which (5) is satisfied by our newly constructed polynomials Cn(z), and there-

fore H m ^ i f (re1 ) does not exist.

4. The general c a s e . Suppose finally that £ i s a s e t of type Fσ on C. Then

the complement G of E is of type Gg; that i s , it can be represented as the inter-

sect ion of open s e t s Gι,G2, , with G p G ^ + 1 for all k. In turn, we can

represent Gγ a s the union of closed intervals Iih in such a way that no two

dist inct intervals Iχh and Iih' contain common interior points , and in such a way

that no point of G± i s a limit point of end points of intervals /i/^. Similarly,
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each set G^ can be represented as the union of closed intervals / / ^ satisfying

similar restrictions.

Let no be any positive integer. Since the denumerable set of all open arcs

z =eiθ, I θ-2πj/n\ < π/n2 ( / = 1 , 2 , . . . , n, n > n0 )

covers the entire unit circle, there exists a set of finitely many such arcs

covering the unit circle. It follows that we can choose a finite number of terms

Cn(z) (see (1)) , modified as in § 3 , such that their sum f^z) has the follow-

ing properties:

i) for each θ in / 1 L , there exist two values p ' and p " , • 0 < p ' < p" < 1,

s u c h t h a t \fι(p'eiθ)-fί(p"eiθ)\ > A 3 ;

i i ) for each point eι ou t s ide of In and outs ide of the two neighboring

interva l s / ^ and I\hΊ an^ f ° r each n for which Cn{z) o c c u r s in f^z), the

modulus of any sum of c o n s e c u t i v e terms of Cn(eι ) i s l e s s than A ι n .

Next we accord a s imi lar t reatment to Ii2, then to I2 i , /13, ̂ 2 * his ^14* a n ( l

so forth. The sum f(z) of the polynomials f.(z), / ( z ) , ••• t h u s c o n s t r u c t e d

h a s the following p r o p e r t i e s : if ei l i e s in E, that i s , l i e s in only f initely many

of the in terva l s 7/^, the Taylor s e r i e s of f (z) converges a t z = eι if eι l i e s

in G, there e x i s t p a i r s of v a l u e s p ' and p" arbitrar i ly near to 1 and such that

| / ( p eι ) - / ( p eι ) \ > A3.

It follows that E i s the s e t of radia l cont inuity of f(z), and the proof of The-

orem 1 i s complete .

5. S e t s of uniform radial continuity. The following theorem is ana logous to

Theorem 2 of [ 2 ] .

T H E O R E M 2. If E is α closed set on C, then there exists α function f{z),

regular in \ z \ < 1, such that l i m r _ , t fire1 ) exists uniformly with respect to

all eι in E and does not exist for any eι not in E.

For the proof of Theorem 2, we refer to the function f{z), constructed in

§ 3 . Note that | Γ Λ ( z ) | < Axn'3/2 for all z in E. Hence the Taylor ser ies of

/ ( z ) converges uniformly in E. It then follows easily, by the use of Abel's

summation, that the convergence
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is also uniform in E.

6. An unsolved problem. The converse of Theorem 1 is false, since a set

of radial continuity can be the complement of a denumerable set which is dense

on C. Vve do not know whether there exist sets of type Fσ$ that are not sets of

radial continuity.
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