THE NUMBER OF SOLUTIONS OF CERTAIN TYPES OF EQUATIONS IN A FINITE FIELD

L. CARLITZ

1. Using a very simple principle, Morgan Ward [3] indicated how one can obtain all solutions of the equation

(1)
$$y^m = f(x_1, \dots, x_r) \qquad (y, x_i \in F),$$

where F is an arbitrary field, $f(x_1, \dots, x_r)$ is a homogeneous polynomial of degree n with coefficients in F, and (m, n) = 1. The same principle had been applied earlier to a special equation by Hua and Vandiver [2]. If this principle is applied in the case of a finite field F we readily obtain the total number of solutions of equations of the type (1). Somewhat more generally, let

$$f_i(x_i) = f_i(x_{i1}, \dots, x_{is_i})$$
 $(i = 1, \dots, r)$

denote r polynomials with coefficients in GF(q), and assume

$$(2) f_i(\lambda x_1, \dots, \lambda x_{s_i}) = \lambda^{m_i} f_i(x_1, \dots, x_{s_i}) (\lambda \in GF(q));$$

assume also

(3)
$$(m, m_i, q-1) = 1$$
 $(i = 1, \dots, r).$

We consider the equation

(4)
$$y^{m} = f_{1}(x_{11}, \dots, x_{1s_{1}}) + \dots + f_{r}(x_{r1}, \dots, x_{rs_{r}})$$

in $s_1 + \cdots + s_r + 1$ unknowns.

Suppose first we have a solution of (4) with $y \neq 0$. Select integers h, k, l such that

(5)
$$hm + km_1 m_2 \cdots m_r + l(q-1) = 1, \qquad (h, q-1) = 1;$$

Received August 8, 1953.

178 L. CARLITZ

this can be done in view of (3). Next put

(6)
$$y = \lambda^h, x_{ij} = \lambda^{kM/m_i} z_{ij}$$
 $(M = m_1 m_2 \cdots m_r).$

Substituting in (4) and using (2), we get

$$\lambda^{hm} = \lambda^{kM} \{ f_1(z_1) + \cdots + f_r(z_r) \}.$$

Since $\lambda^{q-1} = 1$, it is clear from (5) that

(7)
$$\lambda = f_1(z_1) + \cdots + f_r(z_r).$$

Thus any solution (y, x_{ij}) of (4) with $y \neq 0$ can be obtained from (6) and (7) by assigning arbitrary values to z_{ij} such that the right member of (7) does not vanish. Let N denote the total number of solutions of (4) and let N_0 denote the number of solutions with y = 0. Thus there are $N - N_0$ sets z_{ij} for which $\lambda \neq 0$. Since in all there are $q^{s_1 + \cdots + s_r}$ sets z_{ij} it follows that

$$(8) N = q^{s_1 + \cdots + s_r}.$$

This proves:

THEOREM. Let the polynomials f_i satisfy (2) and (3). Then the total number of solutions of (4) is furnished by (8).

2. In Theorem II of [2] Hua and Vandiver proved that the number of solutions of

(9)
$$c_1 x_1^{a_1} + c_2 x_2^{a_2} + \dots + c_s x_s^{a_s} = 0$$

subject to the conditions

$$c_1 c_2 \cdots c_s x_1 x_2 \cdots x_s \neq 0$$
, $(a_i, q-1) = k_i$, $(k_i, k_i) = 1$ for $i \neq j$,

is equal to

(10)
$$\frac{q-1}{q}\{(q-1)^{s-1}+(-1)^s\}.$$

It is easy to show that (10) implies that the total number of solutions of (9) is equal to q^{s-1} , which agrees with (8). Conversely if N_s denotes the number of nonzero solutions of (9), and we assume that

(11)
$$(k_i, k_j) = 1 (i, j = 1, \dots, s; i \neq j),$$

then using (8) we get

$$q^{s-1} = N_s + {s \choose 1} N_{s-1} + {s \choose 2} N_{s-2} + \cdots + {s \choose s-1} N_1 + 1$$
.

Hence (if we take $N_0 = 1$)

$$(q-1)^{s} = \sum_{r=1}^{s} (-1)^{s-r} {s \choose r} q \sum_{t=0}^{r} {r \choose t} N_{t} + (-1)^{s}$$

$$= q \sum_{r=0}^{s} (-1)^{s-r} {s \choose r} \sum_{t=0}^{r} {r \choose t} N_{t} - (-1)^{s} (q-1)$$

$$= q \sum_{t=0}^{s} {s \choose t} N_{t} \sum_{r=t}^{s} (-1)^{s-r} {s-t \choose s-r} - (-1)^{s} (q-1)$$

$$= q N_{s} - (-1)^{s} (q-1),$$

and (10) follows at once. Thus if we assume (11) then (8) and (10) are equivalent.

If in place of (11) we assume only that

$$(12) (k_1, k_2, k_3, \cdots, k_s) = 1,$$

the situation is somewhat different. As above let N_s denote the number of non-zero solutions of (9), and let M_{s-1} denote the total number of solutions x_2, \dots, x_s of

(13)
$$c_{2}x_{2}^{a_{2}} + c_{3}x_{3}^{a_{3}} + \cdots + c_{n}x_{n}^{a_{n}} = 0.$$

Using (8) we now get

(14)
$$q^{s-1} = M_{s-1} + N_s + {s-1 \choose 1} N_{s-1} + \dots + {s-1 \choose s-1} N_1,$$

which implies (with $M_0 = 1$)

180 L. CARLITZ

(15)
$$(q-1)^{s-1} = \sum_{r=0}^{s-1} (-1)^{s-1-r} {s-1 \choose r} M_r + N_s.$$

Thus making only the assumption (12) we see how the number of solutions of (13) can be expressed in terms of N_s and $vice\ versa$.

3. Returning to equation (4), we see that a similar result can be obtained if we allow f_i to contain additional unknowns:

$$f_i(x_i; u_i) = f_i(x_{i1}, \dots, x_{is_i}; u_{i1}, \dots, u_{it_i}),$$

and assume that (2) holds only for the x's. Then the number of solutions (γ , x_{ij} , u_{hk}) of (4) becomes

$$q^{s_1+\cdots+s_r+t_1+\cdots+t_r}$$

Similarly we may replace the left member of (4) by

$$y_1^{a_1} y_2^{a_2} \cdots y_s^{a_s}$$
 $(a_1, a_2, \cdots, a_s) = m.$

Then assuming (3) we again find that the number of solutions of the modified equation is equal to

$$a^{s_1+\cdots+s_r+s-1}$$
.

This kind of generalization lends itself well to equation (9). For example it is easy to show (see [1, Theorem 10]) that the total number of solutions of the equation

$$\sum_{i=1}^{t} c_i \prod_{j=1}^{k_i} x_{ij}^{a_{ij}} = 0,$$

subject to $(a_{i1}, \dots, a_{ik_i}, q-1) = d_{ij}$ $(d_{ij}, d_{j}) = 1$ for $i \neq j$, is equal to

$$q^{k_1+\cdots+k_{t-1}}$$
.

REFERENCE

1. L. Carlitz, The number of solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 515-519.

- 2. L.K. Hua and H.S. Vandiver, On the nature of the solutions of certain equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 481-487.
- 3. Morgan Ward, A class of soluble diophantine equations, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 113-114.

DUKE UNIVERSITY