THE DIRICHLET PROBLEM FOR NONLINEAR
ELLIPTIC EQUATIONS

JANE CRONIN

1. Introduction. It is often convenient to divide the question of solving the

Dirichlet problem for a nonlinear elliptic differential equation into two parts:

(A) The ‘‘local” problem, that is, the problem of solving the equation
for boundary functions ! sufficiently “‘close’’ to the boundary function of a given

solution.

(B) The ‘‘extension’’ problem, that is, the problem of finding solutions
corresponding to a given set of boundary functions if the solution for one bound-

ary function in the set is known.

S. Bernstein takes this approach in his fundamental papers on nonlinear elliptic
equations [1,2], and in other papers (See [7] for a bibliography.) this view-
point is used more or less explicitly.

Problem (B) is essentially the profound and difficult problem of finding
““a priori’’ estimates for solutions of nonlinear elliptic equations (cf.the papers
by Bernstein [1,2], Schauder [15], Leray [10,11], and Nirenberg [13]. Niren-
berg gives, besides important new results, a clear account of previous work in
the subject.) We shall be concerned here only with problem (A), which is much
simpler.

In solving (A), the usual procedure is to invoke an assumption which im-
plies uniqueness of solution, that is, an assumption which implies that the
corresponding Jacobi equation has only the zero solution, This assumption is
used to prove that there is a solution for each boundary function which is suf-
ficiently ‘“‘close’ to the boundary function of the given solution. If the unique-
ness hypothesis is relinquished, it may turn out that the equation has several
solutions or no solutions at all for some boundary function which neighbors the
boundary function of the given solution [4, 12]. But this is a statement about
real solutions of the differential equation. We shall show here that if complex

1We shall refer to a set of boundary values as a boundary function.
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solutions are admitted, then the differential equation always has at least one
solution for each boundary function sufficiently close to the boundary function
of the given solution. We obtain a lower bound for the number of distinct solu-
tions, and we obtain a sufficient condition that there exist a real solution of the

differential equation.

More precisely, we consider the equation
(E) Fx,y,2,p,9,7,8,t) = ¥(x,5),

where F is analytic in all its variables. (For simplicity of notation, we con-
sider the case of two independent variables, All the results hold for the case of
n variables.) Let R be a bounded connected region in the plane with a nice
boundary S.? The normed rings E, , and eg, ,, which consist of functions on the
domains R u S and S, respectively, having o-Hslder continuous nth derivatives,
are defined in the usual way. Suppose (E) has a solution zg € Eq,3 with bound-
ary function ¢,(&) € eq,3 when ¥ =, €Ey (. Assume that F is elliptic rela-
tive to z, and that z, is an isolated solution of (E) when ¢ = ¢ . Our purpose

is to solve the following Dirichlet problem:

Given Y (x,y) €E,,; and boundary function ¢( &) € eq,s, such that Y-,
and ¢ — ¢, are both sufficiently small in terms of the norms of Eq,1 and eq, 3,

respectively, does (E) have a solution z(x,y) €E, s with z|g = ¢?
For completeness, we state first a well-known theorem.
THEOREM. If the Jacobi equation associated with (E), that is,

(1) [Euxx+[Fsl Uy + [F ], Uyy + [Fp]O Uy + [Fq]o uy + [F,lou=0

(where [F.1o means F, evaluated at z =z,), has only the zero solution with
boundary function ¢ =0, then (E) has a unique solution z(x,y) € Eq,3 for all
Y, ¢ sufficiently close (in the appropriate norm) to y, and &,.

Now suppose (J) has n linearly independent solutions with boundary function
¢ = 0. Then we have:

THEOREM B. Equation (E) has at least one solution of the form

ulx,y) +iv(x,y),

2For a precise formulation of the conditions on S, see [5, footnote (4)].
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where u(x,y), v(x,y) €Eq 3 for all Y, ¢ sufficiently close to Y, b,. For a
good many pairs ® ¢, &, equation (E) has at least 2" distinct solutions of this
form.

Theorems A and B are direct extensions of the theorem on the continuity

of roots [9, p.122] of algebraic equations.

In order to investigate whether (E) has any real solutions, we use a con-

cept of multiplicity that will be described in a later section of this paper.

THEOREM C. If the multiplicity of the solution zo is odd, equation (E)
has at least one real solution, that is, a solution in Eq 3, for all Y, ¢ sufficients
ly close to Y, ¢y

Theorem C is a direct extension of the elementary theorem that a polynomial

of odd degree with real coefficients has at least one real solution.

Instead of proving Theorems A, B, C directly, we shall study a functional
equation of which (E) is a special case. Theorems A, B, and C are special

cases of existence theorems which are obtained for the functional equation.

2. The existence theorems. Let X be a Banach space over the real numbers.

We consider the equation
(1) (U+C+Tlx=y,

where x,y € X, [ is the identity, C is linear completely continuous, and T satis-
fies the hypotheses:

(1) T(0)=0.

(2) There is a neighborhood U of 0 and a positive constant B such that
u, v € U implies

T () =T () || <B[ull +|[o|10[lu-v]l].
(3) T is an analytic function of x [8, p. 811,

It is clear that x =0 is a solution of (1) when y =0. We assume that this is
an isolated solution. The problem is to investigate the solutions x of (1) for

given small y. To avoid repetition, we use the notation of [3].

In [4] and [5], it was shown that studying the solutions of (E) is cquivalent

3See [ 4, Definition 3.1] for a definition of the term ‘‘good many.”
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to studying the solutions of a special case of equation (1). The proof given

in [4] is shorter and clearer.

If (I + C) is nonsingular, equation (1) has a unique local solution as shown
in [3]. (Theorem A is a special case of this statement.) If (/ + C) is singular,
we consider possible complex solutions by studying a complex extension of
(1). First we define a complex extension ¥ of the real Banach space X. This
¥ is a complete metric space which is also a linear space over the complex
numbers. The elements of ¥) are pairs (u,v) of elements of X. Addition in 2 is

defined by
(gyv) +(x,y) =(u +%, v +y),
and multiplication by complex numbers (¢, 8) is defined by
(o, B)(uyv) = (0w = Bo, Bu + aw).
REMARK. Any element (u,v) € ) may be written as the linear combination
(u,v)=(1,0)(u,0) +(0,1)(v,0).
The metric p of §) is defined in terms of the norm in ¥ by
p[(u,v), (uo,vo)] = “u - Uug H + HU — Vo H

Since X is complete, ¥) is complete. Also {) is an extension of X, that is, X is
topologically isomorphic to the subset S of ' which consists of elements of

the form (u, 0). By a real element of , we shall mean an element of < = X.

Using the Remark, we define a completely continuous operator C on ¥ by
Cl(u,v)1=Cl(1,0)(y,0)+(0,1)(v,0)]=(1,0)(Cu0)+(0,1)(Cv,0).
Similarly, the linear operators €, €!, and R are defined by:
€, [(u,v)1=(1,0)(E; 4,0)+(0,1)(E;v,0),
€ (u,v)]1=(1,0)(E'4,0) +(0,1)(E',0),
and

Rl(yg,v)]=(1,0)(Ru,0) +(0,1)(Rv,0).

From these definitions, it is clear that C, €,, €!, and R are extensions in ¥ of

C, E,,E", and R respectively; that is,
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C/% -C, €,/% =E,, €1/%X =E"', and R/%X =R.

Moreover, it follows at once from the corresponding properties of Ey, E', and

R that €, is a projection of {) on the null space of [ + C, and that

R(1+C)=1-&, =€,

Finally, we define an extension O in {' of transformation T. By [8, Theorem

D\

4.5.1, p. 82] and Condition 2) on T, we have

1
T(h) =3 = 8" T(0:h),

n=2

where 8" T(0;k) is a homogeneous polynomial of degree n in A [8, Theorem
4.3.5, p. 74 }. Hence, by [8, Theorem 4.2.3, p. 66 ],

8" T(0; 0w+ Bv) = 3 a¥ gV Py lu,v],

V=0

where each P,lu,v] is a homogeneous polynomial in u, v. Using the Remark,

we define 8" O[0; (u,v)] as

8" O10; (4,0)1=8"3[0; (1,0)(1,0) +(0,1)(5,0)1= 3~ (0,1)"* Pylu,v],
V=0
and
S(h) =3 87 5(0;h).

n=2

From the definition, it follows that:

(1) 9(0) =0,
(2) 9 is analytic,
(3) &/%=T.

We assume that there is a neighborhood N of 0 in ¥, and a positive constant B,

such that (g, v), (u*, ) €N implies
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plS(u,v) =3, M), (0,0)]

< Bipl(y,v), (0,001 +p[(u™), ™), (0,0)1}

{pl(y0), (a0 )11,

We also assume that x = 0 is an isolated solution of the equation in

z,

(2) (I1+C+Dx =y,

when y =0. Hence we can apply the theory of [3], [5], and [6] to study the
solutions of (2). As was shown, the problem reduces to that of solving an
equation in {';, the null space of I + C.

(3) SIRB[;\:I+F(x1,y)]—8R(y)=0.

In this case, equation (3) is a system of n equations in n complex unknowns,
(4) Gi(zyyee,2p,y)=0 (i=1,++4,n),

where G; is analytic in the complex variables z;,+++, 2, and continuous in y,
and n is the dimension of ;. We investigate the solutions of (4) by studying

the topological index® at zero of the mapping in complex Euclidean r-space

Gi(zl:""znro)=zi' (i=1,“',n).

In [6], it was shown that the index of this mapping is always > 2". (Actually
a sharper lower bound was obtained, but we need not describe it here.) Hence,

as in [ 3, Theorem 3.5], we obtain:

EXISTENCE THEOREM. For each sufficiently small vy, equation (2) has

at least one solution.

We call the index the multiplicity of the solution x =0 when y =0. It was
shown in [4, Theorem 3.1] that the index or multiplicity tells the number of
solutions in the complex case where the topological degree is always positive,

that is, we have:

COUNTING THEOREM. [f the index is m, then for a good many [4] suf-

ficiently small y, equation (2) has exactly m distinct solutions.

4When referring to the topological index or to topological degree of a mapping in
complex Euclidean n-space, we regard it as a mapping in real Euclidean (2n)-space.
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Since m > 2", we have:

CoroLLARY. For a good many sufficiently small vy, equation (2) has at
least 2™ distinct solutions.

Theorem B is a special case of the Existence Theorem and this Corollary.

3. The real existence theorem. The two preceding theorems are about the
solutions of (2), an equation in the complex linear space ¥. These solutions
of (2) can be regarded as the ‘‘complex’’ solutions of the original equation
(1). However, we can also obtain information about solutions in X of equation
(1), that is, “‘real”’ solutions of (1). We prove a theorem that is analogous to
the theorem that any polynomial equation of odd degree with real coefficients

has at least one real solution.

REAL EXISTENCE THEOREM. If the index m is odd, equation (1) has at
least one solution x € % for each sufficiently small y € X.

(Theorem C is a special case of this theorem.)

Proof. We show that if y is real, then the complex extension of equation
(1), that is, equation (2), has a “real’’ solution, that is, a solution in X. It
is sufficient to show that if y is real, equation (3) has a real solution x,. For
if x, is a real solution of (3), then

%1+ F(xy,y)

is a solution of (2) that is in X. (The F(x,,y) is the solution, obtained by

successive approximations, of
!+ ETRO[x, +2'] = SIR()’) =0,
Since y is real and

€% =EY R/%X =R, B/%=T,

then F(xy,y) is in X if x; and y are in X.)

As previously stated, the problem of solving (3) is that of solving a system

of n equations in n unknowns

Gi(zh"':znn)’):'o (i=1,'--,n),
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where each G; is analytic in z, -, z,, that is, each G; is a power series in
Zy,++,zp. From the definitions of €;, €', R, and I, it follows that if y is
real then the coefficients in these power series are real. We complete the proof

of the theorem by proving the following lemma.
INDEX LEMMA. Let
M:(zl’°"’zn)——)(zl,"',zn)

be a mapping of complex Euclidean n-space into itself defined by the power

series

ZGi(kl,-”,kn)zflo-‘zf;"=zl' (i:l,oon,n)’

where the a;(ky,+++,k,) are real numbers, and such that M does not map
(0,+++,0) into itself. Suppose the topological degree of M at (0,-+.,0) and
relative ® to a sphere S with center (0,.++,0) is d, an odd number. Then the

system of equations
(5) Sailkiyeeyhn)zit ooezim =0 (i=1 )
Ai\RLg**ryfinlZ2y 002, = L =lyse,0

has a real nonzero solution in S.

Proof of the Index Lemma. Since d # 0, system (5) has at least one solution

in S. We assume that (5) has no real solutions in S and obtain a contradiction.

Let
E =[p | p €Interior of S and M(p) =01,

Suppose
By iy = (e 1)1

is the set of points in E such that the imaginary parts of the fjl, . f] are
. . . q-
nonnegative and the imaginary parts of the other coordinates f} are negative.

Since the coefficients a; (&, +++, k, ) are real, the set

Efl g = [('517 "'15,1)]
is also contained in £, Hence we may write

5By the topological degree of a mapping ¥ relative to a set S, we mean the topo-
logical degree of M/S.
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E:

i

N C o~

(B; v B;),
1

where By, ..., B, are sets of the form E;, g angl—_B—,- is the set of points
conjugate to those in B;, and B;,.++,B;, By,+++,B; are pairwise disjoint.
Since (5) has no real solutions in S, there exist pairwise disjoint open sets
Upserss Uy Upyeev, Uy such that U; is the set conjugate to U;, and for i =

1,.e0,m,
B; C U;, B; C Uj;.

According to a basic property of topological degree, we have
n

(6) d=3"[d(U;) +d(T;)],

=1

where d(U;) is the topological degree of M at (0,...,0) and relative to the

open set U;. ®

To complete the proof of the lemma, it is sufficient to show that d(U;) =
d(U;), for then (6) shows that d is even, which contradicts the hypothesis.
That d(U;) =d(U;) is a consequence of the definition of topological degree

and the following remarks.

Suppose o is an n-simplex in complex Euclidean n-space; that is,
o=(Py Py )>
where Pj =g + ibj for j=1i,¢+45n, and
T (e )
Regarded as (2n)-simplexes in real Euclidean (2n)-space, these simplexes are
o={(ay,bi,az, bz an,b,)
and

o= (ah 'blaa2:'b2s ** s Qny 'bn )'

Hence if n is odd, o and o have opposite orientations. Since the a;(ky, +++,kp)
are real, we have M (o) =M (o). Hence M (o) and M (%) = M(o) have opposite
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orientations. If n is even, o and o have the same orientation. Also M(c¢) and
M(%) = M (o) have the same orientation.
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