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L. W. COHEN

1. Introduction* Let S be the set of real sequences X=(xn). For
X, Ye S we define X+ F==(a?Λ + 2/n), 0 as the sequence xn=0 and introduce
order by writing X > 0 when for some m, xn=0 for w < m a n d ^ m > 0 .
Thus AS may be considered as an ordered abelian group with a non-
archimedian order. Let S be topologized by considering the open
intervals

(X,Y)={Z\X<Z<Y}

as a basis for the open sets. Then 5 is a topological group. We note
that S is not locally compact. We wish to define a measure on S which
is invariant with respect to translations of measurable sets by elements
in S and which assigns a nonzero measure to the sets in a basis for
the topology in S. It is evident from a consideration of the spheres
in Hubert space that such a measure can not in general be real valued
for spaces which are not locally compact. In the example studied here
the range of the measure function is a subset of S.

The ring of measurable sets which serves as the domain of the
measure function is generated by a class of sets called intervals. We
shall show that these intervals are a basis for the topology of S defined
by the open intervals. They have some properties of the real half-open
intervals a' <Lx<C<ι" which are useful in deriving the properties of a
measure function.

For a positive integer p and real numbers

let Ip=I(a1} •••, dp-!; a'p, a'p') be the set of X=(xn)eS such that

%n=cin i for

a'p<Lxp<Cap

If p=l there are no conditions on the xn for n<Cp. If a'p ̂ a'p then
Ip is empty. That the sets Ip and the open intervals (X, Y) are equiva-
lent as bases for neighborhood topologies is shown as follows:
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10 L. W. COHEN

Consider

X=(xn) e I(alf , αp.! a'p, a'p)

Then

xn=an, for n<Cp, and αp< â?p

Now consider X'n=(xn)y Xf/=(x'ή) where

x'n=xn=Xn for n<Lp

Xp + l<^Xp+l<^.Xp + l

Clearly

X1', X" e /(di, , α,.! αp> α,) ,

Now if Y={yn)e(Xf

yX") then

Xn = yn = Xn=Cln

and so Ye I(alf , cvx a'p, ap'). Hence

Xe (X', X") C I(ck, , α,.!

Conversely, consider X = « ) e (X% X/;) where Γ = W < I " = « ) .
From the definition of order in S it follows that there is an integer p
such that

x'n=xn=Xn for n<Cp, xP<.Xp

and one of the following is true :

(1) x'p<xp<x'p',

(2) x'p<xp=xp ,

( 3 ) α?;==α?p<a?p .

If (1) is true let

αw=#w for ^ < p , αp=a?p, < = < .

It follows that

Xe I(alf , α p ^ a'P9 < ) C (X', X") .

Suppose (2) is true. Since X < X / ; , there is a smallest integer
such that xq<Cx'q'. Now let

αw==ϋ?w for n<Cq, aq=xq and άq'=xq

r .
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It follows that

Xe I(alf , aq^ άq, aq) C (X', X") .

Suppose (3) is true. Since Xf < X , there is a smallest integer
such that x'q<C%q. Let

an=xn for n<Cqf aq=^xq, άq'=xq + l .

Again it follows that

XeI(alf , ag_! aq, aq) C(X', X") .

The equivalence of the two bases is established.
For each interval Ip the element (xn) e S where

xp= max[a'p—άp, 0] and a?n=0 if nφv

is called the length of Ip and is denoted by μ(Ip). Clearly μ(Ip)^0 in
S and the equality holds if and only if Ip is empty. It will be shown
that: The intervals Ip generate a ring over which the function μ can
be extended to an additive, nonnegative function with values in S. If
M is a set in the ring and X+M is the set of X+Y for YeM then
μ(M)=μ(X+M). The function μ may be called an invariant measure
on the ring.

2. Properties of Intervals Ip. Consider two intervals

/ p =/(α 1 , , dp-! apf άp) , Iq=I(blf , bq^λ b'q, bq) .

The following two lemmas are immediate consequences of the
definition of interval.

LEMMA 1. 0 ^ / g C 4 if and only if p^Lq, and an=bn, n<Cp ,

> P<Q>

LEMMA 2. // p < g cmd I ^ Π ^ ^ O then IqC.IP.

Proof. Since p<C# and there is some X=(xn)eIPΓ\Iq, we have

It follows from Lemma 1 that IqC.IP.
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LEMMA 3. If IpP[Iqφ0 then Ipf\Iq=Ir where r=max[p, q\.

LEMMA 4. The union of a finite number of intervals is the union of
a finite number of disjoint intervals.

Proof. The statement is true for a single interval. Assume that
the statement is true for the union of any m intervals. Consider

(1) J v i = l, - - ^ m + l .

If the intervals (1) are disjoint the statement is true for them. Suppose
that for hφj, IPhΓ\IPjφ0. If ph<Pj then, by Lemma 2, IPjC.IPjι-
Then the intervals (1) have the same union as some m of them and
the statement follows from the assumption. If ph=Pj=p then, since
!ph Γ\ IPj Φ 0, we have

IPfί=I(alf , αp_x a'pf ap) , IPj=I(alf , ap^ b'p, b'p') ,

and the real half open intervals [ap, ap), [bpy bp) have a nonempty inter-
section. If

cp= min(a p , bp)9 cp = m a x ( a p , bp)

then [ap, ap) \J [b'p, bp)=\cp, cp) and

iPh VI ipk =

The intervals (1) have the same union as the m intervals Ip, Ip where

i φh,i, and the statement again follows from the assumption. Induction
completes the proof.

LEMMA 5. // Ip., i=l, « , m , are disjoint nonempty subintervals of
m

Ip and J L = \J IPί then Pι=p for i = l , , m, and
l

Proof. Let

Ip=I(au , dp-! apf ap)

IPi = I(atl, •--,ai}Prl;aPi,cιP

Since 0φIPi dlp, we have p<Lpi9 and
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Consider the half-open intervals [α'p., aPi) for Pi=p and the numbers aip

for Pi^>p. Let c19 •• ,cΊc be the distinct numbers among those aip.
Since UίLΛ{=/p and the /p< are disjoint,

[<*;, α 'H^cα;,, α-;,)) υ ( ύ M(ύ
and the summands are disjoint sets. But a half-open real interval is
not such a union unless there are no sets [cjj consisting of single points.
Hence Pi=p for i = l , •••, m and

If μ(Ip)=(xn)9 μ(Ip)=(%ίn) then, since p έ =p and

and it follows from (1) that

LEMMA 6. If Ip , i = l , * , m, cmcZ Jα., i==l, , w, are £wo seίs 0/

disjoint intervals with the same union then

Proof. Since, by Lemma 2, the intersection of two intervals is an
interval, possibly empty, the sets IPi Γ\ Jq are disjoint intervals. Since
the IPi and the Jα. have the same union, we have

n

Applying Lemma 5 and recalling that μ(Ip)=0 e S if Ip is empty, we
obtain



14 L. W. COHEN

Since 5 is an abelian group,

Σ Kipt)= Σ Σ Ki9i Γ\ J«)= Σ ,

In order to obtain properties of differences of unions of intervals

m n

it will be sufficient to consider the special class £& of sets

IPi disjoint, IPi C.IP, i = l , , m.

Since IPiCZIP, either pC^p or Ip^O.1 A set Ee & is called proper
if, among the Ip, Ip. used to represent it,

LEMMA 7. If EeS& then E is the union of a finite number of
disjoint proper elements of &.

Proof. If Ee & then

where

Ip=I(alf , dp-! a'pf άp) ,

IPi=I(an, , α 4 fp r l αP|, a"Pi) , i = l , 2, , m,

and the IPi are disjoint subsets of Ip. Hence pt^>p and ain=an for
n<Cv- If Pί=P then ^=[0/,, α'p ) C[αP, ap)=σ and the ^ are disjoint.

h

where the r^=[6j, 67) are disjoint. Let

, (Vi b'Jf b"5) , α^= {i |α^eT j and ^ > p } , i==l, , h.

The aj are disjoint; and IPiC_Ij

p if and only if Pt^>p and ieocj. The
sets

77t Tj \ ) T A 1 ?>

1 It will be assumed that the Ip in a representation of a set J57 are not empty. This
does not sacrifice any generality.
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are disjoint proper elements of 3ί whose union is E. This is so because

and every Ip with Pi~^>p is in some Ip.

LEMMA 8. / /

m n

ί - l P * P j=l j

are proper sets in & then E (\ F=0 if and only if Ip Γ\JP=O.

Proof. Since EC.IP,FC.JP it is clear that E Γ\ F=0 if Ip Γ\ JP=Q.
Suppose IPΓ\JPφQ- Let

Ip=I(alf , α^-x a p , άp') , J p = I ( b u , b p ^ b p , b p ) ,

IPx = / ( α i l , , a t t p . - i ; ά p , a p ) , J p = I ( b n 9 ' " t b j ι P λ ; b p f b f

p ) ,

Since 2? and F are proper, p o q^p. Since IPΓ\Jpφ0, we have
^ = δ w , ^ < p , and [α;, cQ f\ [δ;, δp)==[c/, C'OT^O. The half-open interval
\cf, c") contains a number χφaip, bjp, i = l , , m, i = l , , w. If
X=(a?n) where ^ = α ; and aτw=αw, for n<Cp, then XeE f\F. Hence if
EβF=0 then /, f\ Λ = 0

For

we define μ(E)eS by

It is to be noted that a set 2? may have two representations

and the uniqueness of μ(E) must be proved (cf. corollary to Lemma 11).
In order to do this and to prove the additivity of μ as a function on
& to S we make some definitions which are useful.

If

Ip=I(a19 , ap-τ άp, ap)

we call p the rank of Ip, an the wth point component of /p and [a'p, ap')
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the interval component of Ip. Given a set of nonempty intervals Ip.9 ,
Ip the number N of distinct ranks pt is called the spread of the set
of intervals. For example, if E is a proper set in £^, then the spread
of E is 1 if and only if E is an interval Ip.

LEMMA 9. / /

(a) IPι, i=l, , m, are nonempty, disjoint intervals,
(b) Ej=Jq.—U^Jq^, j=l, •• , h, are nonempty, disjoint, proper

sets in £&,

(c) \JtJPi = \JUEj
then

Proof. Let JV be the spread of the set of intervals Ip,, Jq , Jq .
If JV=1, Pί=qj=p and the sets Ej are the intervals J g since the E3

are proper. The conclusion follows from Lemma 6.

Assume that JV> 1 and that the lemma is proved if the spread of
the set of intervals in (a), (b) is JV—1.

First we show that if p=-mm{p1, •• ,pTO), g==min(gΊ, •• ,gΛ) then
p=q. Suppose p<iq. There is some pr=p. The pth component of
IPr is a half-open interval a and the pth component of JQj is a point
by There is a number xe a— {bl9 •••,&*}. If X=(xn) where xp=x and
xn, n<ip, is the wth component of Ip then

Xel;-\)Jq,<Z\JI,.-\)E}

contrary to (c). Hence q<Lp. Suppose q<Cp. There is some qr=q and

The gth component of JQr is a nonempty half-open interval τ, the gth
components of Jq^, k=l, -"fkr, and of Ip. are points, say cιy -- ,c s .
There is a number xeτ— {cly * ,c s }. If X=(xn) where xq=x and xn,
n<Cq, is the ̂ th component of Jq ,

Xe

contrary to (c). Hence p=q.
Next, we show that

( l ) }jP

lp^qyP
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Let

Suppose An — Arφ0. For some g r =p, there is

X=(xn)eJqr- \J /,. .
ΐ>l = P ι

Let

<7=the interval component of Jq ,

i=the interval component of Ip. where Pi=p,

{ r h i and Pi=p} .

Then

and so there is a nonempty, half-open interval τ such that

τCLσ— \J a i .

The p t h components of the / p., ^ > p , and of Jqrfc, & = 1 , . . . , & r are

finite in number, say cu * , c s . Hence there is a number ^ such t h a t

yeτ-lcj, ---,cs} .

If F=(i/n) where yp=y and 2/n, n<lp, is the wth component of JQr,

/ r \ m ft, m

Γe(Jβ - \J J9 ) - U 4 C U JS?,- Uh. ,

contrary to (c). A similar argument shows that Af — A"φQ leads to
a contradiction. Hence (1) is proved.

Since the Es are disjoint proper sets in £& it follows from Lemma
8 that Iq Γ\Iqs==0 if p=gr=Qs and rφs. Hence, from (1) and Lemma 6,

(2) Σ μ(iPt)= Σ μ(J*).
P.rP Qj = P >

From (c) and (1)
k

(3) ( u i,t) υ ( υ Λ,)=( υ U- ύ jtn)) u ( υ E}).
PJ>P l Qj = P J \qj = p \ j fc-1 • * * / / Qj>P

It follows from (a), (1) that the two unions on the left are disjoint and
from (b) that the two unions on the right are disjoint. Hence

(4) ( υ / P i )u( υ w JQjk)= υ E,.
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The ranks of the intervals IPi, Jq., Jq.k occurring in (4) exclude p since
dPί>P> Qjk^>Qj=P on the left and g j f c > g j > P on the right. Hence the

spread of the set of intervals in (4) is N—l. Since the Έs are disjoint
it follows from Lemma 8 that the Jq , q^p, are disjoint. Since for
each j , the Jq are disjoint in k and Jq.kdJq , the Jq k are disjoint in
j , k for Qj=p. It follows from (1), (a) that the intervals on the left
of (4) are disjoint. Thus the set of nonempty intervals on the left of
(4) satisfy (a) of the lemma, the set of Ej on the right satisfy (b), and
(4) is (c) for the intervals involved. Since the spread is N—lf we have,
by the assumption of the lemma for N— 1,

(5) Σ μ{h)+ Σ ΣMΛ,.fcH Σ

Combining (2), (5), it follows that

H Σ rt/,4)+ Σ μ(i,t)= Σ
^ ι ι l

qΊ>p

LEMMA 10. For Ee &> μ(E)=0eS if E is empty and

if E=\JjmlEj where the Ej are nonempty, disjoint, proper sets in 3f.

Proof. If Ee &, then

E=IP- υ /,,

where the Ip are disjoint subsets of Ip. If E is empty, then

and it follows from Lemma 5 that

If E=^\Jn

j=llEj where the E5 are nonempty, disjoint, proper sets in
then

and the intervals in the set {IB, Ep Ip. Φ 0} satisfy the conditions of
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Lemma 9. Since μ(Ip.)=0 if Ip. is empty, it follows that

μ(E) = μ(I,)-

LEMMA 11. If Ee£& and Eu -**,Em are disjoint elements of
such that

then

Proof. It follows from Lemma 10 that the statement is true if
0 and that if EφO only Et^0 need be considered. By Lemma 7,

h
Ei= \J Ei3 , i = l , " fm

where the ̂ , j = l, # ,ii, are disjoint, nonempty, proper elements of
^ . Since the JÊ  are disjoint, the Eυ are disjoint in i , j . Now

By Lemma 10,

COROLLARY. For Ee&, μ(E) is unique.

This follows from Lemma 11 with ra = l .

LEMMA 12. For Ee £&, μ(E)^0 in the order in S.

Proof. If E=0, μ(E)=0. If £ is a nonempty, proper set in
then

and pt>p. Now μ(Ip)=(%n), Kh^i^n), i=h m *,m, and
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Since

it follows that μ ( £ ) > 0 in the order in S.
It now follows from Lemmas 7, 11 and the fact that the sum of

positive elements of S is positive that μ(E)^>0 for

3. On Generating a Ring* The set of intervals Ip, having the
properties of Lemmas 2, 4 is an example of a class ^ of sets satisying
the following conditions :

( i ) Oe <8T
(ii) If A, Be 9f then Af\Be ^
(iii) If i4.x, , Am e ^ there are disjoint Bλ, •••,!?*€ ^ such that

Let ϋ?" be the class of sets E such that
(iv) E=A-yzΛ, A, Λ e ^ , A, disjoint, A C A
Let ^ be the class of sets M such that
(v) M=\JZιEίf Eiβ&r, E, disjoint.

We note that ^ C ^ C ^ . It will be shown that £% is a ring.

LEMMA 13. If E,Fe & then E Γ\Fe £?.

Proof. There are sets A, Aif B, Bj satisfying (iv) such that

1=1

Ύfi n

E=A- \J At , F=B- \J B} .

Now

E Γ\ F=A Γ\ B - ( \J (A Γ\ B3) ) \J ( \J {A, f\

By (ii), Af\B, A f\ Bjy Atf\B are in 9*. It follows from (iii) that
there are disjoint Clf , Cs e ^ such that
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( n \ / in \ s

u (AβBj)) u ( υ (ΛΠ5)V= υ ck.
Since ChC.Af\B and

s

we have E Γ\ Fe &.

LEMMA 14. E, Fe !3 there are disjoint EQ, , Es e & such that

E-F=(jQEk.

Proof. There are A, Ait B, Bjβ ^satisfying (iv) such that

m n
Tp A \ J A jp D 1 / JD

Let

E0=(A-AΓ\B)r\E, Ej^BjβE , j=l, ...,w.

Now A — A Γ\Be &> and it follows from Lemma 13 that E3e 2$, j=0,
• , n. Since EQ f\ 5 = 0 , Ej CZB0CB and the Bj, j=l, , n, are dis-
joint, EQ, E19 , En are disjoint. From

\JQEJCZE

and

follows

{j^EjCZE-F.

On the other hand

\ i = l / \ j = l J \j=i /

n
===: vJ E •

Hence

E-~F= \J Ej , Ejβ &, Ej disjoint.
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THEOREM 1. ^ is a ring.

Proof. For M,Ne<0? there are disjoint sets ^ e S r and disjoint
sets Fj 6 £2> such that

M=\JEt, N= \J F3 .

The sets Ei[
Λ\Fj are disjoint and, by Lemma 13, belong to Ωί. Hence

( l ) M r\ iv= {y Eή r\ {U Fή = y y (#, f\ F3) <=.&.
Now

m m n m / / n

M-MΓ\N=\Jί Et - U y (Et Γ\Ft)= y (-Ei -£iA(Uj

== Vj I \ \£Lt i — tti i ]\ tf ))

By Lemma 14, MiJ=Ei—Ei Γ\F5 is the union of a finite number of dis-
joint sets in S r and so Mυ e .£?. It follows from (1) that

Mi= Q Mυ e & , i = l , , m.

Since each M-.dEi and the 2^ are disjoint, the il^ are disjoint. Each
Mi is the union of a finite number of disjoint sets in ζ^. Hence

(2) M-MΠiV= O ^ e ^ 5 .
•i=i

Finally,

M\J N=(M-MΓ\N)\J(MΓ\N)\J (N-M Γ\N) .

It follows from (1), (2) that each summand is in ,^?. Since the summands
are disjoint and are the unions of disjoint sets in &r,

(3) M\

That ^ is a ring follows from (1), (2), (3).

4 The Measure Function on & to S« The function μ(Iv) on the
class rώ' of intervals Ip to S is extended to a function on 2̂; to S which
is additive and nonnegative in the sense of the corollary to Lemma 11
and Lemma 12. If M is in the ring & of unions of disjoint sets in

r/; then
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where the Ei are disjoint sets in £&. We define

THEOREM 2. μ(M) is a single valued function on & to S such that
and

μ{M)= Σ μ(Mt) if Λf- \JMlt Mt e έ? , Mι disjoint.
4 - 1 4 = 1

Proof. Suppose

TO n

M= \J E^ \J F,

where the sets E% and the sets F5 are disjoint elements of £&. Then

and the disjoint sets JSi f\ F ; are elements of £& by Lemma 13. From
Lemma 11,

Since S is an abelian group,

μ(M)= Σ /KEt)= Σ Σ A*(^ Π F,)= Σ
4 = 1 4-1 J - l j - 1

Hence μ{M) is a single valued function on & to S.
Since μ(E)^>0 in S for Ee & and the sum of nonnegative elements

in S is nonnegative, we have μ(M)^>0 in &.
If ilf== UΓ=Λ and the Mi are disjoint elements in &,

, = \J EtJ ,

and

4 = 1 j=l

where the EtJ are disjoint elements in £2. Hence
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THEOREM 3. If Me&, XeS and

then I + M e J 5 and μ(X+M)=*μ(M).

Proof. If Ip=I(alf , αp_x c&;, cQ and X=(xn) then

and

(1)

If

then

X+M=(X+I,)- \J (X+IPt)
i= 1

and, by (1),

( 2 ) μ(X±M) = μ(Ip)- Σ μQJ

If M= yjiίiEt and the JS7t are disjoint sets in &, then X-f^ are dis-
joint sets in 3f and, by (2), μ{JE^μ{XΛ E^. Since

we have

The following observations were suggested by 0. Nikodym, to
whom the author is indebted for a helpful reading of the manuscript.
Given X=(xn)eS such that all but a finite number of the xn are zero,
there is a measurable Me & such that //(ikί)=X The results obtained
here for real valued sequences (over the ordinals n<Cω) may be ex-
tended by the same methods to the space of real valued sequences xa

over any given initial section of ordinals α < f .
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