ASYMPTOTIC RELATIONS BETWEEN SYSTEMS OF
DIFFERENTIAL EQUATIONS

CHOY-TAK TAAM

1. Introduction. A. Wintner [1], N. Levinson [2], H. Weyl [3] and
others have obtained interesting asymptotic relations between the solutions
of a given system of differential equations and those of an approximate
system. In their investigations the solutions of the approximate system
of differential equations are assumed to be bounded. In this paper we
consider the asymptotic problems of the solutions from a more general
point of view, given only certain order relations satisfied by the solutions
of the approximate system. The method we shall use is to study an
associated system of integral equations which yields the asymptotic re-
lations between the solutions of the perturbed and unperturbed equations.
With the aid of the Phragmén-Lindelof Theorems [4], our results can be
eagsily extended to the complex domain.

2. Asymptotic relations in the real domain. Consider the system
of differential equations written in the vector form

2.1) gy — A+ f(, y)
X

where A(z)=|a;(x)| is a nxn matrix and y and f(zx, y) are respectively
column vectors with components y® and f(x,%), i=1,2, -+--,n. Defining
the norms |y, | 4] of vectors y and matrices A by

lyl= 3 1L 14)= 3 lal

it is easy to verify that

l+wl<lyll+lz.l, 1A+ AI=|4]+ 4],
1A A< ANI AL, Iyl 4lly] -

In this section we assume that a,(z) and f®(x,y) (for each fixed
complex y) are complex-valued functions of the real variable = belonging
to L(0, R) for every positive E. Furthermore we assume that for each
x>0, f®(x,y) is a continuous function of y for all complex y and f(x, ¥)
satisfies the Lipschitz condition
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(2.2) £ @, y)— f (@, y) I <g@) |y — ]

for all complex y, and y,, g(x) being of the class (0, R) for every positive
R. (If all the functions a;,(z) and f%(x, y) are real and only real-valued
solutions are considered, it is enough to assume that f@(x, y) is continuous
for all real y and (2.2) holds for all real y, and ..)

By a solution of (2.1) we mean a vector function y(x) which is ab-
solutely continuous and satisfies the equation (2.1) almost everywhere.
For the existence and uniqueness of solutions, see [5, Sections 68.3 and
68.5].

In this section we shall establish two asymptotic relations between
the solutions of (2.1) and those of the approximate equation

2.3) W _ gy .
dx

Equation (2.3) has » linearly independent vector solutions y;, 1=1,
2, +--,m. Let Y be the nxmn matrix whose columns are the » vector
solutions y;, ¥, being so chosen to satisfy the initial condition Y(0)=I.
Y is non-singular and has an inverse Y~'. Since each column of Y is a
solution of (2.3) it is clear that Y satisfies

(2.4) dy =A@)Y, Y(0)=I.
dx

If tr A denotes the sum of the diagonal elements of 4, it is well-known
[6] that

det Y(x)= exp <Sx tr A(t)dt) .
For convenience we first establish the following results.

LEMMA 1. Let

(a) y(x) be a solution of (2.1), y(0)=c,

(b) Y(x) be the matriz solution of (2.4).
Then y(x) satisfies the vector integral equation

(2.5) Y(@)=Y(x)e+ SU Y(@)Y='(6)f (¢, y(£))dt .

Proof. Set y(x)=Y(x)x(x). Then a substitution into (2.1) gives

(2.6) Yoy Ayt
dwx dx

Using (2.4), we have
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dz

&Ry
dx s

or
@.7) oa)—c+ S Y-(8)f(t, y(®)dt .
0
Multiplication of (2.7) by Y(z) gives the result (2.5).

The following lemma is due to R. Bellman.

LEMMA 2. Let u(x) and v(x) be real-valued functions defined for
x> a, both being non-negative. If

(a) v(x) and u(z)v(x) belong to L(a, R) for every RZd.
(b) u() _:<:M+S”z¢(t)v(t)dt, M0, (@=>a),
then

u(x)gMeszmm , (x=>a).
Proof. Multiplication of (b) by v(x) gives

(2.8) w@(x) <wv(x) (M + Smu(t)v(t)dt> .

Divide both sides of (2.8) by M +Swu(t)v(t)dt and integrate the result

from a to z, obtaining
(2.9) log <M+S”u(t)v(t)dt)glog M—l—va(t)dt .
Then lemma follows from (b) and (2.9).

We first prove the following asymptotic relation. .22 denotes the
real part of a complex number «.

THEOREM 1. Let
@) [Y(2)|=0(x)) as x— o, h(zx) being measurable on 0 <x< oo,
(b) 1£@, 0] [h(%')]"“exp[-— @S:u A(t) dt] and

g(@)[A(x)]" exp [-— G ST tr A(t)dt] belong to L(0, o) .

Then, for each solulion y(x) of (2.1), |y@)|=0(x)) as x— co and there
8 a solution Y(x)c of (2.3) such that
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(2.10) (@)=Y (@)(c+e(@)) ,

where |e(x)| tends to zero as x— .

Proof. According to Lemma 1, y(x) satisfies the integral equation
(2.11) yl@)=Y(@)e+ SO Y(@)Y'(O)S (@, y(t)dt .
It follows that
@12 @ISIY@lic+ | 1YY O v)lde

Since (2.2) implies that
(2.13) 1/ @, pi=g@)yl| + 1/, Ol

and |Y(x)| does not vanish, one obtains from (2.12)

O o+ =010
@1 O <tel+ | 1Ol + L6 0

Since each component of Y-'(x) is the cofactor of the corresponding
component in det Y(x), divided by det Y (x), Y(x), being the transpose of
Y(«), it is clear that as z— oo

(2.15) 1Y-'(2)| =0 ([h(x)]"“ exp [— i SO tr A(t)dt]) .

From (b), it follows that as @ — <

¢

(2.16) | 1= @lre, 0ld=0() .
From (2.14) we then have

017 1@ =37+ oo y-o v 11O g
2.17) = +§0 O OOyl d

for some constant M. An appeal to Lemma 2 yields

ly(@)] v .
(2.18) e = Mexp (50 JOIY- OV YOt -

Conditions (a), (b) and (2.15) ensure that the integral in (2.18) is bounded
for >0 and consequently as x— co

(2.19) ly(@)l=0(z)) .

Since
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(=@, vonas < 1Y Ol ¢, 0b

and the integral on the right hand side is convergent (by virtue of
conditions (a), (b), (2.15) and (2.19)), the integral

[y @re v

exists. Splitting the integral in (2.11) into two, one integrating from
0 to o and the other from x to o, we have

(2.20) y(@)=Y(@)(c+e(x))

for an appropriate constant ¢, where
(2.21) d@)=—\ Y00,y .

This completes the proof of Theorem 1.

Given stronger conditions, we can show that | Y(x)e(x)| tends to zero
as ¢ tends to infinity.

THEOREM 2. Let
(@) 1Y(2)l=0M(x)) as x— o, h(x) beiny non-decreasing on 0 <ax < oo,
®) £ 0[] exp [— éz”S:tr A(t) dt] and

g(x)[h(x)]"“exp[- %S:tr A(z;)dt] belong to L(0, o).

Then for each solution y(x) of (2.1) there is a solution Y (x)c of (2.3) such
that

(2.22) y@)=Y(@)c+e(x),
where |e(x)| tends to zero as x tends to infinity.

Proof. Since the conditions of Theorem 1 are satisfied, we obtain
at once the relation (2.22) with
()= = Y(@)| YOS ue)it

Clearly

@< | Y@= Ol ¢ u)la

= MO ONO O] + 172 0Dt
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for some constant M, the existence of the last integral being guaranteed
by the conditions (b). It follows that ||e(x)| tends to zero as « tends to
infinity. This completes the proof.

Remark. Under the conditions of Theorem 2, the singular integral
equation
(2.23) y(@)=Y(x)c— Y(W)S Y@@ y(t))dt
defines actually a one-to-one correspondence between the solutions of
(2.1) and (2.3) such that the corresponding solutions are asymptotically
equivalent in the sense of Theorem 2. The previous statement remains
true if “Theorem 2 is replaced by “ Theorem 1” provided %(x) is bounded
on 0<x=<wm, for every positive x,, To see this it is sufficient to prove
the existence and uniqueness of the solution of the integral equation
(2.23) for an arbitrary but fixed ¢, the result then follows from the fact
that a solution of (2.23) is a solution of (2.1).

Define yo(x)=0 and
(2.24) Yo(@)=Y(2)c— Y () r Y-(t) f(t, yu-i(8))dt n=1,2,3, .
If |¢p-i(@)]|=0((x)), the integral in (2.24) exists. It follows that
lyn(@)|=0((x)) and the integral in (2.24) exists for all y,-(x). If

(2.25) H(x)— Sm [A(E)]"g(£) exp [— % S “br A(u)du]dt ,
&£ 0
it is easy to verify that

(2.26) ()= o) = D ) LT (n=0,1,2, -++)
n.

for an appropriate constant M. It follows that y,(x) converges to a
limit y(x) uniformly on 0 <x <z, for every positive z,. Clearly |y(z)|=
O()), |yu(®)| =O(h(x)) uniformly in » and y(x) satisfies (2.23). Suppose
that (2.23) has another solution z(x), then |z(x)|=0(%(x)) and

(2.27) (@) === 1 V@) | 1 Olo o) - 2(0)1dt
or
(2.28) (e 2()) < M () H(z)

for some constant M. Substituting (2.28) into (2.27) and repeating the
process, we have



ASYMPTOTIC RELATIONS 37
(2.29) (@) — ()] < D+ ) T

for every n. (2.29) implies that y(z) and z(x) are equal and hence the
solution of (2.23) is unique.

3. Asymptotic relations in the complex domain. In this section
the results of §2 are extended to the complex domain for a system of
linear differential equations. In §2 the success of the method depends
on the Lipschitz condition (2.2). But if f(«, v) is an analytic function
of the complex variables 2 and y for « in a region R and all ¥ and
satisfies the Lipschitz condition

£ @, y)— F(@, g)| = g(@) |y — .|

for all y, and y,, it is necessary that f(x, y) is a polynomial of degree 1
in y or containing no y. If f(z,y) is not analytic for all y, it is not
clear to the author how this problem may be attacked in the complex
domain.

For convenience we use z as the independent variable and write
z=x+1y="rexp (¢0), where x, y, » and ¢ and real and r is non-negative.

We need the following Phragmén-Lindel6f theorems.

Let R, be the strip of the complex plane

(3.1) x>0, y=y<wp, Y.—y=a'n,
and R, the sector

(3.2) r>0, 0,<0=<6, 0.—0=a"'7.

LEMMA 3. Let u(z) be an analytic funclion in E,. If
(@) R)=M in R, for =0, y=y, and y=ys,,
(b) u(z)=0(e““) as x— oo, uniformly in y,<y<y, for some con-
stants b and N, b<a,
then luw(x)|<M in R,.

LEMMA 4. Let u(z) be analytic in R,. Lf
(a) u(z+1y,) tends to a limit a, as & — oo, k=1, 2,
(b) u(z) 2s bounded in R,,

then as z— co u(z) tends to a limit a uniformly in R, and a=a,=a,.

LEMMA 5. Let u(z) be analytic in R,. If
(@) |u@)|<M in R, for 6=0, and 6=86.,
(b) W(2)=0(e"") as r— oo, uniformly in 0, <00, for some constants
b and N, 0<a,
then WR)<M in R..
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LEMMA 6. Let u(z) be analytic in R,. If
(a) u(re®) tends to a limit a, as r— o, k=1, 2,
(b) u(z) %8 bounded in R,,

then as z— o u(z) tends to a limit a uniformly in R, and a=d,=da..

For proof of these theorems, see [4].

Consider the system of linear diffential equations written in the
vector form

(3.3) ‘f;; —(A@) + B+ f()

where A(z)=|a;,(2)} and B(z)=|b,(2)| are nxn matrices and w and f(z)
column vectors with components w® and f‘“(z) respectively, 1=1, 2, - - -n.
We assume that a,,(z), b,,(z) and f“(z) are single-valued analytic functions
in the regions with which we shall be concerned in this section.

Let W(z) be a matrix solution of

(3.4) W _ Ay W, We)=I .
dz

We shall establish asymptotic relations between the solutions of (3.3)
and those of the approximate system

(3.5) ‘Z‘z’:A(z)w .

Write
(3.6) H(a, y)=H(e,y, 00— | [, DI IB@] exp| — 7| tr A@du |dar,

3.7 Kz, y)=K(z, y, xo)———S: [A(x, y)]”“‘“f(z)}lexp[— B S: tr A(u)dujdx ,

where z=x+1y, z,=x,+1Y,, 2, being in R,.

THEOREM 3. Let

(@) [WER|=0Mz,vy) as x—>o for y=y, and y=y, |WE)|=
Oz, y)e™™) as xz— oo, uniformly in y,<<y<1y., where b<_a,
h—h=0a"'7, h(z, y)=h(z)| and h(z) s analytic in R,

(b) H(z,y)=0(1) as x— o for y=y, ond y=y, Hw, y)=0(") as
x— oo, uniformly in 4y, =y=1uy.,

(¢) K@, 9)=0(1) as x—c for y=y, and y=y,, Kz, y)=0(c") as
x—> oo, uniformly in ¥, <y <.

Then, for each solution w(z) of (3.3), [w®@)|=00"(z,y)) as x— o,
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uniformly in y, <y<y.,, and there is a solution W(z)c of (8.5) such that
(3.8) w(z)= W(z)(c+ e(z))

in R, where |e(z)| tends to zero uniformly in R, as z— .

Proof. First we observe that W(z)/(z) is of O(1) on the lines y=y,,

y=1,, of O(eeb”) uniformly in R,. According to Lemma 3, W(z)/h(z) is
of O(1) in R,. It follows that

I W@ =00z, v)) as 7o,

uniformly in y, <y<u..
For a solution, w(z), of (3.3), w(z,)=c, we have

(3.9) w@)=WEe+ | W)W OLBE() + FO)

where z and z, are in R,. Multiplication of (3.9) by W-'(z) yields
(3.10) W=t —c+ | W OB+ FO)dt

Since

Sx«-iy W-1(2) f(2)dt “gMK(iL‘, )

zytiy

for a suitable constant M, it follows that

[ wrorma,

being analytic in R,, is bounded in R,, by virtue of the conditions in
(c) and Lemma 3. Also the integral

gy W) B(t)w(t)dt
zy+ iy

is bounded in R,. From (38.10), we then have

W B yw(t)dt

zy+ iy

(3.11) W-(z)w(z)=E(2) + S

for some function FE(z), E(z) being bounded in R,, and the integral taken
along a straight line. Write w(t)=W(E)W-'(¢)w(t). Then

T+t

612 WoEuEISM+ | I OBON T e

for some constant M, and x>z, An appeal to Lemma 2 yields
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(13 W@l Mexp| g | (OB W(t)"dt] , g,

LoJxy

In view of the definition of H(x, y), (3.13) gives
(3.14) I W' (2w (2) || = MeN"<»

for some constant N. It follows that W-'(z)w(z), being analytic in R,
is bounded in R, by virtue of the conditions in (b) and Lemma 3. Since

lw@I<| W) W' ()],
we have also
(3.15) ()| =0z, y))

as x— oo, uniformly in y, <y<{wy.. From (38.10), the analytic function
(3.16) S W-B[B(yw() + £(£)]dt
29

is bounded in R,. By virtue of (3.6), (3.7), (b) and (c), the integral
(3.16) tends to a limit ¢, as z— <« along y=y, and to a limit ¢, along
y=1,, and hence, by Lemma 4, it tends to a limit ¢, uniformly in R, and
co=c¢,=c,. Now (8.10) can be written as

(3.17) W-Rw(z)=c— S:o W= O[Bt)w(t)+ f(t)ldt

for some ¢, the integral being convergent to zero uniformly in R,. (3.17)
is equivalent to (38.8). This proves the theorem.

THEOREM 4. Let the conditions of Theorem 3 be satisfied. Further-
more let
@) W@, y)=0("") as x— oo, uniformly in R,
(b) Az, y,)H(eo, y;, ) and h(z, y,)K(w, y;, ) tend to zero x— co,
=1, 2.
Then, for each solution w(z) of (3.3), there is a solution W(z)c of (3.5)
such that

(3.18) w(z)= W(z)c+ <(2)

in R, where ||e(2)| tends to zero uniformly in R, as z— oo.

Proof. Using (a) and (b), clearly the analytic function
(2)= W(z) S“ W-OB(Enw(t) + £(£)]dt
converges to zero as z— o along the lines y=y,, y=v. and

le2)|=0(e”"), uniformly in R,.
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According to Lemma 3, ||e(z)| is bounded in R, and by Lemma 4, |(2)]
converges to zero uniformly in R, as z— . [From (3.17), we have

z

(8.19) w(z)= W(z)e— W(z)r W= B(tw(t)+ f(t)]dt
which is equivalent to (3.18). This completes the proof.
We shall state two similar theorems for the region R,. Set

L(r, 0)=L(r, 0, ) — S [, 0)]*| B(z)] exp [- @ V tr A(u)du]do' ,

T, 0=, 0, 1) = Thtr, OP 1@ exp | = 7| r Ay Jar
0 kD)
where z=1 exp (i0), z,=7r,exp (i6,), z, being in R,.

THEOREM 5. Let
(@) |WE@)|=0Mr, 0)) as r—>co for 0=0, and 6=0,,
I W) =0h(r, 0)¢") as ¥ — co, uniformly in 0,<6<4,,
where b<a, 0,—0,=a"'7, h(r, 0)=|h(z)| and h(z) is analytic in R,,
(o) L(r, 0)=0(Q1) as r— oo for =0, and 0=0,,
L(r, 0)=0(") as r— oo, uniformly in 0,<20<0,,
(¢) J(r,0)=0Q1) as r—> o for =0, and 6=0,,
J(r, 0)=0(e") as r— oo, uniformly in 0,<<0<0,.
Then, for each solution w(z) of (3.8), |w@)|=0W(r, 6)) as r— oo, uni-
Jormly in 0,00, and there is a solution W(z)c of (3.5) such that

w(z)= W(z)(c+(2))
i R,, where |e(z)| tends to zero uniformly in R, as z— co.

The proof is similar to that of Theorem 3.

THEOREM 6. Let the conditions of Theorem 5 be satisfied. Further-
more let
(a) A(r, 0)=0(e") as r— oo, uniformly in R,
(b) A(r,0)L(, 0;,,7) and h(r,0,)J(w, 0, r) tend to zero as r— o,
=1, 2.
Then for each solution w(z) of (3.3) there is a solution W(z)e of (3.5)
such that

w(z)= W(z)c+ ()
in R, where |e(z)| tends to zero uniformly in R, as 2— oo,

The proof of this theorem is similar to that of Theorem 4.
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4. Second order differential equation. When the theorems in §§ 2
and 3 apply to a given second order differential equation, it is necessary
to know the order relation of both the solutions and their derivatives of
the approximate equation. Of course we obtain an asymptotic relation
between the solutions, and their derivative of each equation. However,
for second order differential equations, we are able to establish asymp-
totic relations just for the solutions when the order relation of the
solution of the approximate equation is given. In view of the interest
in second order differential equations, we state some similar results and
briefly indicate the proofs.

Consider the second order differential equations

(4.1) (r(@)y') +p(@y=r(,vy) ,
(4.2) (r@)y) +p(@)y=0,

where 1/r(x), p(z) and f(z, y) (for each fixed complex y) are complex-
valued functions of the real variable x, defined for all >0 and be-
longing to L(0, R) for every positive R; furthermore for each x>0
f(z, ) is a continuous function of y for all complex y satisfying

(4.3) |f (e, y)— S (@, 9)] < g(0)ly— w2

for all complex y, and y,, g(x) being of the class L(0,R) for every
positive R.
Let »(«) and y(x) be two linearly independent solutions of (4.2) with

(4.4) (@) [y (@)y@) — yi@)y(2)]=1

almost everywhere.

THEOREM 7. Let

@) @)+ y(2)|=0(x)) as x—>co, (@) being measurable on
0o <o,

(b) [M(x)Fo(x) and h{x)f(z, 0) belong to L(0, ).
Then, for each solution y(x) of (4.1), y(x)=0(h(x)) as x— = and there
exist constants A and B such that
Y(@)=(A+ e(@))yi(@) + (B + e@))y () ,
Y (@) =(A+&(2)ys(x) + (B + e@)yue) ,

where e(x) and ¢(x) tend to zero as x— . (The second equation holds
only almost everywhere.)

(4.5)

Proof. Let y(x) be a solution of (4.1). Then, by the method of
variation of parameters, y(x) satisfies
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(4.6)  y(@)=Ay(@)+ By (r)+ ( S yEN(@y(#) = (e)yy(8) | dE

for some constants A and B. Set w=|y|/(lm|+1y.]). Using (a), (b) and
(4.3) one can verify that

()< M+ NS:g(t)hZ(t)u(t)dt

for some positive constants M and N and >0. By Lemma 2 and (b),
u(x) is bounded on 0wz< co. It follows that y(z)=O0O(h(z)) as x— .
Write

(4.7) sl<x)=g 7, )Nt | ez<x)=—g £, y@wbyt

the existence of the integrals being guaranteed by (b). The first part
of (4.5) follows from (4.6) by splitting the integral, the second part
from differentiation of the first.

THEOREM 8. Let
(2) |y(@)|+ ()| =0(x)) as x-—>co, W(x) being non-decreasing on
0<a<oo,

Then for each solution y(x) of (4.1) there exist constants A and B such
that

(4.8) y(@)=Ay,() + By(x) +<(x) ,

where «(x) tends to zero as x— oo.

Proof. TUnder conditions (a) and (b), e(x)y(x) and e(x)y.(x) tend to
zero as & — oo. (4.8) then follows from the first equation of (4.5).

Remark. In some cases, with properly chosen y, and y,, condition
(b) of Theorem 8 may be weakened. For instance let r(z)=1, p(x)=0
and take y(zx)=1, w(x)=z, A(x)=z; it is true that y(z)=Az+ B+ e(w),
e(x)—>0 as x— oo if 2*(x)g(x) and A(x)f(x, 0) belong to I(0, ). The
discrepancy is due to the fact that in the general case we consider
y(@)y(x) =O0(Rh*(2)), while in this example y(z)y.(x)=O0(h()).

Consider the differential equations
4.9) (r(@w') +(p(2) + q(2)w=f(2) ,
(4.10) (') +p(z)w=0,

where 7(2)540, p(2), ¢() and f(2) are single-valued analytic functions
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in R, or I2, (see (3.1) and (3.2)), as whichever is concerned. Let w,(z)
and w,(2) be two linearly independent solutions of (4.10) with

r(@)wi(2)wz) — 1w (2)w.(2)]=1 .
Set

(@, §)=H(z, y, 2)= | 1, la@lde

Kz, y)=K(z, y, 2))= g: h(z, y)| f(z)dx ,

where z=x+1y, 2,=a,+1Y,, 2, being in R,.

THEOREM 9. Let
(@) (@) + o) =0z, y)) as x—co for y=y, and y=yL,,
lw(2)| + [w,(2)| =O(h(x, y)e™) as x— oo, uniformly in y,<y<w,,
where b<a, y,—y=0""n, W(x, y)=|h()| and h(z) is analytic in R,,
(b) H(z, y)=0(1) as z— oo for y=y, and y=y.,
H(z, y)=0(e") as x— oo, uniformly in R,
(¢) K(zx,y)=0(1) as z— oo for y=y, and y=y,
K(z, y)=0(e*") as x— co, uniformly in R..
Then, for each solution w(z) of (4.9), w(z)=0((z, y)) as x — oo, uniformly
mn gy <y<y, and there exist constants A and B such that

w(z)=(A4 + ,(2))w,(z) + (B + e.(2))w.(?) ,
w'(2)=(A+&()wi(2) + (B +.(2))wi?) ,

in R, where ¢(z) and (z) tend to zero uniformly in R, as z— .

THEOREM 10. Let the conditions of Theorem 9 be satisfied. Further-
more let
(@) h@, y)=0(e"") as x— co, uniformly in R,
(b) A, y)H(o, y;, ) and h(x, y,)K (o, y;, @) tend to zero as ax— oo,
=1, 2.
Then for each solution w(z) of (4.9) there exist constants A and B such
that

w(z)=Aw,(2) + Bw,(2) + ¢(2)

i R,, where «(z) tends to zero uniformly in R, as z— .

Set

I

L, 0)=Lr, 0, m=§

r

0, Ola(@)ldr



ASYMPTOTIC RELATIONS

(%]
[0
b

I, =T, 0,1)= | 1o, O£ @
To
where z=1 exp (i), z,=7r,exp (i0,), 2, being in R,.

THEOREM 11. Let
(@) |w(@)]+w,()|=0(r, 0)) as »—> o for 0=0, and =40,
o (2) + [wi2) = Oh(r, 0)e”) as r— oo, uniformly in 0,<60=_0,,
where b<a, 0,—0,=a 'z, k(r, 0)=|h(z)| and () is analytic in R,,
(b) L(r,0)=0(1) as »— o for =0, and 0=0,,
L(r, )=0(@?) as r— oo, uniformly in R,,
(¢) J(r, 0)=0(1) as »— o for 0=0, and 0=40,,
J(r, )=0(e") as r— o, uniformly in R,.
Then for each solution w(z) of (4.9) there exist constants A and B such
that

w(?)=(A+ <(2))w,(z) + (B+e2))wyz) ,
w'(z)=(A+ e(2))wi(z) + (B +e(2))wi?) ,

m R,, where ¢(2) and e(2) tend to zero uniformly i R, as z—> .

THEOREM 12. Let the conditions of Theorem 11 be satisfied. Further-
more let

(@) A, 0)=0(e") as r— oo, uniformly in R.,
(b) A(r, 6,)L(c, 0, 7) and h(r, 0,)J(co, 0,, 1) tend to zero as r—co,
i=1, 2.

Then for each solution w(z) of (4.9) there exist constants A and B such
that

w(z)=Aw, (2) + Bw.(z) + <(z)
m L2, where e(z) tends to zero uniformly in R, as z2— oo.

Combining the methods of §3 and the first part of this section,
one can prove these theorems by using the integral equation

w(z)=Aw(z) + Bw,(z) + S Lf (&) = q(t)w(t)][w.(2)wi(t) —w.(2)w,(t)]dE

which is satisfied by the solutions of (4.9). The details will be omitted.
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