SOME INTEGRAL FORMULAS FOR CLOSED
HYPERSURFACES IN RIEMANNIAN SPACE

CHUAN-CHIH HSIUNG

Introduction. Let V™ be a hypersurface twice differentiably im-
bedded in a Riemannian space R"*' of n+1 (r>2) dimensions, and
ki +++, &, the n principal curvatures at a point P of the hypersurface
V=, It is known that the ¢th mean curvature M, of the hypersurface
V™ at the point P is defined by

(0'1) Cn,iMi::ZEl]iz"'K/z' (1:21, ct 0y n)v

where the expression on the right side is the 4th elementary symmetric
function of &y, ++-, ks, and C,,, denotes the number of combinations of
n different things taken ¢ at a time. Let dA be the area element of
the hypersurface V™ at the point P, and p the scalar product of the
unit normal vector of the hypersurface V” at the point P and the position
vector of the point P with respect to any orthogonal frame in the space
R’n-ﬁl.

The purpose of this paper is to prove the following four theorems
concerning closed hypersurfaces by first showing that:

a) If V™ is an orientable hypersurface, with a closed boundary V"!
of dimension n—1 (n=>2), which is twice differentiably imbedded in an

(n+1)-dimensional Riemannian space R"*!, then the integral S 1+ M, p)dA
V?Z

can be expressed as an integral over the boundary V»-.
b) If in addition V" is of class C* and the space R"*!' is of constant

Riemannian curvature, then the integral S (M,_,+ M,p)dA can also be
V’Z

expressed as an integral over V"'

These results have been obtained in a previous paper [2] by the
author for an orientable hypersurface V" twice differentiably imbedded
in a Kuclidean space E"*' of n+1 (n=2) dimensions.

THEOREM 1. Let V* be a closed orientable hypersurface twice dif-
Sferentiably imbedded in a Riemannian space R"*' of n+1 (n=2) dimen-
stons, then

(1) A+S MpdA—0 .
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THEOREM 2. Let V™ be a closed orientable hypersurface of class C*
imbedded in an (n+1)-dimensional (n=2) Riemannion space R**' of
constant Riemannion curvature K, then

() | M, A+ | Mpdd—0.
VW/ N

THEOREM 3. Let V" be a hypersurface satisfying the conditions of
Theorem 2. Suppose that the principal curvatures k,, -+, &, at each point
of the hypersurface V" are positive and that in the space R**' there exists
a point O for which either p<<—1/M, or p=>—1/M, at all points of
the hypersurface V". Then every point of the hypersurface V™ is umbilic.

THEOREM 4. Let V™ be a hypersurface satisfying the conditions of
Theorem 2. Suppose that the principal curvatures g, «- -, &, ot each point
of the hypersurface V* are positive and M, . is constant, and that in
the space R"*' there exists a point O for which the function p is of the same
sign at all points of the hypersurface V™. Then every point of the
hypersurface V™ is umbilic.

1. Preliminaries. In a Riemannian space R**' of dimension n-+1
(n>2) with a positive definite fundamental form we consider a fixed
orthogonal frame Oe,.--¢,.,, where e, ---, ¢,.; form an ordered set of
n+1 mutually orthogonal contravariant unit vectors at a point O in
E"+'. With respect to this orthogonal frame let y* (a=1, ---, n+1) be’
the coordinates of a point in R"*' and a,dy*dy® the fundamental form
for R**', where a,;=a,, and the matrix |a,| is positive definite so that
the determinant a=|a,,|>0.

Let A, (i=1, ---,n) be n vectors at a point in the space R”*' whose
contravariant components with respect to the frame Oe,---e,., are A
(a=1, --+,n+1). First we define the vector product of the n vectors
A, (=1, - -+, n) to be a vector in R"*', denoted by A, x---xA,, whose
contravariant components are given by

€ , cee €ni1
A ALY a/a,zAla[b s UJw,nnAlT
(1-1) All Xoewe XAnl =(_ 1)” wmA{T aoquzxy' Uy nt LA;T

oooooooooo

a’wlAnwl Q> 73 M Aw‘n+1An‘7

From the definition of the scalar product of any two vectors 4, and 4,

1 Throughout this paper Greek indices take the values 1 to -1, and Latin indices the
values 1 to n unless stated otherwise. We use the convention that repeated indices imply
summation.
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namely, 4;+-A;=a,AfAf, it follows immediately that 4, x---xA4, is
orthogonal to A4, (i=1, -+, n).

Now we consider a hypersurface V™ twice differentiably imbedded
in the space E"*!. With respect to the orthogonal frame Oe,---e,,, the
hypersurface V" can be given by the parametric equations

(1'2) ,ya‘,=fw(w1’ ""a;n) (a=17 ctty 7’L+1),
or the vector equation
1.3) Y=F(, ---,2"),

where y* and f* are respectively the contravariant components of the
two vectors Y and F', the parameters ', ---, 2" take values in a simply
connected domain D of the n-dimensional real number space, and
fext, ---,a") is of rank n at all points of D. Let the first fundamental
form of the hypersurface V" at a point P be

(1.4) ds*=g,,daida’

where the matrix |g;;| is positive definite so that the determinant
9=19:;]>0, and

(1.5) 91— gl 3Y5
(1.6) yi=oy"ox’ .

Let Ag be a mixed tensor of the second order in the ¥’s, and a
covariant vector in the x’s, as indicated by the Greek and Latin indices.
Then following Tucker [3], the generalized covariant derivative of A%,
with respect to the «’s is defined as

a_asz 04 __T]aa_/c]w
(1.7) Aﬁi;j— axBJ +{78}A%L?j§j {ﬁb\;z‘hay,] {,ij' Bk

where the Christoffel symbols {gr} with Greek indices are formed with

respect to the a, and the y’s, and those { z];} with Latin indices with

respect to the g¢;; and the a’s. It should be noted that the definition of
generalized covariant differentiation can be applied to any tensor in the
2’s and y’s and that the generalized covariant differentiation of sums
and products obeys the ordinary rules. If a tensor is one with respect
to the #’s only, so that only Latin indices appear, its generalized covari-
ant derivative is the same as its covariant derivative with respect to
the a’s. Moreover, in generalized covariant differentiation the funda-
mental tensors a,; and g,; can be treated as constants. Since %® is an
invariant for transformation of the x’s, its generalized covariant derivative
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is the same as its covariant derivative with respect to the «’s; so that
(1.8) Yi=yi=0oy"[oa" .

By (1.7) the generalized covariant derivative of 7 is

A2 @
1.9 - .q,y,,_—-{ﬁ.} “ {a} a0
( ) Yiis axiaxj i y,n+ [87 Y,iY,;

which is symmetric in the indices ¢ and j.
Let N be the unit normal vector at a point P of the hypersurface
V™, then

(1.10) 4y N*NP=1
(1.11) CL&BNay’?¢=O (’5:17 ) n)'

We can easily obtain (see, for instance, [4, Chap. VIII]):

(112) ?!%j=\QUNw ’
(1.13) Q,;,-=?/f§jaw3Ns 3
(1.14) Ni=—Q;,0"y5% ,

where Q,;=Q; are the coefficients of the second fundamental form of
the hypersurface V" at the point P, and g* denotes the cofactor of g;,
in g divided by ¢ so that

(1.15) 9"95=0% ,

o being the Kronecker delta. Moreover, we have
(1.16) Rliﬂcz(ﬂuﬂm“szﬂw)““ﬁﬁykyﬁy%y?j?ﬁk )
(1.17) Qig 1= Qi 5= _EvﬁeNS?ﬁ'y%y?k )

where R,;;, and R, are Riemann symbols formed with the tensors g,
and a,; respectively. In particular, if the space R"*' is of constant
Riemannian curvature K, it follows from the definition of Riemannian
curvatures of the space RE"*! that

(1.18) Rpyse=K(gs0ye— Upelhys)

and therefore (1.16), (1.17) reduce to

(1.19) Byin= Q0 Qs — Q0 Q4y) + K(913900.— 912945) »
(1.20) Q50— 24,;,=0 .

Taking the generalized covariant derivative of each side of (1.14) and
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making use of (1.12), (1.19), (1.20) we thus obtain
(1.21) NG— Ng=N*g" (R, — Emsey,%y?t?/,aky?z) .

The » principal curvatures &y, +--, s, of the hypersurface V" at the
point P are the roots of the determinant equation

(1.22) 1Q;—kg:;1=0 .
From (0.1) and (1.22) it follows immediately that
(1'23) Mn=Q/g ’ nsz‘szgU ’ nMn—lzgijQU/g ’

where Q=|Q;,| and Q¥ is the cofactor of Q,; in Q.
Consider the two matrices

(1.24) e=leil,  ¢=I¢¥l;
where
(1.25) dy=agyi, PI=yi  (@=1, -, n; r=1,-.--,n+1),

the superscript of the element ¢} or ¢7 indicating the row to which the
element belongs and the subscript indicating the column. Solving (1.11)
- for N®, we obtain

(1.26) No=(—1)-2+1c A% (=1, ++-,n+1),

where ¢ is a constant and A® the determinant of nth order obtained by
deleting the ath column from the matrix ¢. Substitution of (1.26) in
(1.10) gives

(1.27) o= 1

where
Al — A2 ... (_1)nAn+1

2 e s
(128) A Y Y Ya ,
y,ln ?/,Zn b Z/fizﬂ
which is equal to the sum of the products of the corresponding deter-
minants of nth order of the two matrices (1.24). By an elementary
theorem on determinants (see, for instance, [1, p. 102]), from (1.5) it

follows immediately that
(1.29) A=[pydil=yg .

Now we choose the direction of the unit normal vector N in such
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a way that the two frames PY,..-Y,N and Oe,---¢,,, have the same
orientation. Then from (1.10), (1.26), (1.27), (1.29) we obtain

(1.30) VgaN=Y,x+--xY,,

(1.31) [Yi, o+, Yo, Nl=1g/a -

The area element of the hypersurface V" at the point P is given by
(1.32) dA=v/ g dx'---da" .

Let A4, (¢=1, -+, n) be n vectors at a point in the space R"*!, whose
contravariant components with respect to the frame Oe,---¢,,, are dif-
ferentiable functions of 2%, ---, 2%, then by (1.1) and the differentiation
of determinants

(1.33) (Ayx--+xAy);= ;(Aux cee XAy X A5 X Ajy X oo e X Ay) .

2. Proof of the formula (I). First we observe that the vector
Y, x++xY,, ., xNxY,,,,x---xY,, is orthogonal to the normal vector
N and can therefore be written in the form

2.1) Y, X oo o XY, ;X NXY, ;X oo XY, =c¢’Y,; (=1, -, m).

Taking the scalar products of both sides of (2.1) with the vector Y,,
and making use of (1.2), (1.5), (1.31), we obtain

(2'2) Cijgjlc—: —-\/ga/a;ic (,Z.'y k=1y *cy n)~

Solving (2.2) for ¢/ for each fixed ¢ and substituting the results in (2.1),
we are led to

(23) Y, X+ xY,, i XNxY,, X+ xXY,,=—Vgag"Y,; (=1, ---,n).

Making use of the relation Y=Y, and (1.14), (1.23), (1.30), (1.83), it
is easily seen that

(2.4) ;(Y,Ix co o XY X NXY o Xoee XY,
= ;Y,lx ce e XY, XN; XY, X xY,,
=—n/gaM\N .

Thus, from (2.3) and (2.4),

(2.5) n/ g MiN=(/ g 9"Y ), .

Taking the scalar products of both sides of (2.5) with the vector Y, we
obtain in consequence of (1.5) and (1.15)
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(2.6) nMpv g=0"g9"7),—n g ,
where we have put
2.7 p=Y-N, 72,=Y-Y,, (2=1, -+, n).

Now let us consider a hypersurface V*, with a closed boundary V72!
of dimension n—1 (n=>2), twice differentiably imbedded in a Riemannian
space R**! of dimension n-+1. Integrating (2.6) with respect to z', «--, a”
over this hypersurface V" and applying the general theorem of Stokes
to the first term on the right side of (2.6), we obtain

n-1

2.8) A+S MlpdAzlg
2 n Jv

P

S (=1Y" g gipdate - -da’dal e - o da”
J

In particular, when the hypersurface V" is closed and orientable, the
integral on the right side of (2.8) vanishes and hence we obtain the
formula (I).

3. Proof of the formula (II). For the same reason as in the pre-
ceding section, the vector N;x «+« X N,;_; X NX N1 X + + + X N,, is orthogonal
to the normal vector N and can therefore be written in the form

3.1) Nix oo XN 1 XNX Ny X o0 o X Npy=c"Y,; (1=1, -+, n).

Taking the scalar products of both sides of (3.1) with the vector Y,
and making use of (1.1), (1.14), (1.31), we obtain

c”gjk:(—l)nﬂa’]NrYyl: ctty Ym'

S N (P e e e e e e e e e 0
0 99" s Q97" iy, 597" cee Q9" 0
. 0 Q.Ug.j,lc—l P M LRl Q,Hl‘jiq.i,.k-.l . \(.Zn;gjy.k—.l .O
SR S A
0 O e B e b 0

Qn sz e an

11 Lk=1 ylk+1 n Lk
g oo e g’ g’ TR g g
‘Qi—l,l Qi~1,2 tee Qi—l,n 1 9 kel a2kl o ok

g oo g' g’ o« g— g

=(—1)’””k1/gd Qfrz+1,1 QH—l,Z e ‘Qin,n ’

.....
nk

gnl e gn,k—l gn,lc+1 . gnn g
in an A an

9 ez = Gra
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and therefore
(3.2) g =(—1)"V"a/g 9:,2" @, k=1, ---,m).

Solving (8.2) for ¢ for each fixed ¢ and substituting the results in (3.1),
we find

(3.3) Nyxees XNy X NX Nys1X oo e X Np=(—1)" I/E/V‘(}QHY,J .

Making use of (1.1), (1.14), (1.21), (1.23), (1.30), (1.33), it is easily seen
that

;,(N;IX---XN;i_1><N><N;,~+1><---XN;,,);i
= ;(MIX"'XMi—IXNiXMi-HX"'Mn)

1 0 0 cee 0
e a ® ) a wn X
1 w11 Y, 0 Q" Q9" «-- Q0"
e, @Yt e AuYl, , . ,
=7 -1 0 Qljgj' Q97 +-- angjd

-----------

a @
Cn+1 Aan+1Y1 **° Qg p+e1lYn

=(—=1)"nV'gaM,.N .
Thus, from the above equation and (3.3),
(3.4) ny g M N=(Q"Y,;[\/ g ). .

Taking the scalar products of both sides of (3.4) with the vector Y, we
obtain in consequence of (1.23) and (2.7)

(35) ?’Lan'l/ g =(Qi'771/Vigr);i_nMn—-ﬂ/ g .

As in the preceding section, let us consider a hypersurface V», with
a closed boundary V"' of dimension n—1 (n>>2), differentiably of class
C?® imbedded in an (n+1)-dimensional Riemannian space E"** of constant
Riemannian curvature K. Integrating (3.5) with respect to ', ---, 2"
over this hypersurface V" and applying Stokes’ theorem to the first
term on the right side of (3.5), we then obtain

(3.6) S Mn_ldA+S MpdA
V?Z I)

b &l

_1 S S (=1 i dgi-ida - da
v 7 ]/g

n

In particular, when the hypersurface V" is closed and orientable, the
integral on the right side of (3.6) vanishes and hence the formula (II).



SOME INTEGRAL FORMULAS 299

4. Proofs of Theorems 3 and 4. For M, >0, the assumptions
p=<—1/M, and p=> —1/M, are respectively equivalent to 1+ M;p <0 and
1+M,p=>0. From formula (I) it follows that each of the above two
assumptions implies that p=—1/M,. Substituting this in (II) we obtain

1
4.1 S MM,_,.—M,)dA=0 ,
(4.1) ot )

which holds when and only when M M, ,—M,=0, since

“4.2) MM, ,—M,— ?11-2( S Sy R )

1 .
= i Sl (s, =0, 120,

where 4,, %, +++, 4, are distinct and run from 1 to n. From (4.1), (4.2)
it follows that x,=r,=...=k, at each point of the hypersurface V” and
therefore that the quantity defined by

(Quqiqj)/(gijqiqj)

at each point of the hypersurface V™ for an arbitrary direction ¢ in the
hypersurface V" with contravariant components ¢¢ is independent of the
direction ¢q. Hence Q,;=cg,;, for all ¢ and 5 at each point of the hyper-
surface V", where ¢ is a scalar invariant, so that every point of the
hypersurface V" is umbilic.

If M,_, is constant, multiplying the formula (I) by M,., and sub-
tracting the formula (II) by the resulting equation we obtain

(4.3) S (MM, — M)dA—0 .

From this and the assumption that p is of the same sign at all points
of the hypersurface V", Theorem 4 follows by exactly the same argu-
ment as above.
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