
A CLASS OF MEASURE PRESERVING

TRANSFORMATIONS

CHARLES STANDISH

In this paper we shall consider the following class of transformations
of the unit interval onto itself. Let π be a permutation of the positive
integers, that is, a one-to-one mapping of the positive integers onto
themselves. Let t (0<^£<Il) be represented in its dyadic expansion:

ί = Σ w ; ; 6t=o or 1

Then we define

— Z Λ

shuffles" the digits in the dyadic expansion of ί.
Our motivation in considering these transformations lies in the fact

that they form a nontrivial class of measurable transformations with a
simple intuitive interpretation and may be utilized to illustrate several
of the concepts of ergodic theory.

1. Measurability and ergodicity considerations*

THEOREM 1.1. For every choice of π, T^ is a measure preserving
transformation.

Proof, Let Xt (i—1, 2 ) be the space consisting of the two real
numbers 0 and 1 endowed with a measure m defined by ra(0)=l/2

m(l)=l/2. Consider the product space X= fl X% (where we omit those

products for which all but a finite number of factors=1) and define

the measure of a "rectangle" Π Eif E.CXi by μ(f[ E^fl miE,) then

it can be shown [1, p. 159] that the above measure is capable of exten-
sion to a measure o n a ( j algebra of subsets containing the rectangles
in such a fashion that the mapping

φ: X->[0, 1]

defined by
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ψ(x)=Σ~ a?i=O or 1

sends the measurable subsets S of X onto the Lebesgue measurable
sets of [0, 1], with μ(S) = Lebesgue measure of φ(S). To demonstrate
that T* is measure preserving we need only show that this is the case
for product sets. But this is trivial since T^ merely rearranges the
factors in a product set and the measure of a product set is obviously
invariant under a permutation of its factors.

THEOREM 1.2. A necessary and sufficient condition for TJt) to be
a metrically transitive (ergodic) transformation is that neither the per-
mutation π nor any of its iterates possess a fixed point.

Proof. For the definition of metric transitivity we refer to [2,
p. 29]. We note that transformations satisfying the hypotheses of the
theorem exist for example, τr(l)=2, π(2k)=2k + 2, π(2k + l)=π(2k — l)
consisting of a single infinite cycle is easily seen to have the desired
properties. The demonstration of necessity is quite easy. Suppose that

/TU) ^π(n) denoting the nth. iterate of π) has a fixed point kQ. That is,
πOι)(k0)=kυ. Let π(kQ)=-kx, π

(2}(&0)=£2, , 7^n'υ(k0)=kn^lf then π permutes
the set S: (kΰf ku , A^). Consider the set

Ak=l, keS

This set has measure 2"Λ and is clearly invariant under T*, but a trans-
formation leaving a set of positive measure invariant is not metrically
transitive. The sufficiency requires a more extended argument. It is
our object to show that if A and B are measurable sets with charac-
teristic functions ψA and φB respectively and if neither π nor any of
its iterates has a fixed point then

(1.1) limf ψA[T7:(P)]φB(P)dμ(P)^\[ φΛ(P)dμ(P)J\ ψB{P)dμ{P)\

which is of course equivalent to

(1.2) lim μ(Ti(A) (\B) = μ{A)μ{B) .

But this is the strong mixing property which implies metric transitivity
and ergodicity [2, p. 36]. Our proof is in two parts. First we demon-
strate the theorem for the case where φA(P) and ψB(P) depend only
upon a finite number of factors in the product space and then reduce
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the general case to this special one. Suppose now that <pA(P) and φB{P)
depend only on a finite number of factors, say

Since neither π nor any of its iterates has a fixed point there exists
an N such that for n^>N, φA{TZP) does not depend on any of the
factors Xfcl, , Xkn, but for all such n

\<pA{TnP)ψB{P)dμ{P) =

which proves our assertion for the special case. In the general case
we observe that the characteristic function of any measurable set may
be approximated in the L1 sense arbitrarily closely by the characteristic
function of a set depending on only a finite number of factors. (For
a proof see [2, pp. 4, 57]). Now given φA{P), φB(P) and ε > 0 we choose
ΨΛP) and φBr{P) such that

where φA, and ψB, depend on only a finite number of factors. Then

\\ψA{TnP)ψB{P)dμ{P)

ΰ ΊΓf Ί Γf ΊΓf

JLJ B J LI i
 JLJ

(1.5) ±\\ψΛT%P))φAP)dμ(P)-\[φΛ,(P)dμ(P)Ύ[φM

Our choice of φΛP) and φB'(F) together with the measure preserving
property of T^ implies that (1.3) and (1.4) are each smaller than 2e.
Assuming (1.1) is true for the special case we have (1.5) < ε for
n^>N(ε). Hence

Km μ(T%A) Γ\B)=μ(A) μ(B) ,

and the theorem is completely demonstrated. The techniques employed
in the sufficiency proof were utilized for another purpose by Hopf [2,
p. 57J.
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2 Convergence of certain series* We now turn our attention to
an examination of the convergence of

(2.1) Σ y

and

4 a subsequence oί
\Δ Δ ) 2_J 7— - > ,, ... . ,

*=* A; the positive integers.

The almost everywhere convergence of (2.1) yields a strengthened form
of the Birkhoff ergodic theorem, for if (2.1) converges,

This fact is an immediate consequence of the well known theorem that

th convergence of Σcn/ra implies
74 = 1

lim(l/n)Σc4=0 .
Π-^CΛ 1 = 1

We are not able to establish convergence of (2.1) under the very mild
restrictions placed on f(x) in order for the ergodic theorem to hold. It
is clear from the example f(x) =constant that mere integrability of /
is not enough. Our consideration of series of the form (2.2) is moti-
vated by studies of Kac [3, 4] regarding series of the form

(2.3) Σ/( Γ ?) T(X)=2X (mod 1)
A-0 k

and

(2.4) Σ ^ , nk integers,
fco fc

The techniques employed in the study of (2.4) can be made to yield
some results concerning convergence of (2.2) although, as would be
expected from the greater complexity of the transformations considered
here, the results are not so sharp as those obtained by Kac.

Before stating and ̂ proving the results of this section we must
make some preliminary remarks. Our main tool will be the concept of
quasi-orthogonal functions developed by Menchoff.

DEFINITION 2.1. A sequence of functions {fn(x)}n=l, 2, ••• is said
to be quasi-orthogonal on a set A if the quadratic form
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is bounded in Hubert space, that is, there exists a constant B indepen-
dent of the Xj such that

Observe that an orthogonal sequence of functions is quasi-orthogonal
since in this case aJk=δj]c and

Σ ctjkχjχic^L Σ χj
j k l j l

The importance of quasi-orthogonality lies in the fact that BesseΓs
inequality holds in the sense that if

then there exists a constant D such that

( F\x)dx^D Σ Cl
JA *-l

thus every theorem on sequences of orthogonal functions which utilizes
only BesseΓs inequality in its proof is also valid for sequences of quasi-
orthogonal functions. In particular we shall need the fact that the
following theorem of Menchoff [5, p. 236] is valid for quasi-orthogonal
functions.

THEOREM 2.1. // {0k(x)} is a sequence of orthogonal functions then

Σc/A(#) converges almost everywhere provided

Σ l Iθg2&<

DEFINITION 2.2. Let £ = Σ J^-L then the Rademacher functions rk(t)
fc~i 2 f c

are defined as follows

( 1 if efc(ί) = 0

1-1 if

It is well known that the Rademacher functions form an incomplete
orthonormal set on [0, 1]. Moreover the Rademacher functions are sta-
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tistically independent, that is, denoting Lebesgue measure by μ, we
have

DEFINITION 2.3. The sequence of functions {ψk(x)} defined by

Ψn(x)=rnι(x)-"rnk(x) for rc=2"H +2"*

where the rWί(α;) are Rademacher functions, are called the Walsh func-
tions. They form a complete orthonormal set (the completion of the
Rademacher functions) and hence for every f(x) e V on [0, 1] the Walsh-
Fourier series

j i

Σ cbψk(x) ck= f(x)Φh(x)dx
λ' = l JO

converges to f(x) in the II mean.
We are now ready to prove our theorems. In each of them it will

be assumed that neither π nor any of its iterates has a fixed point.

THEOREM 2.2. The series (2.1) either converges almost everywhere
or diverges almost everywhere in [0, 1].

Proof. Denote by C the set of points where the series converges.
This set is invariant under T^ but since T^ is metrically transitive,
either C or its complement is a zero set.

THEOREM 2.3. Suppose f(x) satisfies

( a ) \f(x)-f(x')\^\x-xT

(b) [f(x)dx=0
Jo

then ^c^fiT^x) converges almost everywhere provided

Proof. We shall demonstrate that hypotheses (a) and (b) insure
that the sequence {f(T%x)} is quasi-orthogonal. To do this we expand
f(x) in a Walsh-Fourier series
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Then

But the transformation T« permutes the Walsh functions. Hence

where the eφ{K fc) are the Walsh-Fourier coefficients of f(x) in some order.
It was shown by Fine [6, p. 394] that the conditions (a) on f(x) is
sufficient to insure the absolute convergence of the Walsh-Fourier deve-
lopment of f(x). By ParsevaΓs relation,

vφ(λ, fc)

Hence

\1f(x)f(Tix)dx
JO

Σ
λ l

Since the Walsh-Fourier series of f(x) is absolutely convergent, its
sum is independent of a rearrangement of its terms and

Σ \Cφiλ,k>\<CM (independent of k) .
λ l

Thus

Setting

we have

^ Σ \1f(x)f(Tί-"x)dx
Jo

12M2 .

By the triangular inequality and the trivial inequality

we have
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2-Λ Σ Σ

Therefore {f(T^x)} is quasi-orthogonal, and applying Theorem 2.1 we
have our result. For the case of convergence in the II mean we have
as an almost immediate consequence of Theorem 2.3 the following.

THEOREM 2.4. // {f(T*x)} is quasi-orthogonal the series

converges in the mean of order 2 provided that

Proof, we have

Σ c Λ
k

But the convergence of Σ °l implies the last term is arbitrarily small

for m and n large enough.

The smoothness restrictions on f(x) in the above two theorems are
heavy, and it might be conjectured that as in the case of the ergodic
theorem only the restrictions that f(x) be integrable (or of course square
integrable in the case of Theorem 2.4) are necessary. We are unable
to answer this for the case of pointwise convergence, but in the case
of mean convergence the answer is in the negative. For Halmos has
shown [7, pp. 286-88] that for an arbitrary metrically transitive trans-
formation T there functions in U for which

does not converge in the mean. His proof depends upon the spectral
resolution of the unitary operator U in the Hubert space of L2 functions
defined by Uf(x)=f(Tx).

We now turn our attention to the convergence of certain gap series
of the form (2.2).

THEOREM 2.5. Suppose

( a )
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(b) [f(x)dx=0.
Jo

Then there exists a subsequence {λk} of the positive integers (the subse-
quence depneding on the permutation π but not on f{x)) such that

Σ-
l

converges almost everywhere, provided that

Σ-

Proof. Utilizing a device of Kac [8, p. 652] we construct a sequence
of functions {fk(x}} satisfying

( 1 )

( 2 )

( 3 ) \

( 4 ) {fk(Tfex)} is a subsequence of independent functions.

The construction goes as follows. Divide the interval [0, 1] into 2k

parts. Let

f Λt)d*> l^
An easy calculation shows that (1) holds. Since

which proves (2).
The construction of the fk(x) and hypothesis (a) imply (3). To

prove (4) we need the following.

LEMMA. Let J be a fixed finite collection of integers. Let π be the
permutation defining T, then an integer n0 can be so chosen that {πn(l),
•••, πn(k)} Γ\J=φ if ny>nQ. (φ denotes the empty set.)

Proof, π is a permutation without fixed points, hence there exists
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an integer nλ such that for ny>nλ, πn(l)f}J=φ. Similarily there exist
Uj such that ττn(j)Γ\J=φf n^>njy j = l , . . . , k. Now choose wo=max (nlf

If # = Σ εfc(^)/2fc, /&(x) being a step function with jumps at points

r/2k, is of the form fJc(x)=FJΰ(ε1, ε2, .-, eΛ). Suppose we have chosen
4•••, 4 so that f^T^x)- - - fn(Tk™x) are independent. Now choose 4 + 1

such that πλn+ι(j)-φπH(m)y m < 4 > &=1,•••,%, j=l,- , w + 1 . To see
that this is possible take J={πλt(m)}f m < 4 , Ic=l, * ,n, and apply
our lemma. Now

is independent of /*(Γλ*a?), 4 < C ^ and (4) is proved. The series

converges almost everywhere by the Kolmogoroff three series theorem.

Since | / f c ( r A ^ ) - / ( T A ^ ) | < f i / 2 ^ , ^chf{T^x) converges almost every-

where, and the proof of Theorem 2.5 is complete.

Upon specializing the permutation π our results can be considerably
strengthened. We illustrate by an example. Let π=( -5312468- •)

Then if f(x) satisfies the hypotheses of Theorem 2.5, ^ckf(T*kx) con-

verges for ail sequences of integers {4} such that

>

One sees this by noting that for k sufficiently large

But then the sequence of functions {/fc(Tλ^)} is independent. It might
be conjectured that for a suitable permutation even the sequence
{fk(T*x)} is independent. This is not the case, however, by virtue of
the following combinatorial lemma, which is of possible independent
interest.

LEMMA. // π is a permutation containing at least one infinite cycle
then it is impossible that

are all distinct integers.
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Proof. Let i klf &2, •) be an infinite cycle. Then it is impossible
that 7τ(kλ)<Ckλ for all except a finite number of λ, since if this were
the case then {kλ} for λ sufficiently large would be a strictly decreasing
infinite sequence of positive integers which is impossible. Hence there
exist infinitely many λ such that π(&λ)>&λ. Call this sequence again
{kλ}. If π(kj)=Uj then Uj + l^hj and πuj

3* A statistical remark*

THEOREM 3.1. Given a transformation T« there exists a subsequence
{h} °f positive integers depending on π but not on f(x) such that if
f(x) satisfies a Lipschitz condition of order a and

lim ~— ̂ ,<

where

ll/lr=

then

f

\t\a< ,- <δ U -j^Λ exp

that is, the sequence

is asymptotically normally distributed.

Proof By the proof of Theorem 2.5 we can find a sequence of
statistically independent functions {fk(Tikx}} such that

Hence

Thus given ε > 0
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if n is sufficiently large. We may now proceed exactly as in the proof
of a theorem of Kac [4, Theorem 1, pp. 41-42] with fk(T^χ) playing
the role of φk(Tfyx) and with 2H replaced by Ttyt to obtain our result.
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