
NEIGHBOR RELATIONS ON THE CONVEX

OF CYCLIC PERMUTATIONS

I. HELLER

l Introduction and summary* Two vertices of a polyhedron are
called neighbors of order k when they have a face of dimension k, and
none of lowrer dimension, in common. K(P) denotes the maximum value of
k for a given polyhedron P. For the convex hull (polyhedron) Pn of all
permutations of n elements (represented by square matrices of order n and
interpreted as points in w3-space) it was shown [1 and 2] that K(P) =
[n/2] (that is, the largest integer not exceeding n/2), which is rather
small as compared with άimPn=(n — lf. For the convex hull Qn of all
cyclic permutations of n elements that leave no element fixed, H.
Kuhn performed computations showing that any two vertices of Q5 but
not any two vertices of Q6 are neighbors of order 1, which means that
K(Q6) = 1 and ϋΓ(Qβ)> 1. The present note, dealing with generals,
proves, for n > 8 :

(1) K(Qn)=K(Pn)-l=n

o-l if n^

(2) K{Qn)^K(Pn)J^ if nφ 4m 4-2

For rc=l, 2, 6, 7, jfiΓ(Qn) = O, 0,1,1,1, 2, 2 respectively.

2. A permutation p of n numbered elements is customarily re-
presented by a matrix (ptJ), where

1 when p sends i into j

0 otherwise.

To the product of permutations then corresponds the product of the
associated matrices under ordinary matrix multiplication, and therefore
the same symbol will be used for a permutation and its matrix.

The following facts from [1] and [2] regarding neighbor relations
on Pn will be used in the sequal:
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(2.1)

(2.2) pλ and p2 are neighbors of order k on Pn if and only if
pΐLp2 is a product of k disjoint cycles (not counting cycles
of length 1)

(2.3) If clfc2, •• ,cfc are disjoint cycles and F is the face of
lowest dimension that contains the two vertices

p and p=pc1a2 cfc ,

then F has the 2k vertices

3* If the vertices of a convex polyhedron Q are a subset of the
vertices of a convex polyhedron P, let two vertices gx, g2 of Q be neigh-
bors of order k on P and F on Q:

k=k(ql9 q2 P) , k* = k*(qu q, Q) .

Let

q2; P) , F*=F*(qlf q2; Q)

be the face of lowest dimension of P respectively Q that contains qx

and q.if so that

k=dim A(F), k* = dim A(F*) ,

where A{F) and A(F*) denote the "affine s p a n " of F and ί7* respec-
tively, which is also obtained as the intersection of all hyperplanes that
support P respectively Q and contain qτ and q2 (with the understanding
that A is the entire space when such hyperplanes do not exist) then

(3.1) fSί1*,

hence

(3.2) A(F) 2 A(F*),

and therefore

(3.3) k^k*.

Proof of (3.1). The line segment joining qλ and g2 goes through
the interior of .F* (otherwise q1 and g2 would have a face of lower
dimension in common). Therefore any hyperplane through qx and q.2

necessarily contains interior points of F*.
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Further, the vertices of Q, hence in particular those of F*, are
also vertices of P. Therefore any hyperplane that supports P supports
F*.

Above establishes that any hyperplane H that supports P and con-
tains qx and g2 necessarily contains F*, since it supports F* and contains
points interior to F * . Therefore

A(F) 2 F* ,

which, in conjunction with

implies

F*^PΓ\ A(F).

This completes the proof of (3.1), since the right hand side of the last
relation equals F.

A somewhat sharper form of (3.1) may be noted as

LEMMA 1. The vertices of F* are among the vertices of F.

The proof is immediate from (3.1) and the fact that the vertices of
F* are vertices of P, and a vertex of P contained in F is vertex of
F.

From (3.3) it follows that max k* <i max Jc, that is

(3.4) K(Q)^K(P)

4. At this point it is convenient to first establish some auxiliary
facts, p, q, c denote permutations of n elements, for fixed n.

LEMMA 2. / /

is a set of s disjoint cycles, and

C =-C\C% Cr , C —Cr+ιCr+2 Cs

then

(4.1) c' + c"=I+cY'

Proof. Obvious (note that a cycle of less than n elements is still
represented as an n by n matrix, with l's along the main diagonal for
fixed elements).
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LEMMA 3. Under the assumptions of Lemma 1, let

(4.2) g, qc, qc"> qc'c" = q

be vertices of a polyhedron R. Then

a hyperplane H through q and ~q that
supports R contains qc and qc",

and consequently

F{q, g; R) contains qc; and qc" {obviously
as vertices).

This lemma will be used in the particular case where R=Qn or Pn.

Proof of Lemma 3. Using parentheses to denote the inner product,
let H, given by {h, x)=a, contain q and q but not contain qd (say);
that is

By (4.1) and (4.2)

hence

(h, qc")=={h,

so that H separates qcf from qc" and therefore does not support R.

LEMMA 4. / /

= M , 2s ^

c 4 = ( i , i + k) ( i = l , 2 , . . . Λ ) ,-

then the product of q with 2s distinct ct,

qchch ch

is an n-cycle.

Proof Since the ct are disjoint, they commute, and may be ar-
ranged in such manner that
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then

(l n)(i19 ii + /b)(ia, i2 + Λ) (i2,-1, i2s-i + &)(is> iw+ fc)

• -î -f k, i44-l

^-i + l , •• ί2β, ί2.?4-&4-l,---ft) .

It is easily verified above relation also holds, with proper changes, for
i 1 = l and for 2s=fe, 2&==w .

In similar straightforward fashion one easily proves:

LEMMA 5. If q is an n-cycle and d is a 3-cycle, then qd is an n-
cycle if and only if the elements of d occur in q in the same cyclic
order as in d.

LEMMA 6. If q is an n-cycle and the 2-cycle (ij)φ(km), then
q(ij)(km) is an n-cycle if and only if the pair iy j separates the pair k,
m in q.

5* The case n=4m, n=4m + l; ml>2.

(5.1) K(Qn)=K(Pn) (n=4m

Proof. Because of (3.4), it is sufficient to show that K(Qn)^>K(Pn)

this will be achieved by showing that for a particular pair of vertices

Q, Q

(5.2) k(q, q

Now let 2m=k, so that n^>2k, choose

c,=(i, i + k) (i==l, 2 fc)(5.3)

and denote by & the product of an even number (including 0 and k) of
the ct, by c" the product of the remaining ct (whose number is also
even, since k is even):

(5.4) { 9
C C Cfi

9 ^
C C —Cfiz' Cfc — C .
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(It should be noted that the now following proof of k*(q, q; Qn)^>
k does not depend on the special assumption n=A.my 4m 4-1 and k=2m,
but rather holds in general for any pair n, k, where k is even and n^>
2k this fact will be used in § 9).

The qcr are vertices of Qn (by Lemma 4) and therefore (by Lemma
3) they are also vertices of F*=F(q, q Qn).

To verify (5.2), that is

dim A{Έ*) >^ k ,

consider the following subset of kΛ-1 vertices of F*:

(5.5) <lL = Qc1c1 = qf q2^qcLc2, gfc=gc1cfc, g f c +i=gc=§ .

The qt of (5.5) are linearly independent.

Proof. Assume

(5.6) ^c + Σ ^ ^ o .
4 = 1

Successive application of (4.1) to

yields

(5.7) c=Cα[c2H hcfc —(Λ —2)Z]

and (5.6) becomes

λqcH&Λ-'' +c f c~(&-2)/]-f Σ

that is

or, equivalently, since g and cx are nonsingular matrices

(5.8) λ1c1-λ(k-2)I+ Σ ( U ^ i = 0

Since the ct are disjoint cycles (5.8) implies

; 1 = =0; Λ4 + /i=0 ( i = 2 , •••&); ^ ~ 2 ) = 0

which, in conjunction with A* 7^ 2 (following from m l > 2 ) , further
implies
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This verifies that the k + 1 qi of (5.5) are linearly independent, so that
the dimension of their linear span is fc + 1, and therefore the dimension
of their affine span equal to k. This completes the proof of (5.2) and
hence of (5.1)

6* The case ?z=4m, %=4m + l ; m = l . Removing the restriction m
^>2 in (5.1) leaves the cases %=4 and n=5 still to be considered

(6.1) K(Qn) = l (n=4, 5)

Proof. Since, by (3.4) and (2.1), K(Qn)<L2, one only has to show
that K{Qn)φ2.

Assume there were two vertices q and q of Qn such that

k*(q, q; Qn) = 2.

Then, by (3.4), (3.3) and (2.1)

k(q, q; Pn)=2 ,

which by (2.2) implies that q~ιq is a product of two disjoint cycles, say
clf c.z, so t h a t q^

Since q and q are cycles of the same length (namely n), CχC2 is
necessarily an even permutation, so that cL and cz are both of length 2.

Now let F be the lowest dimensional face of Pn containing q and
q. Then, by (2.3), F has the 4 vertices

q, q, qclf qc2.

of which the last two are not ^-cycles and therefore not vertices of
JP*\ Hence, by Lemma 1, F* has only the two vertices q and q, which
implies k* = l in contradiction to the assumption that &*=2. This com-
pletes the proof of (6.1).

7- The case w=

(7.1) K(Qn)=K(Pn) (n=4m±3, mφl),

including m=0 .

Proof. Because of (3.4) it is again sufficient to point out two
vertices, q, q> of Qn, such that

(7.2) k*(g9 q; Qn)^K{Pn)=2m + l .

For k=2m, let q, ci9 c, c', c" be defined as in (5.3) and (5.4), let
), and q=qcd,



474 I. HELLER

By Lemmas 4 and 5 the qc and qc'd are vertices of Qn for all c
of (5.4), and by Lemma 3 they are also vertices of F*(q, q; Qn). To
prove that

it is shown that the dimension of the linear span of i*7* is I>2m-}-2=
k + 2, in verifying that the &-f 2 vertices of F*

(7.3) qi=q=q<Wi, Qi^QCiCi, - , q*=q<hc*, q*+i*=qd, qk+2=q=qcd

are linearly independent.
Assume

fc+2

(7.4) Σ *«<7i=0
<i = l

or, equivalently, substituting for g.£ their expressions from (7.3), omitt-
ing the non singular common factor qc19 and writing μt for λk+i,

(7.5) Σ λi

Application of (4.1) yields for the left hand side of (7.5)

so that (7.4) is equivalent to

(7.6) (Λ + ΛOC, + Σ (*i + A)β« + (A + A)d - Oi + (fe ~ 1) AJf = 0

Since the ce and cZ are disjoint cycles, (7.6) implies

(7.7)
( ί=2, 3, . . . A;)

The last two relations of (7.7) imply (because of the assumption m
φ\, hence kφ2, k-lφl)

which in conjunction with the first two relations of (7.7) implies

λt=0 ( i = l , 2, . . . Λ ) ,

so that all coefficients of (7.4) vanish; this proves that the qt of (7.4)
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are linearly independent, and completes the proof of (7.2) and hence
(7.1).

8- The case n=7 (excepted in § 7).

(8.1) K(Q7)=K(P7)-1 = 2

Proof. By (3.4) and (2.1)

To see that equality cannot hold, let g=(12 7).

Because of (2.1) and (3.3), only such q must be considered where

k(q,q; P 7 ) = 3 .

By (2.2) the last relation is only possible for

where clt c2, d are disjoing cycles.
For q to be a 7-cycle it is necessary (not sufficient) that cλcβ be

even, that is, that two of them, say cι and c2, be transpositions and d
a 3 cycle.

For the same reason, among the 8 vertices of F(q, q; P7) determined
by (2.3), at most 4 are 7-cycles, namely

(8.2) qι=qf qz=q<h<ht q*=qd, qi=q=qc1czd ,

so that, by Lemma 1, F*(q, </; Q7) has at most the 4 vertices (8.2).
However, application of (4.1) yields

which is a relation

^ ^ , = 0 with

therefore

It has thus been established that

To complete the proof of (8.1), choose

(8.3) gr=(12.. 7), ^=(13), c,

Then each qi of (8,2) is a 7-cycle (by Lemmas 4 and 5) and a
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vertex of F*(q,q; Q7) (by Lemma 3.) The last 3 of these qι are
linearly independent. This establishes, for this particular face F * ,

dimA(F*)=2,

and completes the proof of (8.1).

9 The case w=4m + 2.

(9.1) K(Qn)=K(Pn)-l=2m

The proof is achieved in showing

(9.2) K{Qn) ^ K{Pn) -l=2m

(9.3)

To verify (9.2), assume K(Qn)> K(Pn)-l, which, by (3.4) and (2.1),
implies K(Qn)=K(Pn)=2m + l.

Then there must be a pair of vertices q and q on Qn such that

k*(q, q; Qn)=

and hence, by (3.3) and (2.1),

k(q,q;Pn)=2m + l,

which, by (2.2) implies

q=qc1c2---c,m+1,

where the ct are disjoint cycles, and therefore necessarily transpositions,
because of n=2(2m + l). Then however, the product of the ct is an
odd permutation, and q cannot be an w-cycle if q is one. This proves
(9.2).

To verify (9.3), consider first the case m l > 2 . Setting 2m=k, the
construction from (5.3) through the end of § 5 proves the existence of
q, q with k*(q, q; Qn)=k, which implies

For m = l , that is, n=6, choose

g=(12 6), di=(123), d2=(456), q=qd1dI.

Then, by Lemma 5, the 4 points

g, qdu qd2, q=qdidz

are 6-cycles, and therefore, by Lemma 3, vertices of

F*(q, g Qe).

This implies dim A(F¥) ^ 2 (since not more than two vertices can be on
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a line), that is,

&*(<7, q; Q6)^2.

Finally (if one wants to split hairs) for m = 0 , that is, w=2, (9.3)
amounts to asserting the existence of at least one 2-cycle; for q=q=f
(12), F*(q, q; Q2)=ff, fc*==0, hence ϋΓ(Q2)^0. This completes the proof
of (9.1).

The relations (5.1), (6.1), (7.1), (8.1), and (9.1) constitute the state-
ment at the end of § 1.
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