NEIGHBOR RELATIONS ON THE CONVEX OF CYCLIC PERMUTATIONS

I. Heller

1. Introduction and summary. Two vertices of a polyhedron are called neighbors of order k when they have a face of dimension k, and none of lower dimension, in common. $K(P)$ denotes the maximum value of k for a given polyhedron P. For the convex hull (polyhedron) P_{n} of all permutations of n elements (represented by square matrices of order n and interpreted as points in n^{2}-space) it was shown [1 and 2] that $K(P)=$ [$n / 2$] (that is, the largest integer not exceeding $n / 2$), which is rather small as compared with $\operatorname{dim} P_{n}=(n-1)^{2}$. For the convex hull Q_{n} of all cyclic permutations of n elements that leave no element fixed, H. Kuhn performed computations showing that any two vertices of Q_{5} but not any two vertices of Q_{0} are neighbors of order 1 , which means that $K\left(Q_{5}\right)=1$ and $K\left(Q_{6}\right)>1$. The present note, dealing with general n, proves, for $n \geqq 8$:

$$
\begin{align*}
& K\left(Q_{n}\right)=K\left(P_{n}\right)-1=\frac{n}{2}-1 \quad \text { if } \quad n=4 m+2 \tag{1}\\
& K\left(Q_{n}\right)=K\left(P_{n}\right)=\left[\frac{n}{2}\right] \quad \text { if } \quad n \neq 4 m+2
\end{align*}
$$

For $n=1,2, \cdots 6,7, K\left(Q_{n}\right)=0,0,1,1,1,2,2$ respectively.
2. A permutation p of n numbered elements is customarily represented by a matrix $\left(p_{i j}\right)$, where

$$
p_{i j}= \begin{cases}1 & \text { when } p \text { sends } i \text { into } j \\ 0 & \text { otherwise } .\end{cases}
$$

To the product of permutations then corresponds the product of the associated matrices under ordinary matrix multiplication, and therefore the same symbol will be used for a permutation and its matrix.

The following facts from [1] and [2] regarding neighbor relations on P_{n} will be used in the sequal:

[^0]\[

$$
\begin{equation*}
K\left(P_{n}\right)=\left[\frac{n}{2}\right] \tag{2.1}
\end{equation*}
$$

\]

(2.2) $\quad p_{1}$ and p_{2} are neighbors of order k on P_{n} if and only if $p_{1}^{-1} p_{2}$ is a product of k disjoint cycles (not counting cycles of length 1)
(2.3) If $c_{1}, c_{2}, \cdots, c_{k}$ are disjoint cycles and F is the face of lowest dimension that contains the two vertices

$$
p \text { and } \bar{p}=p c_{1} c_{2} \cdots c_{k}
$$

then F has the 2^{k} vertices

$$
p c_{i_{1}} c_{i_{2}} \cdots c_{i_{s}} \quad(0 \leqq s \leqq k)
$$

3. If the vertices of a convex polyhedron Q are a subset of the vertices of a convex polyhedron P, let two vertices q_{1}, q_{2} of Q be neighbors of order k on P and k^{*} on Q :

$$
k=k\left(q_{1}, q_{2} ; P\right), \quad k^{*}=k^{*}\left(q_{1}, q_{2} ; Q\right) .
$$

Let

$$
F=F\left(q_{1}, q_{2} ; P\right), \quad F^{*}=F^{*}\left(q_{1}, q_{2} ; Q\right)
$$

be the face of lowest dimension of P respectively Q that contains q_{1} and q_{2}, so that

$$
k=\operatorname{dim} A(F), \quad k^{*}=\operatorname{dim} A\left(F^{*}\right),
$$

where $A(F)$ and $A\left(F^{*}\right)$ denote the "affine span" of F and F^{*} respectively, which is also obtained as the intersection of all hyperplanes that support P respectively Q and contain q_{1} and q_{2} (with the understanding that A is the entire space when such hyperplanes do not exist) ; then

$$
\begin{equation*}
F \supseteqq F^{*} \tag{3.1}
\end{equation*}
$$

hence

$$
\begin{equation*}
A\left(F^{\prime}\right) \supseteqq A\left(F^{*}\right), \tag{3.2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
k \geqq k^{*} \tag{3.3}
\end{equation*}
$$

Proof of (3.1). The line segment joining q_{1} and q_{2} goes through the interior of F^{*} (otherwise q_{1} and q_{2} would have a face of lower dimension in common). Therefore any hyperplane through q_{1} and q_{2} necessarily contains interior points of F^{*}.

Further, the vertices of Q, hence in particular those of F^{*}, are also vertices of P. Therefore any hyperplane that supports P supports F^{*}.

Above establishes that any hyperplane H that supports P and contains q_{1} and q_{2} necessarily contains F^{*}, since it supports F^{*} and contains points interior to F^{*}. Therefore

$$
A(F) \supseteqq F^{*},
$$

which, in conjunction with

$$
P \supset Q \supset F^{*},
$$

implies

$$
F^{*} \cong P \cap A(F)
$$

This completes the proof of (3.1), since the right hand side of the last relation equals F.

A somewhat sharper form of (3.1) may be noted as
Lemma 1. The vertices of F^{*} are among the vertices of F.
The proof is immediate from (3.1) and the fact that the vertices of F^{*} are vertices of P, and a vertex of P contained in F is vertex of F.

From (3.3) it follows that $\max k^{*} \leqq \max k$, that is

$$
\begin{equation*}
K(Q) \leqq K(P) \tag{3.4}
\end{equation*}
$$

4. At this point it is convenient to first establish some auxiliary facts. p, q, c denote permutations of n elements, for fixed n.

Lemma 2. If

$$
c_{1}, c_{2}, \cdots, c_{r}, c_{r+1}, \cdots, c_{s}
$$

is a set of s disjoint cycles, and

$$
c^{\prime}=c_{1} c_{2} \cdots c_{r}, \quad c^{\prime \prime}=c_{r+1} c_{r+2} \cdots c_{s}
$$

then

$$
\begin{equation*}
c^{\prime}+c^{\prime \prime}=I+c^{\prime} c^{\prime \prime} \tag{4.1}
\end{equation*}
$$

Proof. Obvious (note that a cycle of less than n elements is still represented as an n by n matrix, with 1 's along the main diagonal for fixed elements).

Lemma 3. Under the assumptions of Lemma 1, let

$$
\begin{equation*}
q, q c^{\prime}, q c^{\prime \prime}, q c^{\prime} c^{\prime \prime}=\bar{q} \tag{4.2}
\end{equation*}
$$

be vertices of a polyhedron R. Then

$$
\begin{aligned}
& \text { a hyperplane } H \text { through } q \text { and } \bar{q} \text { that } \\
& \text { supports } R \text { contains } q c^{\prime} \text { and } q c^{\prime \prime} \text {, }
\end{aligned}
$$

and consequently
$F(q, \bar{q} ; R)$ contains $q c^{\prime}$ and $q c^{\prime \prime}$ (obviously
as vertices).

This lemma will be used in the particular case where $R=Q_{n}$ or P_{n}.
Proof of Lemma 3. Using parentheses to denote the inner product, let H, given by $(h, x)=\alpha$, contain q and \bar{q} but not contain $q c^{\prime}$ (say); that is

$$
(h, q)=(h, \bar{q})=\alpha, \quad\left(h, q c^{\prime}\right)=\alpha+\beta, \quad \beta \neq 0
$$

By (4.1) and (4.2)

$$
q c^{\prime}+q c^{\prime \prime}=q+\bar{q}
$$

hence

$$
\left(h, q c^{\prime \prime}\right)=\left(h, q+\bar{q}-q c^{\prime}\right)=2 \alpha-(\alpha+\beta)=\alpha-\beta,
$$

so that H separates $q c^{\prime}$ from $q c^{\prime \prime}$ and therefore does not support R.
Lemma 4. If

$$
\begin{aligned}
& k=\left[\begin{array}{c}
n \\
2
\end{array}\right], \quad 2 s \leqq k \\
& q=(12 \cdots n) \\
& c_{i}=(i, i+k) \quad(i=1,2, \cdots k),
\end{aligned}
$$

then the product of q with $2 s$ distinct c_{i},

$$
q c_{i_{1}} c_{i_{2}} \cdots c_{i_{2}}
$$

is an n-cycle.
Proof. Since the c_{i} are disjoint, they commute, and may be arranged in such manner that

$$
i_{1}<i_{2}<\cdots<i_{2 s}
$$

then

$$
\begin{aligned}
& (1 \cdots n)\left(i_{1}, i_{1}+k\right)\left(i_{2}, i_{2}+k\right) \cdots\left(i_{2 s-1}, i_{2 s-1}+k\right)\left(i_{2 s}, i_{2 s}+k\right) \\
= & \left(1 \cdots i_{1}, i_{1}+k+1, \cdots i_{2}+k, i_{2}+1, \cdots i_{3}, i_{3}+k+1, \cdots i_{4}+k, i_{4}+1 \cdots\right. \\
& \cdots i_{2 s-1}, i_{2 s-1}+k+1, \cdots i_{2 s}+k, i_{2 s}+1, \cdots \\
& i_{1}+k, i_{1}+1, \cdots i_{2}, i_{2}+k+1, \cdots i_{3}+k, i_{3}+1, \cdots i_{4}, i_{4}+k+1, \cdots \\
& \left.\cdots i_{2 s-1}+k, i_{2 s-1}+1, \cdots i_{2 s}, i_{2 s}+k+1, \cdots n\right) .
\end{aligned}
$$

It is easily verified above relation also holds, with proper changes, for $i_{1}=1$ and for $2 s=k, 2 k=n$.

In similar straightforward fashion one easily proves:
Lemma 5. If q is an n-cycle and d is a 3-cycle, then $q d$ is an n cycle if and only if the elements of d occur in q in the same cyclic order as in d.

Lemma 6. If q is an n-cycle and the 2 -cycle $(i j) \neq(\mathrm{km})$, then $q(i j)(k m)$ is an n-cycle if and only if the pair i, j separates the pair k, m in q.
5. The case $n=4 m, n=4 m+1 ; m \geqq 2$.

$$
\begin{equation*}
K\left(Q_{n}\right)=K\left(P_{n}\right) \quad(n=4 m, 4 m+1 ; m \geqq 2) \tag{5.1}
\end{equation*}
$$

Proof. Because of (3.4), it is sufficient to show that $K\left(Q_{n}\right) \geqq K\left(P_{n}\right)$; this will be achieved by showing that for a particular pair of vertices q, \bar{q}

$$
\begin{equation*}
k\left(q, \bar{q} ; Q_{n}\right) \geq\left[\frac{n}{2}\right]=K\left(P_{n}\right) \tag{5.2}
\end{equation*}
$$

Now let $2 m=k$, so that $n \geqq 2 k$, choose

$$
\left\{\begin{array}{l}
q=(12 \cdots n) \tag{5.3}\\
c_{s}=(i, i+k) \quad(i=1,2 \cdots k) \\
\bar{q}=q c_{1} c_{2} \cdots c_{k}=q c
\end{array}\right.
$$

and denote by c^{\prime} the product of an even number (including 0 and k) of the c_{i}, by $c^{\prime \prime}$ the product of the remaining c_{i} (whose number is also even, since k is even):

$$
\left\{\begin{align*}
c^{\prime} & =c_{i_{1}} c_{i_{2}} \cdots c_{i_{2 s}} \tag{5.4}\\
c^{\prime} c^{\prime \prime} & =c_{1} c_{2} \cdots c_{k}=c
\end{align*}\right.
$$

(It should be noted that the now following proof of $k^{*}\left(q, \bar{q} ; Q_{n}\right) \geqq$ k does not depend on the special assumption $n=4 m, 4 m+1$ and $k=2 m$, but rather holds in general for any pair n, k, where k is even and $n \geqq$ $2 k$; this fact will be used in § 9).

The $q c^{\prime}$ are vertices of Q_{n} (by Lemma 4) and therefore (by Lemma 3) they are also vertices of $F^{*}=F\left(q, \bar{q} ; Q_{n}\right)$.

To verify (5.2), that is

$$
\operatorname{dim} A\left(F^{*}\right) \geq k
$$

consider the following subset of $k+1$ vertices of F^{*} :

$$
\begin{equation*}
q_{1}=q c_{1} c_{1}=q, \quad q_{2}=q c_{1} c_{2}, \cdots q_{k}=q c_{1} c_{k}, q_{k+1}=q c=\bar{q} . \tag{5.5}
\end{equation*}
$$

The q_{i} of (5.5) are linearly independent.
Proof. Assume

$$
\begin{equation*}
\lambda q c+\sum_{i=1}^{k} \lambda_{i} q_{i}=0 . \tag{5.6}
\end{equation*}
$$

Successive application of (4.1) to

$$
c=c_{1} c_{2} \cdots c_{k}
$$

yields

$$
\begin{equation*}
c=c_{1}\left[c_{2}+\cdots+c_{k}-(k-2) I\right], \tag{5.7}
\end{equation*}
$$

and (5.6) becomes

$$
\lambda q c_{1}\left[c_{2}+\cdots+c_{k}-(k-2) I\right]+\sum_{i=1}^{k} \lambda_{i} q c_{1} c_{i}=0
$$

that is

$$
q c_{1}\left[\lambda_{1} c_{1}-\lambda(k-2) I+\sum_{i=2}^{k}\left(\lambda_{i}+\lambda\right) c_{i}\right]=0
$$

or, equivalently, since q and c_{1} are nonsingular matrices

$$
\begin{equation*}
\lambda_{1} c_{1}-\lambda(k-2) I+\sum_{i=2}^{k}\left(\lambda_{i}+\lambda\right) c_{i}=0 \tag{5.8}
\end{equation*}
$$

Since the c_{i} are disjoint cycles (5.8) implies

$$
\lambda_{1}=0 ; \lambda_{i}+\lambda=0(i=2, \cdots k) ; \lambda(k-2)=0
$$

which, in conjunction with $k \neq 2$ (following from $m \geqq 2$), further implies

$$
\lambda=0, \quad \lambda_{i}=0 .
$$

This verifies that the $k+1 q_{i}$ of (5.5) are linearly independent, so that the dimension of their linear span is $k+1$, and therefore the dimension of their affine span equal to k. This completes the proof of (5.2) and hence of (5.1)
6. The case $n=4 m, n=4 m+1 ; m=1$. Removing the restriction m ≥ 2 in (5.1) leaves the cases $n=4$ and $n=5$ still to be considered

$$
\begin{equation*}
K\left(Q_{n}\right)=1 \quad(n=4,5) \tag{6.1}
\end{equation*}
$$

Proof. Since, by (3.4) and (2.1), $K\left(Q_{n}\right) \leqq 2$, one only has to show that $K\left(Q_{n}\right) \neq 2$.

Assume there were two vertices q and \bar{q} of Q_{n} such that

$$
k^{*}\left(q, \bar{q} ; Q_{n}\right)=2
$$

Then, by (3.4), (3.3) and (2.1)

$$
k\left(q, \bar{q} ; P_{n}\right)=2,
$$

which by (2.2) implies that $q^{-1} \bar{q}$ is a product of two disjoint cycles, say c_{1}, c_{2}, so that $\bar{q}=q c_{1} c_{2}$.

Since q and \bar{q} are cycles of the same length (namely n), $c_{1} c_{2}$ is necessarily an even permutation, so that c_{1} and c_{2} are both of length 2.

Now let F be the lowest dimensional face of P_{n} containing q and \bar{q}. Then, by (2.3), F has the 4 vertices

$$
q, \bar{q}, q c_{1}, q c_{2}
$$

of which the last two are not n-cycles and therefore not vertices of F^{*}. Hence, by Lemma 1, F^{*} has only the two vertices q and q, which implies $k^{*}=1$ in contradiction to the assumption that $k^{*}=2$. This completes the proof of (6.1).
7. The case $n=4 m+3 ; m \neq 1$.

$$
\begin{equation*}
K\left(Q_{n}\right)=K\left(P_{n}\right) \quad(n=4 m+3, m \neq 1) \tag{7.1}
\end{equation*}
$$

including $m=0$.
Proof. Because of (3.4) it is again sufficient to point out two vertices, q, \bar{q}, of Q_{n}, such that

$$
\begin{equation*}
k^{*}\left(q, \bar{q} ; Q_{n}\right) \geqq K\left(P_{n}\right)=2 m+1 \tag{7.2}
\end{equation*}
$$

For $k=2 m$, let $q, c_{i}, c, c^{\prime}, c^{\prime \prime}$ be defined as in (5.3) and (5.4), let $d=(2 k+1,2 k+2,2 k+3)$, and $\bar{q}=q c d$,

By Lemmas 4 and 5 the $q c^{\prime}$ and $q c^{\prime} d$ are vertices of Q_{n} for all c^{\prime} of (5.4), and by Lemma 3 they are also vertices of $F^{*}\left(q, \bar{q} ; Q_{n}\right)$. To prove that

$$
\operatorname{dim} A\left(F^{*}\right) \geq 2 m+1,
$$

it is shown that the dimension of the linear span of F^{*} is $\geqq 2 m+2=$ $k+2$, in verifying that the $k+2$ vertices of F^{*}

$$
\begin{equation*}
q_{1}=q=q c_{1} c_{1}, q_{2}=q c_{1} c_{2}, \cdots, q_{k}=q c_{1} c_{k}, q_{k+1}=q d, \quad q_{k+2}=\bar{q}=q c d \tag{7.3}
\end{equation*}
$$

are linearly independent.
Assume

$$
\begin{equation*}
\sum_{i=1}^{k+2} \lambda_{i} q_{i}=0 \tag{7.4}
\end{equation*}
$$

or, equivalently, substituting for q_{i} their expressions from (7.3), omitting the non singular common factor $q c_{1}$, and writing μ_{i} for λ_{k+i},

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} c_{i}+\mu_{1} c_{1} d+\mu_{2} c_{2} c_{3} \cdots c_{k} d=0 . \tag{7.5}
\end{equation*}
$$

Application of (4.1) yields for the left hand side of (7.5)

$$
\sum_{i=1}^{k} \lambda_{i} c_{i}+\mu_{1}\left(c_{1}+d-I\right)+\mu_{2}\left[c_{2}+\cdots+c_{k}+d-(k-1) I\right],
$$

so that (7.4) is equivalent to

$$
\begin{equation*}
\left(\lambda_{1}+\mu_{1}\right) c_{1}+\sum_{i=2}^{k}\left(\lambda_{i}+\mu_{2}\right) c_{i}+\left(\mu_{1}+\mu_{2}\right) d-\left[\mu_{1}+(k-1) \mu_{2}\right] I=0 \tag{7.6}
\end{equation*}
$$

Since the c_{i} and d are disjoint cycles, (7.6) implies

$$
\left\{\begin{array}{l}
\lambda_{1}+\mu_{1}=0 \tag{7.7}\\
\lambda_{i}+\mu_{2}=0 \\
\mu_{1}+\mu_{2}=0 \\
\mu_{1}+(k-1) \mu_{2}=0
\end{array} \quad(i=2,3, \cdots k)\right.
$$

The last two relations of (7.7) imply (because of the assumption m $\neq 1$, hence $k \neq 2, k-1 \neq 1$)

$$
\mu_{1}=\mu_{2}=0,
$$

which in conjunction with the first two relations of (7.7) implies

$$
\lambda_{i}=0 \quad(i=1,2, \cdots k),
$$

so that all coefficients of (7.4) vanish; this proves that the q_{i} of (7.4)
are linearly independent, and completes the proof of (7.2) and hence (7.1).
8. The case $n=7$ (excepted in § 7).

$$
\begin{equation*}
K\left(Q_{7}\right)=K\left(P_{7}\right)-1=2 \tag{8.1}
\end{equation*}
$$

Proof. By (3.4) and (2.1)

$$
K\left(Q_{7}\right) \leqq 3
$$

To see that equality cannot hold, let $q=(12 \cdots 7)$.
Because of (2.1) and (3.3), only such \bar{q} must be considered where

$$
k\left(q, \bar{q} ; P_{\tau}\right)=3 .
$$

By (2.2) the last relation is only possible for

$$
\bar{q}=q c_{1} c_{2} d,
$$

where c_{1}, c_{2}, d are disjoing cycles.
For \bar{q} to be a 7 -cycle it is necessary (not sufficient) that $c_{1} c_{2} d$ be even, that is, that two of them, say c_{1} and c_{2}, be transpositions and d a 3 cycle.

For the same reason, among the 8 vertices of $F\left(q, \bar{q} ; P_{7}\right)$ determined by (2.3), at most 4 are 7 -cycles, namely

$$
\begin{equation*}
q_{1}=q, q_{2}=q c_{1} c_{2}, q_{3}=q d, q_{4}=\bar{q}=q c_{1} c_{2} d, \tag{8.2}
\end{equation*}
$$

so that, by Lemma $1, F^{*}\left(q, \bar{q} ; Q_{7}\right)$ has at most the 4 vertices (8.2).
However, application of (4.1) yields

$$
q_{1}+q_{4}=q\left(I+c_{1} c_{2} d\right)=q\left(I+c_{1} c_{2}+d-I\right)=q_{2}+q_{3}
$$

which is a relation

$$
\sum \lambda_{i} c_{i}=0 \quad \text { with } \quad \Sigma \lambda_{i}=0,
$$

therefore

$$
\operatorname{dim} A\left(F^{*}\right) \leqq 2
$$

It has thus been established that

$$
K\left(Q_{i}\right) \leqq 2
$$

To complete the proof of (8.1), choose

$$
\begin{equation*}
q=(12 \cdots 7), c_{1}=(13), c_{2}=(24), d=(567) . \tag{8.3}
\end{equation*}
$$

Then each q_{i} of $(8,2)$ is a 7 -cycle (by Lemmas 4 and 5) and a
vertex of $F^{*}\left(q, \bar{q} ; Q_{7}\right)$ (by Lemma 3.) The last 3 of these q_{i} are linearly independent. This establishes, for this particular face F^{*},

$$
\operatorname{dim} A\left(F^{*}\right)=2,
$$

and completes the proof of (8.1).
9. The case $n=4 m+2$.

$$
\begin{equation*}
K\left(Q_{n}\right)=K\left(P_{n}\right)-1=2 m \quad(n=4 m+2) . \tag{9.1}
\end{equation*}
$$

The proof is achieved in showing

$$
\begin{align*}
& K\left(Q_{n}\right) \leqq K\left(P_{n}\right)-1=2 m \tag{9.2}\\
& K\left(Q_{n}\right) \geqq K\left(P_{n}\right)-1=2 m \tag{9.3}
\end{align*}
$$

To verify (9.2), assume $K\left(Q_{n}\right)>K\left(P_{n}\right)-1$, which, by (3.4) and (2.1), implies $K\left(Q_{n}\right)=K\left(P_{n}\right)=2 m+1$.

Then there must be a pair of vertices q and \bar{q} on Q_{n} such that

$$
k^{*}\left(q, \bar{q} ; Q_{n}\right)=2 m+1
$$

and hence, by (3.3) and (2.1),

$$
k\left(q, \bar{q} ; P_{n}\right)=2 m+1,
$$

which, by (2.2) implies

$$
\bar{q}=q c_{1} c_{2} \cdots c_{2 m+1},
$$

where the c_{i} are disjoint cycles, and therefore necessarily transpositions, because of $n=2(2 m+1)$. Then however, the product of the c_{i} is an odd permutation, and \bar{q} cannot be an n-cycle if q is one. This proves (9.2).

To verify (9.3), consider first the case $m \geqq 2$. Setting $2 m=k$, the construction from (5.3) through the end of $\S 5$ proves the existence of q, \bar{q} with $k^{*}\left(q, \bar{q} ; Q_{n}\right)=k$, which implies $K\left(Q_{n}\right) \geqq k$.

For $m=1$, that is, $n=6$, choose

$$
q=(12 \cdots 6), d_{1}=(123), d_{2}=(456), \bar{q}=q d_{1} d_{2} .
$$

Then, by Lemma 5 , the 4 points

$$
q, q d_{1}, q d_{2}, \bar{q}=q d_{1} d_{2}
$$

are 6-cycles, and therefore, by Lemma 3, vertices of

$$
F^{*}\left(q, \bar{q} ; Q_{6}\right)
$$

This implies $\operatorname{dim} A\left(F^{*}\right) \geqq 2$ (since not more than two vertices can be on
a line), that is,

$$
k^{*}\left(q, \bar{q} ; Q_{6}\right) \geqq 2
$$

Finally (if one wants to split hairs) for $m=0$, that is, $n=2$, (9.3) amounts to asserting the existence of at least one 2-cycle; for $q=\bar{q}=$ (12), $F^{*}\left(q, \bar{q} ; Q_{2}\right)=q, k^{*}=0$, hence $K\left(Q_{2}\right) \geq 0$. This completes the proof of (9.1).

The relations (5.1), (6.1), (7.1), (8.1), and (9.1) constitute the statement at the end of $\S 1$.

References

1. I. Heller, Geometric characterization of cyclic permutations, (Abstract), Bull. Amer. Math. Soc., 1955.
2. On the travelling salesman's problem, Proc. Second symposium on Linear Programming, Washington, D.C., January 29, 1955.
3. T. S. Motzkin, The assignment problem, Proc. 6th Appl. Math. Symposium, McGrawHill, 1955.

The George Washington University

[^0]: Received July 8, 1955. Work done under the sponsorship of the Office of Naval Research.

 Reproduction in whole or in part is permitted for any purpose of the United States Government.

