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1. Introduction. This paper is concerned with the structure of
locally finite Lie algebras of algebraic linear transformations in an infi-
nite dimensional space. The main results include generalizations of the
Cartan-Jacobson theorem [7] on completely reducible Lie algebras of
linear transformations, Lie's theorem [3] on irreducible representations
of solvable Lie algebras, and Malcev's theorem [14] on the structure of
splittable algebras. The methods of proof are essentially the known
ones, except than in each case suitable reductions to finite dimensional
situations must be found.

We obtain the following two criteria in order that a Lie algebra 2
of algebraic linear transformations be commutative:

(A) S is solvable, and the enveloping associative algebra 21 of £ is
semi-simple in the sense of Jacobson [9];

(B) £ is solvable, of countable dimension over an algebraically closed
field, and the linear transformations in £ are semi-simple. An example
shows that in neither case need all the row-finite matrices corresponding
to the elements of S, relative to a fixed basis of the vector space, be
diagonal, contrary to the situation which prevails in the finite dimen-
sional case.

We summarize briefly the contents of the paper. It is proved first,
in greater generality than is needed for this paper, that a locally
algebraic linear transformation A can be expressed uniquely as a sum
A=S+ N of a semi-simple locally algebraic linear transformation S and
a locally nilpotent transformation N, both of which commute which A,
and can be approximated by polynomials in A. In § 3 it is proved that
a locally finite Lie algebra £ of algebraic linear transformations whose
enveloping associative algebra is semi-simple, is a direct sum of an
ideal 8χ containing [S, 8], and the center (£; moreover £x contains no
nonzero solvable ideals, and every element of K is semi-simple. An
example is given which indicates that [£, S] may be properly contained
in £ lβ In § 4, Theorem (A) is proved, together with the fact that any
solvable Lie algebra of algebraic linear transformations is locally finite.
The final section contains a discussion of linearly splittable algebras,
the generalization of Malcev's theorem, Theorem (B), and an example
which shows that the countability hypotheses which are introduced in
the section cannot be removed.

Received March 14, 1955. Part of this work was done while the author was a National
Research Fellow, Presented to the American Mathematical Society October 30, 1954.

453



454 CHARLES W. CURTIS

We remark that a number of results concerning infinite dimensional
nilpotent Lie algebras, and other theorems related to the subject of
this paper have been obtained by Schenkman [15], and by Drazin and
Gruenberg [4], [5].

Thanks are due to the referee, who suggested simplifications in the
proofs of Theorems 2.1 and 2.3, and an improvement in § 5.

2. Preliminary results on locally algebraic linear transformations*
Let 9JI be a vector space over a perfect field K. If @ is a set of linear
transformations (l.t.) acting in W, then the pair (9JΪ, @) is called an
^-module. A subspace sJί of Tl which is invariant relative to the l.t.
in @ will be called a submodule; 9̂  is irreducible if the only submodules
of sJt are 5R and the zero submodule. An ©-module is completely redu-
cible if any one of the following three equivalent conditions is satisfied:

( i ) 9Jί is a sum (not necessarily direct) of irreducible submodules;
(ii) 2ft is a direct sum of irreducible submodules;
(iii) if 5ft is a submodule, then there exists a submodule Sflf such

that ϊΰl=Sfl®Sflf. A l.t. is semi-simple if the module determined by this
l.t. is completely reducible. A l.t. A is locally algebraic if every vector
xe%Jl is contained in a finite dimensional submodule; A is algebraic if
f(A) = 0, where / is a polynomical with coefficients in K; and A is
locally nilpotent if xe3Jl implies aAt=Q, for some t depending upon x.

We shall assume the finite dimensional cases of the following theo-
rems; for their proofs see for example Che valley [1].

THEOREM 2.1. Let A be a locally algebraic l.t. in a vector space
over a perfect field K. Then there exist a semi-simple locally algebraic
l.t. S and a locally nilpotent l.t. N, both commuting with A, such that
A=S+N. The Lt. S and N are uniquely determined by these properties.
If % is any finite dimensional A-submodule, then there exist polynomials
fx and f2 in K\t\, depending upon g, such that fi(AF)=SF, and f.£AF)=NF,
where AFJ SF, and NF denote the restrictions of A, S, and N to g.

Proof. Let % be a finite dimensional A-submodule of 9JΪ and let
AF be the restriction of i to g. By [1, Theorem 2], we can express
AF=SF-hNF, where the summands are uniquely determined polynomials
in AF such that SF is semi-simple and NF is nilpotent. Define S and
N by xS=xSFj xN=xNF, whenever xe%. Since every x is contained
in an g, the domain of S and N is all of 3Ji. Since any two finite
dimensional submodules are contained in a single one %, and since the
decomposition AF=SF + NF is unique on g, it follows that S and N are
single valued. Clearly these are semi-simple and locally nilpotent, res-
pectively. Now let A=Y+Z be another decomposition of A as a sum
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of a locally nilpotent l.t. Z and a semi-simple locally algebraic l.t. Y",
where both Y and Z commute with A. Then Y and Z commute with
S and N because of the way S and N were defined. If Y and Z
commute, then since all are locally algebraic, any x is contained in a
finite dimensional subspace invariant under S, N, Y, and Z. Then
SF=YF, NF=ZF by the finite dimensional case. The uniqueness result
holds even if it is not assumed that Y and Z commute with each other;
in this case we prove that U=S—Y=Z—N is both locally nilpotent and
semi-simple. Clearly U=Z—N is locally nilpotent. Any x in 9DΪ is
contained in a finite dimensional space § invariant under S and Y.
Since the algebra K[l, SF, YF] generated by these restrictions is a
homomorphic image of the Kronecker product of the finite dimensional
semi-simple algebras K[l, SF] and K[l, YF] over the perfect field K, it
follows that ϋΓ[l, SF, YF], and hence K[l, SF~YF] are semi-simple.
Then SF — YF is a semi-simple l.t., and it follows that U is semi-simple.
Then as in [1, Theorem 2], we infer that U=0, and the uniqueness is
proved. The third statement is clear by the manner in which S and
N were constructed.

We shall call S and N the semi-simple and (locally) nilpotent com-
ponents of A.

THEOREM 2.2. If A is an algebraic l.t. then the semi-simple and
locally nilpotent components of A are algebraic and nilpotent respectively,
and can be expressed as polynomials in A.

Proof. This result is an immediate consequence of Che valley's
proof of the theorem in the finite dimensional case and the uniqueness
statement of Theorem 2.1.

It should be mentioned that Theorem 2.2 is a special case of the
Wedderburn principal theorem, applied to the algebra K[l, A], while the
uniqueness, at least when Yand Z commute, is a consequence of Malcev's
theorem, applied to the commutative algebra K[l, S, N, Y, Z].

If S is a l.t. let adS denote the mapping X->[XS] in the set @ of
all l.t. of 2JΪ; if S is an element of a Lie subalgebra S of Of, then we
shall write adτS for the restriction of adS to S. when there is no
possibility of confusion, we shall write adS for adLS.

THEOREM 2.3. // A is an algebraic l.t. in a Lie algebra 2 of l.t.,
and if A=S+N is the decomposition of A into its semi-simple and
nilpotent components, then the mappings adLA, adLS and adLN are alge-
braic l.t. sending 2-*£, and adLS and adLN are the semi-simple and
nilpotent components of adτA,
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Proof. In @ we have adA=adSJ

radN, where adS and adN both
commute with adA. Let us denote the commuting right and left mul-
tiplications in @ determined by a l.t. X by Rx and L^ respectively.
Then we have adN=RN—LN, adS=Rs—Ls. Clearly adN is nilpotent.
Che valley's construction of S in the finite dimensional case shows that
S satisfied a polynomial equation where the polynomial has distinct
irreducible factors. Both Rs and Ls satisfy the same equations, and
hence, as in the finite dimensional case, Rs and Ls are semi-simple. It
follows that adS is semi-simple and algebraic. Then adA is algebraic,
and the uniqueness assertion of Theorem 2.1 implies that adS and adN
are the semi-simple and nilpotent components of adA. Since they are
both polynomials in adA, they map 8 into S, and it follows that their
restrictions to 8 are the semi-simple and nilpotent components of adLA.

3 A generalization of a theorem of E* Cartan and N* Jacobson*
The result we shall generalize asserts that a completely reducible Lie
algebra of l.t. in a finite dimensional space over a field of characteristic
zero is a direct sum of its derived algebra and its center, the derived
algebra is semi-simple, and every l.t. in the center is semi-simple.

THEOREM 3.1. Let 8 be a locally finite1 Lie algebra of algebraic l.t,
acting in a vector space 9Jί over an arbitrary field K of characteristic
zero. If the enveloping associative algebra of 8 contains no nonzero nil
two-sided ideals*, then S=8 1 ©(£, where (£ is the center of 8, and 8X is
an ideal in 8 containing [8, 8] and possessing no nonzero solvable ideals.
Furthermore, every l.t. in © is semi-simple.

Before proving the theorem, we establish a lemma.

LEMMA 3.1. Let 8 be a Lie algebra of algebraic l.t. in a vector
space 9Jί over K, and let 21 be the enveloping algebra of 8. Then 8 is
locally finite if and only if §1 is locally finite3.

Proof. Let 8 be locally finite, and let A^ , Am be a finite set of
elements of SI. Then all the At are in the enveloping algebra © of a
subalgebra S1 of 8 generated by a finite set Xi, , Xp of l.t.. Since
8 is locally finite, 2ι is finite dimensional. Let Ylf ',Yq be a basis
for S1# By the well-known straightening process, it follows that the
elements of @, and in particular the Aiy can be expressed as linear

1 A Lie algebra is locally finite if every finite set of elements is contained in a finite
dimensional subalgebra.

2 Since the enveloping algebra in this case is algebraic, this assumption is equivalent
to the assumption that the enveloping algebra is semi-simple in the sense of Jacobson [9].

3 This Lemma is essentially due to Jacobson (fill).
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combinations of the standard monomials Ffi Y\% e^O. On the other
hand each l.t. Yi satisfies a polynomial equation, so that at most a finite
number of the standard monomials are linearly independent. Thus (S,
and in particular the subalgebra generated by the At9 is finite dimen-
sional. We leave the proof of the converse to the reader.

Proof of Theorem 3.1. First we prove that every element X of
[£, 8] f\ (£ is nilpotent. This fact can be proved by making use of a
result of Chevalley ([2, p. 97]). The following direct proof was commu-
nicated to the author by Professor N. Jacobson. Let I ^ Σ K Ώ * where
Xif Yte2; then [XX"J==0 for each i. The Lie subalgebra of 2 generated
by X, Xlf X2, Ylf F2, is finite dimensional, and by Lemma 3.1, its
enveloping algebra @ is a finite dimensional associative algebra. For
each positive integer k, we have for all i,

Hence for each k,

and it follows that the trace of Xk in the regular representation of @
is zero. This implies, since the characteristic of the base field is zero,
that X is nilpotent. But X is in the center of the enveloping algebra
SI of S, and hence the ideal KX+XΆ is a nil two-sided ideal in Si.
Therefore X=0, and [££]n&=0.

Now let 21 be a subspace of 2 containing [£, S], and complementary
to © then 2ι is automatically an ideal, and S=£1®<£. We prove next
that 2τ has no nonzero solvable ideals.

As in [2], we observe that it is sufficient to prove that if Ŝ  is an
ideal in 2 containing & such that [<£i, ©JS® then &i§©. Since
[<εlf e j S <£ Π [S, 8], we have [(£t, (EJ=(O). Consider the ideal I W ^ , 2];
by the argument used in the first part of the proof it follows that
every element in U is nilpotent. Let 33 be the enveloping algebra of
U. Since 11 is commutative, 95 is a nil algebra. By a result of Jacob-
son [7, Lemma 1], the proof of which is applicable to the present
situation, 23SI is a two-sided ideal in the enveloping algebra 21 of S.
We assert that S2ί is a nil ideal. In fact, if Z=ΣS4i4<eSBSl, ^eSS,
-4,6 31, then there exist elements TFi, , Wr in U such that the B% are
in the enveloping algebra of the Lie subalgebra of tl generated by the
Wif and elements X19 , Xs in 2 such that the At are in the enveloping
algebra of the Lie subalgebra of 2 generated by the Xt, Since 2 is
locally finite, there exists a finite dimensional subalgebra 21 of 2 con-
taining {WV , Wr; X1,~-,X8}.~ Let U ^ S ^ W ; then IX, is an ideal
in Sj. containing the Wi9 and consisting of nilpotent l.t. Let 33X and Sϊx
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be the enveloping algebras of Ui and 8 : respectively; by Lemma 3.1,
these algebras are finite dimensional, and hence 33X is a nilpotent subal-
gebra of 3ίlβ From the way S3X and % were chosen, Xe^Sίi. By [7,
Lemma 1] again, S ^ is a two-sided ideal in 2ίx, and nilpotent since
S3t is nilpotent. Then X is nilpotent, $821 is a nil ideal, and hence
3321 = 0. Then 23 itself is a nil ideal in 31, so that 33=0, and U = [e i f 8]
= 0, proving that 2ι contains no nonzero solvable ideals.

Finally let X be an arbitrary l.t. in K. Let N be the nilpotent
component of X; since N is a polynomial in X, JV is in the center of
the enveloping algebra 21 of 8, and consequently is contained in a nil
two-sided ideal in 2ί, so that N=0. The theorem is now completely
proved.

COROLLARY. A completely reducible Lie algebra 2 of finite valued*
l.t. in a vector space 3Ji over a field K of characteristic zero has the
structure described in Theorem 3.1.

Proof. Our hypothesis means that 3JΪ is a completely reducible
8-module; it follows that 3JΪ is also a completely reducible 2ί-module,
where Si is the enveloping algebra of S. The algebra Sί contains no
nonzero nil ideals because such an ideal is contained in the Jacobson
radical of 21, and the radical annihilates every completely reducible
2ί-module. By [8, p. 243], every associative algebra of finite valued
l.t. is locally finite. Hence 8 is locally finite, and we have shown that
8 satisfies the hypotheses of Theorem 3.1.

EXAMPLE. We present an example of an algebra satisfying the
hypotheses of Theorem 3.1, with the property that every subalgebra 8X,
complementary to ©, properly contains [££]. Let Tl be a vector space
of countable dimension over K, and let 8 be the Lie algebra under
[ X Γ ] = X r - X Γ , of all l.t. of the form al + F, where aeK, 1 is the
identity l.t., and F is a l.t. having a corner finite5 matrix relative to
a fixed basis {ut} of 3K. The enveloping algebra §1 of 8 is 8 itself,
which is a dense algebra of l.t. in 3)1, and consequently contains no non-
zero nil ideals. Let ξ> be the subalgebra of 8 consisting of all l.t. in
2 for which the coefficient of 1 is zero. Then <Q is locally finite by
[8], and since 2 has a basis consisting of a basis for !Q and the identify
l.t., 2 is locally finite. Clearly [8, £] = [&, JQ], and thus, since § is iso-
morphic to the Lie algebra of all corner finite matrices X, for which
trX has a meaning, [8, 8] can be characterized as the algebra of all

4 A l.t. is finite valued if its range space is finite dimensional.
3 A l.t. A is corner finite relative to a basis Ui,u>>,-— if for some positive integer

m, {u\, , um)A ϋ {τii, - -, um) urA^0,
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corner finite matrices of trace zero. On the other hand, the center (£
of 8 is the set of scalar multiples of 1; this implies that [2, 8]-I-(£7^8,
since there exist, in fact, infinitely many linearly independent l.t.,
namely the Eίf uiEj=δjiui, such that for each i, Ei — al — F is not finite
valued if α^O, and has a nonzero trace if α=0, Fe[2, 8],

It follows from Theorem 3.1 that ξ) has no nonzero solvable ideals;
nevertheless we have shown that [ξ>, ξ>]^£>, proving that in general
Lie algebras of finite valued l.t. containing no nonzero solvable ideals
are not direct sums of simple Lie algebras.

The following application of Theorem 3.1 to abstract Lie algebras
is motivated by KoszuΓs characterization [12, p. 87] in the finite dimen-
sional case, of reductive Lie algebras, that is, Lie algebras 8 which are
completely reducible relative to ad2.

THEOREM 3.2. Let 2 be a Lie algebra over an arbitrary field K of
characteristic zero. If ad2 is a completely reducible, locally finite algebra
of algebraic l.t. then there exists an ideal 21 containing [8, 8] and pos-
sessing no nonzero solvable ideals such that 8=8!© (£, where (5 is the center
of 8.

Proof. Since 8 is a completely reducible αc£8-module, there exists
an ideal 2λ such that 2=^2,®^. Then S ^ S / S ^ α d S . The argument
used in the proof of the Corollary to Theorem 3.1 implies that the
enveloping algebra of ad2 contains no nonzero nil ideals, and therefore,
by Theorem 3.1, ad2, and hence 2ly is a direct sum 21=2?-h&1 where
8f contains [2U 8J=[8, 8] and possesses no nonzero solvable ideals, and
Kx is the center of 2,. But since £=£?©©,.©(£, l&19 8]=0, ̂ S S ;
thus E!=0, 8f=8X, and the theorem is proved.

4» An application to solvable Lie algebras

THEOREM 4.1. Let 2 be a solvable Lie algebra over an arbitrary
field K with the property that for every xe2, adx is an algebraic l.t..
Then 2 is locally finite.

Proof. (Cf. [13, pp. 181, 182]) Since 8 is solvable, 8 has a finite
normal series whose factors are commutative:

0 = S 0 C 8 i C C8r=S, and [8,, S J S S ^ .

Clearly 80 is locally finite. Then, by an induction on r, we may assume
that 8r_i is locally finite. Evidently we may apply Zorn's lemma to
the inclusion ordered set of locally finite subalgebras of 8 containing
8 r-i, let & be a maximal element in this set. Since [8, S j S S ^ , @ is
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an ideal in 8. Let x be an arbitrary element of 8; then we shall prove
that the subalgebra U generated by @ and x is locally finite, and from
this, in view of the maximality of @, we shall conclude that 8=©.
Since [@, x] S ®, it follows that It coincides with the subspace generated
by @ and x. Let ̂ , , us be a finite set of elements of U; then each
Ui can be expressed in the form ui=ei + aix9 et e @, ateK. Since adx
is an algebraic Lt., the e% are contained in a finite dimensional subspace
3£ of @ such that [X, a;]Sϊ. If 3) is the subalgebra of 6? generated by
the elements of £', then because the elements of X are linear combina-
tions of multiple commutators involving the elements of X, it follows
from the Jacobi identity that [2), x]S ?). On the other hand, 3) is
finite dimensional since 36 S ©. Therefore all the ̂  are contained in the
finite dimensional subalgebra $) + (x), and the proof is complete.

COROLLARY. Let 2 be a solvable Lie algebra of Lt. in a vector
space 3JΪ over K such that every Lt. in 8 is algebraic. Then 8 is locally
finite.

Proof. By Theorem 2.3, if l e g , then adX is an algebraic Lt.,
and we can apply Theorem 4.1.

THEOREM 4.2. Let 2 be a solvable Lie algebra over a field K of
characteristic zero consisting of algebraic Lt., and assume that the enve-
loping algebra of 8 is semi-simple. Then [8, 8] = 0.

Proof. By the Corollary to Theorem 4.1, 8 satisfies the hypotheses
of Theorem 3.1, and therefore there exists a subalgebra 8X of 8 con-
taining [8, 8] and possessing no nonzero solvable ideals, such that
8 = 8 ! © (£, where ® is the center of 8. Then [8, 8] is a solvable ideal
in 2ly and hence [8, 8]=0.

COROLLARY. Let x->Ux be an irreducible representation of a solvable
Lie algebra 8 over an algebraically closed field K of characteristic zero,
such that for every x e 8, Ux is an algebraic Lt.. Then the representation
space is one dimensional.

Proof. The Lie algebra 2t consisting of the Ux is locally finite and
hence the enveloping algebra 91 of 8X is algebraic, by Lemma 3.1. Since
21 is an irreducible algebra of Lt., Si contains no nonzero nil ideals,
and hence, by Theorem 4.2, 21 is commutative, By Schur's Lemma,
the nonzero elements of 2ί are automorphisms of the representation
space, and because they are algebraic, and K is algebraically closed,
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they are scalar multiplications. Thus the dimension of the representation
space is equal to one.

As a further applicated of Theorem 4.1, we give a new proof of a
result of Gruenberg6.

THEOREM 4.3. (Gruenberg) Let 8 be a finitely generated solvable
Lie algebra over an arbitrary field K such that for every x e 8, adx is a
nilpotent Lt. Then 2 is a nilpotent Lie algebra.

Proof. Since x->adx is a homomorphism of 8 onto adQ, ad% is a
finitely generated solvable algebra of nilpotent Lt. By Theorem 4.1,
αd8 is finite dimensional, and hence, by a result of Jacobson [10], the
enveloping algebra G? of ad%> is a nilpotent associative algebra. If
@m=0, then it follows directly that 8m + 1=0,

In the finite dimensional case, Theorem 4.2 can be applied to prove
that if 8 is a solvable algebra of matrices with coefficients in an
algebraically closed field of characteristic zero, then all the matrices in
8 can be put simultaneously in triangular form. Another well known
result [3] states that if the field is algebraically closed and if 8 is a
commutative set of semi-simple Lt., then the vector space has a basis
consisting of vectors which are proper vectors for all the Lt. in 8.
Neither result holds in the infinite dimensional case. In fact, we shall
construct a commutative associative algebra 8 of semi-simple algebraic
Lt. in a vector space Wl of countable dimension over an arbitrary field
K with the property that not every vector in 3Jί is contained in a finite
dimensional δ-submodule. Obviously the matrices belonging to such a
set of Lt. cannot be put in triangular form, and, a fortiori, not in
diagonal form.

Let Tt be a vector space with basis element el9 e^ . Wl becomes
a commutative associative algebra over K if we define multiplication of
the basis elements by

(1) βϊ=et , eiej=efc , fc=max(i, j) , if iφj.

Let 8 be the commutative associative algebra of multiplications Rx:
a->ax, a and x in 9JΪ. Then it follows from (1) that every Lt. in 8 is
algebraic. Moreover, since x->Rx is a homomorphism, the minimum
polynomial of each Re. divides the polynomial t2 — t, from which it
follows easily that the Re. are semi-simple Lt.. For each x in 3Jt, Rx

is a linear combination of a finite number i?ei, , Res of the generators.
Let <xe2Jΐ; then since the Re.. commute, a is contained in a finite dimen-
sional space 9? invariant relative to the Rβi. The restriction of the Re.

6 See [6]. Gruenberg treats Lie rings with coefficients in an arbitrary commutative
ring instead of Lie algebras over a field.
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to Sfl are semi-simple, therefore we infer (see [3, p. 69]) that the
restriction of Rx to SSI is semi-simple. Thus every element of 2)t is
contained in a sum of irreducible ^-modules, and hence Rx is semi-
simple. Finally, because of (1), the vector e19 for example, is not con-
tained in any finite dimensional 8-submodule of 3)ί.

5 Linearly splittable algebras of Lt A Lie algebra 8 of algebraic
l.t. over an arbitrary field of characteristic zero is said to be linearly
splittable (Z-splittable) if for each J in 8, the semi-simple and nilpotent
components of X are also elements of 8. It is immediate that the
intersection of any number of ί-splittable algebras is i-splittable. Be-
cause the semi-simple and nilpotent components of a l.t. are polynomials
in the l.t., any associative algebraic algebra of l.t., viewed as a Lie
algebra, is Z-splittable. Therefore every locally finite Lie algebra 8 of l.t.
is contained in a uniquely determined minimal ί-splittable Lie algebra 8*,
namely the intersection of all the Z-splittable algebras containing it.
We have only to check that 8 is contained in at least one ί-splittable
algebra; the enveloping algebra is the obvious candidate, and it is alge-
braic by Lemma 3.1. We shall call 8* the splitting of 8. It is not
difficult to prove that the properties of the algebraic hull of a linear
Lie algebra stated in Prop. 1, § I, of [2], also hold for the splitting of
a locally finite Lie algebra of l.t..

LEMMA 5.1. Let & be a solvable algebra of algebraic l.t. in a vector
space 9JΪ over an arbitrary field K of characteristic zero. Then the
nilpotent l.t. in 8 form an ideal SSI containing [88].

Proof. Theorem 4.1, together with Lie's theorem [7, p. 879] in
the finite dimensional case, imply that every element of [88] is nilpotent.
Now let X and Y be arbitrary nilpotent l.t. in 8. Then X+Y is
algebraic, and since every element of Tt is contained in a finite dimen-
sional subspace invariant under X+Y, X+Y is nilpotent if we can
prove that its restriction to every finite dimensional (X-f Y)-module is
nilpotent. Let % be such a submodule; let @x be the enveloping algebra
of the solvable algebra 8T generated by the restrictions XF and YF of
X and Y to g; and let ttt be the enveloping algebra of [219 SJ. Then
lli©i is a two-sided ideal in @t by [7, Lemma 1], and a nilpotent ideal
because U: is a nilpotent algebra by the remark at the beginning of
the proof, and EngeΓs theorem. Since X and Y are nilpotent, it
follows that some power of (X+ Y)F is in Ui@α, and hence X+ Y is nilpotent.
Thus the nilpotent elements form a subspace of 8, and hence an ideal
containing [88].

Following Malcev [14], we call %l the kernel of 8,
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THEOREM 5.1. Let 2 be a solvable Lie algebra of countable dimen-
sion over an arbitrary field of characteristic zero, all of whose elements
are algebraic Lt. in a vector space Tί. If 2 is l-splittάble, then there
exists a commutative subalgebra 33 of 2 consisting of semi-simple Lt. such
that 8=33 + 9?, 2 3 n ^ = O , where 9? is the kernel of 2.

Proof. First we observe that any finite dimensional subalgebra @
of 2 is contained in a finite dimensional ί-splittable subalgebra of 8,
namely the intersection of 8 with the enveloping algebra of @. From
this, the local finiteness, and the fact that 8 has countable dimension
over K, it follows that there is a sequence

of Z-splittable, finite dimensional subalgebras of 8 whose union is 8.
If % is the kernel of 2if then %=^yif>\2i.

We make two preliminary observations. (1) Any commutative set
of semi-simple l.t. in 2if i = l , 2, is contained in a maximal commu-
tative subalgebra of S4 consisting of semi-simple l.t. (2) If S3έ is any
maximal commutative subalgebra of 2t consisting of semi-simple l.t.,
then 8^=33,+ 9^, $btΓ\%=0. For the proof of (2) we see that by
Theorem 2.3, adL?dι is a commutative finite dimensional set of semi-
simple l.t. acting in 2ίf and hence 8* is a completely reducible adzj8c
module. If £Q={X\Xe219 [X33J===O}, then 36O is a submodule, and hence
there is a submodule 36X such that Si=3£0®X1. If X is an irreducible
submodule contained in 3 ,̂ then [SSSJT^O, and hence [3$BJ=3E. It
follows that ϊ xS[8,8,]£$R«. On the other hand, if Xe l0 then X=S±N,
where S and JV are the semi-simple and nilpotent components of X.
Since 2t is Z-splittable, Neytif and S, which is a polynomial in X,
commutes with every element of 33*. But 33g is a maximal commutative
algebra of semi-simple Lt., hence Se^, and #0S= 33*4-9^. Thus S^SSi
+ %. Finally 93* f ^ ^ ^ since a l.t. which is both semi-simple and
nilpotent is the zero l.t..

We now construct 33 by induction, beginning with a maximal com-
mutative subalgebra 33X of 8X consisting of semi-simple l.t.. If at some
stage we have constructed 33 1g33 2g gΞ33fc such that each 33^g8^
£^==33jθ9ίί?, where 33̂  is a commutative subalgebra consisting of semi-
simple l.t., then by (1) and (2), 33fc is contained in a maximal commu-

CO

tative subalgebra 33Λ+1 of 2k+1 with the same properties. Let 33=\J33&;

then 33 is a commutative subalgebra of 8 consisting of semi-simple l.t.,
and 33 Π 91=0. If Xe2, then Xe2k for some k, and we see that
X=B + N, £e33, Neϊfl.

A natural generalization of solvability is the concept of ^-solvability,
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an algebra 8 being ^-solvable if the intersection of the terms in the
derived series of 8 is the zero space. For example, the algebra of all
corner finite triangular matrices on a countably infinite index set is
locally finite, Z-splittable, and ̂ -solvable, but not solvable.

THEOREM 5.2. Let 8 be an l-splittable, locally finite ω-solvable
algebra of algebraic l.t., and assume that 8 has countable dimension over
K. Then the nilpotent l.t. in 8 form an ideal $1 containing [8, 8], and
there exists a commutative subalgebra 33 of 8 consisting of semi-simple
l.t. such that 8=33 + 9G, ®Γ\Sfl=O.

Proof. We have only to remark that Lemma 5.1 in the countable
case, and the proof of Theorem 5.1 required only that 8 be locally
finite, and the union of an increasing sequence of finite dimensional
solvable subalgebras. These conditions are guaranteed by the hypotheses
of the theorem, since a finite dimensional ω-solvable algebra is solvable.

THEOREM 5.3. Let 8 be a solvable Lie algebra of semi-simple alge-
braic l.t. of countable dimension over K. Then 8 is commutative.

Proof. The hypothesis of the theorem implies that 8 is i-splittable,
and that the kernel of 8 is the zero space. The conclusion follows
from Theorem 5.1.

REMARKS AND EXAMPLES. We cannot assert in general that the
kernel 5JI of a solvable algebra of algebraic l.t. has a structure much
more transparent than that of the original algebra. It is easy to show
that sJί is locally nilpotent in the sense that every finite subset of sJί
generates a nilpotent subalgebra. But ?£ is not necessarily nilpotent.
We shall give an example of an algebra 8 such that every element of
αc?8 is nilpotent, 8 is solvable, but 8 is not nilpotent. The example we
construct has the property that [8,8] is commutative. Let 8 be a
commutative algebra, and let 2) be a commutative algebra of nilpotent
derivations acting in 8, containing derivations of arbitrarily high index
of nilpotency. Such an 8 and 3) are easy to construct, and we omit the
details. Then the semi-direct sum 8 + 3) of 8 and 2) has the required
properties.

We shall use an example due to Zelinsky [15] to show that the
conclusion of Theorem 5.3 is false if no countability hypotheses are
assumed. Zelinsky has constructed an associative algebra 3)ί over an
arbitrary field K, with radical 9ΐ such that 9ΐ2=0, 3ft/9t is commutative,
•Dί is locally finite, and such that 3)ΐ contains no subalgebra 33 mapped
canonically upon 3)ί/9ϊ unless 3DΪ has countable dimension over K. 3ft
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has a basis {eif nij\ifjel} and multiplication table

=Q (Kronecker deltas.)

Let 2 be the associative algebra of right multiplications Rs, se3)ί,
viewed as a Lie algebra under commutation. Then 2 is a locally finite
associative algebra, and hence is an Z-splittable algebra of algebraic
l.t.. From the table we see that if x,yeWl, then [xy]edi, hence
[[xy]9 [a?V]] vanishes identically, so that 8 is solvable. We notice that
Rx is nilpotent if and only if xedl; thus the kernel 3Ϊ of 8 consists of
all Rx, xedϊ. Suppose that 8=33+ SR, %>r\$l=0, where S3 is a commu-
tative Lie algebra consisting of semi-simple l.t.. The enveloping asso-
ciative algebra © of S3 is a commutative subalgebra of 8 consisting of
semi-simple l.t., by an argument similar to that used in the example
of §4. Therefore &Γ\9l=0. On the other hand, it can be verified
directly that x-+Rx is an isomorphism of 3)ί onto 8, so that if Φ is
the inverse image of © under x-+Bx, we have 3Jί=35 + 9ϊ, ^Γ\di=0.
Zelinsky has shown that this implies that the index set / is denumerable,
and we conclude that if / is non-denumerable, then 8 cannot have a
decomposition according to Theorem 5.3.
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