
UNIQUENESS THEORY FOR ASYMPTOTIC EXPANSIONS

IN GENERAL REGIONS

PHILIP DAVIS

1. Introduction. Let D be a simply connected region with an
analytic boundary C. Assume that 2=0 is an interior point while z=l
lies on the boundary. We assume further that the tangent to C at
z==l is not parallel to the real axis. In this case, we shall be able to
fit into D small angles Γ placed symmetrically about the real axis and
with vertex at z==l. These angles will be of the form —δ<LΘ<Lδ or
π—δ<LΘ<^π + δ, <5>0, depending upon the location of z=1. For a given
f(z) regular in D, we consider the following limits defined recursively

αo= lim f(z)

(1) Ox-Kmfc-lΠ/W-αJ

α2= lim (z-i

If each limit in (1) exists and is independent of the manner in which
z->l through values in some angle Γ, then f(z) is said to possess an
asymptotic expansion at z=l in the sense of Poincare, and this is in-
dicated by writing

(2 ) f(z) ~ V, a (z—l)n

We shall designate by A(=A(D)) the linear class of functions which are
regular in D and which possess asymptotic expansions at 2=1 in the
sense of Poincare. The angle Γ in which (1) is valid may depend upon
the particular f e A selected.

Uniqueness theory is concerned with distinguishing nontrivial sub-

classes of A within which the expansion Σα Λ (s—l) n determines the

corresponding function uniquely. Write for the remainder

( 3) Rn(z)=f(z)-ao-θi(z-ΐ) αn-xίs-l)"-1,

and consider the ratios
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(4) fn{z) = (z-l)-nRn{z) (n=l, 2, •••), / o = /

For / e A, the functions fn(z) are regular in D and are bounded as
z->l in Γ. For a given sequence of positive quantities {mn}, we con-
sider the subset A(mn) of A consisting of those functions which satisfy
in addition

(5) \\fnf<Mknml (^=0, 1,2,...)

for some Λf>0, &>>0. Here || || designates some conveniently chosen
norm. The constants M and k may vary from function to function
within the class. With the selection

(6) II/IH max |/(z)|,
ZED

it has been shown by Watson [1] and F. Nevanlinna [5] that when D
is a sector, we may produce uniqueness classes by restricting the growth
of the sequence {mn} sufficiently. When D is the unit circle, T.
Carleman [2] has given necessary and sufficient conditions on {mj in
order that the resulting subclass A(mn) be a uniqueness class. At the
same time Carleman raises the problem of giving necessary and suffici-
ent conditions in the case of a more general region D. This problem
(with the norm (6)) has been known in the literature at the generalized
problem of Watson. It has been treated by Mandelbrojt and MacLane
[3] using the theory of distortion in conformal mapping. See also Meili
[4]. In the present paper, we adopt the norm

( 7 )

and show how it is possible to combine Carleman's idea of introducing
an appropriate minimum problem with the techniques afforded by the
theory of conformal kernel functions to arrive at a solution to this
general problem. The class A(mn) will henceforth refer to the norm
(7). Thus the question which we are treating may be worded as fol-
lows: What are necessary and sufficient conditions on the sequence of
constants {mn} in order that

( 8 ) \\fnt

f
JO (z-l)n

determine f(z) uniquely from the asymptotic coefficients aa .

2 Preliminary observations. We must first explain the sense in
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which we shall understand the expression

ί \f(z)\2ds
JO

when f(z) is regular in D but not necessarily in its closure. Let w
=m(z) map D conformally onto the unit circle with m(0)=0 and m(l)
= 1. The images of \w\=r will be designated by Cr, 0 < r < l . It is
well known that the set of functions

(9) φn^^^jΞ^l ίm{z)γ ( ^ 0 , 1,2,...)

is complete and orthonormal over each Cr, 0<^<Cl, relative to the
inner product

Suppose then that we are given a function f(z) which is regular in D.
Then for any fixed 0 < r < l , f(z) is continuous on Cr. Hence we can
write

(10) f(z)-±anφn(z)
ίi=0

holding uniformly and absolutely in the interior of Cr. The coefficients
an are given by

(11) «» = ( f(z)ΦMd* ( w = 0 , 1, •••)•
Jor

Hence, for r* <V, we have from (9) and (10),

(12)

This equation tells us that

( \f(z)\2ds

is an increasing function of r* and hence

lim \ \f(z)fds

exists (or equals -f oo). For f{z) regular in D we shall therefore agree
that
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\f{z)γds

LEMMA. Given an arbitrary sequence of positive constants {mn} the
class .A(mΛ) is not a uniqueness class for asymptotic expansions at 2=1 if
and only if there exists an fφO regular in D and constants

0, for which

(13) (w=0, 1,2, •••)•

Proof. If A(mn) is not a uniqueness class, there will exist two func-
tions g(z), y(z)e A{mn), gφh, possessing the same asymptotic expansion,

say ΣαB(z—1)", and satisfying

(14)

ί.

Φ) - Σ at(z-

Hz) -

(n=0, 1, -••)

with kι<Lk2. Therefore, by Minkowski's inequality,

(15) ί. g(z)-h{z) ds < (M[i2k112+Ml'2k%l2f ml

so that g—h does not vanish identically and satisfies (13) with M=(M\lz

Y and k=h1.
Conversely, let fφO satisfy (13). We shall show that (13) implies

(16) lim
(z-lf

(w=0, 1, 2, •••)

as z->l through values in some angle Γ. Assuming, for the moment,
that this is so, (16) and (1) imply that

(17) f(z)

That is, f(z) possesses an identically zero asymptotic expansion at 2=1.
Furthermore fn=f(z)(z-l)-n, so that (13) implies that f e A(mn). Thus,
A(mn) is not a uniqueness class for asymptotic expansions at z=l.
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We show now that (13) implies (16). Given any g(z) regular in D.
Select any 0 < r < l . We have from (9), (10), (11), and the Schwarz
inequality

(18) (z,z)\ \g(z)\2ds,

for all z interior to Cr. KOr is the so-called Szego kernel function for
Cr whose explicit expression is (Szego [6], Bergman [1])

(19)
ΰr(z, Z)=

2πr2—\

Writing f(z)l(z—l)n in place of g(z) in (18), and using (13) and the
monotonicity with r of

[ l/(*)lfώ,

we find for j <I n and z interior to Cr,

f(z)(20)

For each z in D we select an r=r(z)=|m(z)| + ε(
fined by

(21) e ( 2 )=J_(i- | m ( z) | ) .

(«=0, 1, 2,

where ε(z) is de-

Thus,

(22) limε(z)=0.

Here, z-+l through values in D. From (20), (21), and

(23) f(z) |
{z-\y\

\(z- lf-
2π

\m'{z)\Mknml

4π\m(z)\ε(z)

We are now ready to consider the limit of (23) as z-*l. First consider

(24) ^ _ l τ J ! ^ _ 1 (i + W ί ) | )-χ&d«ff l . .
\z—l\ 2\z—l\ 2 \z—l\

Since m{z) is by assumption analytic at 2=1, we have in a neighbor-
hood of z = l ,
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(25) m(z)=l + (z-l)R(z),

where R(z) is analytic there. Note that R(l)=mf(l)φ0, and write
R(z)=σ(z)eiaCt\ a(z)>0. We have <τ(l)=£0 and α(l)^τr/2, 3τr/2, inas-
much as the tangent to C at z=l is assumed not parallel to the real
axis. Furthermore, write z=l + peiθ. Then, from (25),

(26) 1 - l^M! a=

ϊ s ϊ | \z-l\ \z-l\

= -2σ(z) cos (0 + α(s))- \z-l\\R(zW .

If s->l through some angle Γ: — δ<gθ<Lδ or π — δ <L,Θ <L π + δ, then,
since a(l)^πj29 3π /2, it follows from the above that for δ sufficiently
small, the expression (26) will be bounded away from 0. In view of
(24) we will have

(27) &L
|2-H =

for z in some Γ. From (23), we have,

/(*) 2

(28)

Thus, for 2n-2j-l>l it is now clear from (28) and (27) that

For each j considered we need only use an n^>j + l. This completes
the proof of the lemma.

3 The uniqueness theorem.

THEOREM. Given an arbitrary sequence of positive constants mn.
The class A{mn) is a uniqueness class for asymptotic expansions at z=l
if and only if for all

(20) lim sup [ log { Σ — v |(s-l)n-*l2k9- log\m(z)\ds=^ .
n->°o jσ i fc=o mi )on

Here dldn designates normal differentiation in the positive sense.
The above statement is equivalent to saying that A{mn) is not a

uniqueness class if and only if there exists a £>>0 and a i Γ > 0 such
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that

(30) \ogMz)\d8<K, =0, 1, 2,

ΐΓ may depend upon ί, but is independent of n.
In view of the lemma of the preceding section, we shall prove that

(30) is a necessary and sufficient condition for the existence of an f(z)
φθ, and M, and a k which satisfy (13).

Consider the following sequence of integrals

(31) /«(/)=£
mk JO (z- 1)'

ds;

Σ

where we have written

(32) k=0, 1,

We can also write (31) in the form

{oό) in\Jj — --,—---—

I («-i) Λ I
where pjz) is an analytic function which is regular in D, continuous on
C and is such that

(34) = \ Σ , for z on C.

We shall show below how a pn(z) may be constructed which has these
properties and has, in addition, the property that

(35) for z in D.

Let n be fixed, and consider the following minimum problem Pn. De-
termine that function f(z) regular in D with /(0) = l and such that

(36) In(f)=minimum.

This problem can be solved by passing to a related problem Pn

f. De-
termine that function g(z) regular in D with g(0)=l and such that

(37) |] g f=minimum

The solution of the problem P'n is given by the function (see, for ex-
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ample Szegδ [6], Bergman [1])

(38) 9*(z)=KAz, O)IKD(O, 0)

where KD{z, w) is the Szego kernel function of the region D. The mini-
mum value of the integral (37) is 1/^(0, 0). If we write

(39) /„(/)=\Pn(0)|21!-P»tyfty f
ΨK \\p(0

we see, in view of (35) that the function pn(z)f(z)lpn(0)(l — z)n can play
the role of g(z) in the problem P'n. The minimizing function / * of the
problem Pn is therefore

(40) f*iz)^^ψ
pn(z)Kj£0, 0)

and the minimum value of the integral is

We now assert: a necessary and sufficient condition in order that
there exist an f(z)φθ and constants ikf>0, &>() such that

(42) ifll-lr^JKMk-ml ( n = 0 , 1, •••)

is that there exists a ί > 0 and a i f > 0 such that

(43) In{ft)^K 72=0,1,2,. . . .

Referring to (41), this is equivalent to asserting that there exist a
t ^> 0 and a Kf such that

(44) \pn(0)\^K' n=Q, 1, 2, . . . .

We can prove this as follows. Suppose first that q(z) is such that
(42) holds for it. This function q{z) may have a zero of the pth order
at 3=0. The function f(z)=q(z)lzv is then regular in D and is such
that /(0)τ^0. Now,

(45)

ί=4
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provided we select 0 < t <C 1/&. Here d designates the minimum distance
from z=Q to C. Now since

(46)
M

!dH7(0)ϊ2(ϊ-W'
( n - 0 , 1 ,

then (43) is satisfied with K equal to the right hand constant in (46).
Conversely, suppose that there exists a ί > 0 and K^>0 such that

(43) holds. Then from (31),

(47)
n +k

Σ ml

In particular, taking the first term of (47) we obtain

1 n(48)

Hence we have

(49)

ml

| / ί | < const.

ι=0, 1, 2,

ι~-V, I, ώ,

ι=0f 1, 2,

The inequalities (49) imply that the sequence of minimizing functions
{/*} form a normal family and therefore there exist indices nlt 9%,
such that ftk-*F(z) uniformly in any closed region interior to D.
Again, using (47) we have, for fixed j and for all

(50)
m]

Now for any 0 < / o < l > w e ^ a v e

v01/ 11/« lu: ds ,

so that from (50) and (51),

(52)
(2-1)

(k=0, 1, 2, . . . ) •

Let n take on the values nt in (52) and let j be fixed. Then since
f*(z)-^F(z) uniformly in and on Cp,

(53) f
jo,,

J
(2-iyj

This result is independent of p and hence we may allow./£>-*•!. Thus,
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(54) L F{z)
(z-iy

ds 0 = 0 , 1 , 2 , . . . )

Since obviously F(0)=l, we have exhibited in F(z) a function regular
in Z), which does not vanish identically, a constant M(=K) and a con-
stant k(=t-1) for which (42) holds.

It remains to construct pn(z), to show that it does not vanish, and
to compute ρn(0). Designate by tn(z) the positive function

(55)
1/2

defined on C. Now logtn(z) is continuous on C and hence

(56) un(z)=-}-\ logίn(

where g(z, w) is the Green's function for D, is harmonic in D and as-
sumes on C the boundary values log tn(z). Designate by vn the harmonic
conjugate of un. Then un(z) + ivn(z) is regular and single valued in D,
as is

(57) pn(z)=exp [un(z) -f wn(s)].

Now, \pn(z)\=eun, so that on C, \pn(z)\=tn(z). Furthermore pn(z)y^09 as
is clear from (57). Thus we may use pn(z)==pn(z). The condition (44)
then becomes: there exists a ί > 0 and a K'y>0 such that

(58) uM^K'

Finally, using the representation

(n-

(59) g(z9 w)=\og
. — m(z)m(w)

with z==0 in (56), we obtain the stated condition (29).

4 Concluding remarks. Norms other than (6) might be contem-
plated. In particular, we might have used

(60)

However (60) has the disadvantage that the solution of the correspond-
ing minimum problem Pn can not be so elegantly expressed in terms of
an analytic function pn(z) and so the role of the sequence {mn} is not
immediately evident as with (29).
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