ZERO-DIMENSIONAL COMPACT GROUPS OF HOMEOMORPHISMS

R. D. Anderson

1. Introduction. All spaces and topological groups referred to in this paper will be compact and metric. All topological groups will additionally be zero-dimensional, that is, either finite or homeomorphic to a Cantor set. As general references we cite Zippin [6] and Montgomery and Zippin [4]. Several of our definitions are similar to those in [6].

A topological transformation group of a topological space is an association of a topological group G and a topological space E in the sense that each element g of G and point x of E determine a unique point of E. If this point be called x^{\prime}, we write $g x=x^{\prime}$. The association is subject to the following conditions:
(1) if e denotes the identity of $G, e x=x$ for all $x \in E$,
(2) $g\left(g^{\prime} x\right)=\left(g g^{\prime}\right) x, g, g^{\prime} \in G, x \in E$, and
(3) $g x$ is continuous simultaneously in g and x.

Each element of G may, under the association, be regarded as a homeomorphism of E onto itself.

The topological transformation group G is said to be effective if for each $g \in G$ not the identity, there is an $x_{g} \in E$ for which $g x_{g} \neq x_{g}$ and is said to be strongly effective (or fixed-point-free) if for each $g \in G$ not the identity and for each $x \in E, g x \neq x$. We shall use the symbol $T g(G, E)$ to denote a particular association of G with E such that G is an effective topological transformation group of E. Thus by $\operatorname{Tg}(G, E)$ we mean a particular group of homeomorphisms of E onto itself, the group being isomorphic to and identified with G. If $T g(G, E)$ is strongly effective we write $T g S(G, E)$.

For $x \in E, G(x)$ will denote the set of all images of x under G and will be called the orbit of x under G. Similarly for $X \subset E, G(X)$ will denote the set of images of X under G. The individual orbits may be regarded as the "points" of a space, the orbit space, $O[T g(G, E)]$ of $T g(G, E) . \quad O[T g(G, E)]$ is a continuous decomposition of E.

The main purpose of this paper is to prove the following theorems:
Theorem 1. Let G be any compact zero-dimensional topological group. Let M be the universal curve. ${ }^{1}$ Then there exists a $\operatorname{TgS}(G, M)$

[^0]such that $O[\operatorname{TgS}(G, M)]$ is homeomorphic to M.

Theorem 2. Let G be any infinite compact zero-dimensional topological group. Let M be the universal curve. Then there exists a $\operatorname{Tg} S(G, M)$ such that $O[T g S(G, M)]$ is a regular curve ${ }^{2}$.

Theorem 1 asserts that the universal curve is also universal in the sense that every compact zero-dimensional group can operate on it in a fixed-point-free fashion. It is well known and is easy to prove-see Example 1-that the Cantor set also has this property.

The following two theorems are corollaries of some of the methods used in the proofs of theorems 1 and 2. In particular, the argument of $\S 5$ gives the essential structure of an argument for Theorem 3. Theorem 4 is a corollary of Theorem 3.

Theorem 3. Let G be any finite group. Then there exists in E^{3} a 3-manifold M with connected boundary such that $\operatorname{TgS}(G, M)$ exists.

Theorem 4. Let G be any finite group. Then there exists in $E^{3} a$ 2-manifold K (without boundary) such that $\operatorname{TgS}(G, K)$ exists.

Any zero-dimensional compact group G can be expressed as the inverse (or projective) limit (simultaneously in both a topological and a group sense) of a sequence $\left\{G_{i}\right\}$ of finite groups under a sequence $\left\{\pi_{i}\right\}$ of homomorphisms with, for each i, π_{i} carrying G_{i+1} onto G_{i} (see §§2.52.7 of [4]). The group G is said to be p-adic if, for each i, G_{i} can be taken as a cyclic group with, for each i, π_{i} not an isomorphism. If G is a p-adic group and sequences $\left\{G_{i}\right\}$ and $\left\{\pi_{i}\right\}$ exist such that, for each i, π_{i} is two-to-one then G is called the dyadic group.

Agreement 1. We shall assume henceforth that G is a particular compact zero-dimensional topological group.

Agreement 2. We shall assume that sequences $\left\{G_{i}\right\}$ and $\left\{\pi_{i}\right\}$ with respect to which G is an inverse limit are given and to avoid subdivision of the ensuing arguments into cases we shall further assume that G is infinite and that, for no i, is π_{i} an isomorphism.

It will be clear that the argument we give for Theorem 1 actually includes the essentials of the argument for the case of G finite.

[^1]Notation. Let e be the identity of G and, for each i, let e_{i} be the identity of G_{i}. For each i, let $n\left(G_{i}\right)$ be the number of elements in G_{i}.

Remarks. At the heart of the theory of topological transformation groups is the open question as to whether any infinite compact zero-dimensional group can operate effectively on a Euclidean manifold E. In studying such a question it is natural to consider the "nice" spaces on which such a group can operate and to consider the characteristics of the group operation ${ }^{3}$. Zippin [6] has observed that the known examples of even the dyadic group D effective on locally connected continua involve a type of "branching " about subsets on which D is not strongly effective, and, in fact, usually a type of "branching" about points or sets which have periodic orbits under G (see Example 2). Thus our theorems and arguments contribute to the knowledge of the ways zero-dimensional infinite compact groups can operate on locally connected continua. In this connection, we also note in Example 3 that any p-adic group can be strongly effective on the infinite dimensional compact torus.

We mention the following questions: For E a continuum and G infinite, is it possible for $\operatorname{TgS}(G, E)$ to be such that the dimension of $O[T g S(G, E)]$ exceeds the dimension of E ? If such is possible, can E be one-dimensional ?, locally connected ?, the universal curve ?, locally Euclidean? What are conditions on E for which $\operatorname{dim}(O[T g S(G, E)])$ must be $\leqq \operatorname{dim} E$?

In the classic example of Kolmogoroff [3], G (not made explicit by him) operated effectively but not strongly effectively on a one-dimensional locally connected continuum E, and $O[T g(G, E)]$ was twodimensional. The more recent example by Keldys [2] of a light open mapping of a one-dimensional continuum onto a square also involved a " branching'" type operation.
2. Examples. In this section we wish to give three examples of topological transformation groups. Of these A and B, at least, are

[^2]well known.
A. The group G can operate on itself as follows: for each $g, h \in G$ with h thought of as a point of a space, $g h=h^{\prime}$ where h^{\prime} is the grouptheoretic $g h$. With this definition G is transitive on itself. For each h, $h^{\prime} \in G$ there is one (and only one) element $g \in G$ for which $g h=h^{\prime}$.

If, contrary to our Agreement 2, G is finite then G can operate on itself in this same way and also G can operate on a Cantor set C as follows: let H be a collection of disjoint open and closed subsets of C such that ${ }^{4} H^{*}=C$ and H admits a one-to-one transformation φ onto G. For some $h \in H$ and any $g \in G$ let ρ_{g} be a homeomorphism of h onto $\varphi^{-1}(g \varphi(h))$ with ρ_{e} the identity on h. For any point $p \in C$, there exists a $g^{\prime} \in G$ such that $\rho_{g^{\prime}}^{-1}(p) \in h$. Define $g p$ to be $\rho_{g^{\prime \prime}}\left(\rho_{g^{\prime}}^{-1}(p)\right)$ where $g^{\prime \prime}=g g^{\prime}$. The technique which we use here is similar to one we shall use for Lemma 2 later in the argument for Theorems 1 and 2.
B. In this example we show that G can operate on a locally connected continuum in the plane, in fact, on a tree, the particular tree, however, depending on G. Let I be the unit interval $0 \leqq x \leqq 1, y=0$. Let K_{1} be a collection on $n\left(G_{1}\right)$ disjoint subintervals of I formed by choosing every other element of a subdivision of I into $2 n\left(G_{1}\right)-1$ equal subintervals. Inductively, for each $i>1$, let K_{i} be a collection of $n\left(G_{i}\right)$ disjoint subintervals of I formed by choosing every other one of a subdivision of each interval of K_{i-1} into $2\left(\frac{n\left(G_{i}\right)}{n\left(G_{i-1}\right)}\right)-1$ equal subintervals. Then $\bigcap_{i} K_{i}^{*}$ is a Cantor set C which may, in the obvious way, be identified with G.

For each i, let Q_{i} be a set of $n\left(G_{i}\right)$ points on $y=2^{-i}$ such that for each element k of K_{i}, Q_{i} contains a point $q(k)$ whose x-coordinate is the x-coordinate of the midpoint of k. Let Q_{0} be the point ($\frac{1}{2}, 1$). Let t be $\bigcup_{i \geq 0} Q_{i}+\bigcap_{i \geqq 1} K_{i}^{*}+$ for each $i \geqq 0$, the sum of all intervals with endpoints one in Q_{i} and the other in Q_{i+1} which project parallel to the y-axis into K_{i}^{*}. Then G may be considered as operating effectively but not strongly effectively on t such that the "branchings" of the operation of G on t occur at the points of $\bigcup_{i \geq 0} Q_{i}$ and such that each point p of $t-C$ has a finite orbit under G consisting of those points of t on the horizontal line through p. In developing G we may consider that, for each i, G_{i} permutes the elements of K_{i} consistent with π_{i-1} and G_{i-1} permuting the elements of K_{i-1}.
C. Let G be a p-adic group and hence let, for each i, G_{i} be cyclic.

[^3]Let E be the infinite dimensional compact torus $J_{1} \times J_{2} \times \cdots$ where, for each i, J_{i} may be thought of as the circle of radius 2^{-i} and center at $(0,0)$. Then $T g S(G, E)$ exists. For each i, let φ_{i} be the group of order n_{i} of rotations of J_{i} and let $T g\left(G_{i}, E\right)$ be the cyclic group of order n_{i} on E defined coordinatewise as φ_{j} for $j \leqq i$ and as the identity for $j>i$. Then $\operatorname{TgS}(G, E)$ may be defined coordinatewise as φ_{i} on J_{i}, for each i.
3. Definitions and the universal curve. Let N be the set of points in E^{3} for which $0 \leqq x \leqq 1,0 \leqq y \leqq 1,0 \leqq z \leqq 1$. For $w=x, y, z$ and $i=1,2, \cdots$ let $D_{i}(w)$ be the set of all open intervals on the w-axis of length 3^{-i} whose endpoints have w-coordinates which are positive rational numbers less than 1 , the expression for each such rational number having 3^{i} as a denominator when in lowest terms. The length of $D_{i}^{*}(w)$, for any i, is $\frac{1}{3}$. Let M be the set of all points (x, y, z) of N for which, for no i, do two or more of the points $(x, 0,0),(0, y, 0)$, and $(0,0, z)$ belong to the set $D_{i}^{*}(x)+D_{i}^{*}(y)+D_{i}^{*}(z)$. The set M is called the universal curve.

It is not hard to verify that M is a locally connected one-dimensional continuum with no local separating points. M is called "the universal curve" as every one-dimensional continuum can be imbedded in it.

We need several further definitions before characterizing the universal curve. We use a special case of the characterization given in [1] with resultant simpler definitions than those of [1].

If H and H^{\prime} are collections of point sets, H is said to be a refinement of H^{\prime} if each element of H is a subset of an element of H^{\prime} and each element of H^{\prime} contains an element of H. A collection H of point sets is said to be one-dimensional provided no three elements of H intersect.

A collection H of point sets is said to be simple provided that (1) H is finite, and H^{*} is connected, (2) each element of H is a (closed) 3cell, and (3) if two elements of H intersect their intersection is a 2cell on the bounding 2 -sphere of each such element.

Let H and H^{\prime} be simple collections with H a refinement of H^{\prime}. Let h be an element of H^{\prime} and let Z be the collection of those elements of H in h which intersect elements of H not in h. Then H is said to interlace h provided that for any subdivision of Z into disjoint sets Z_{1} and Z_{2} with $Z_{1}+Z_{2}=Z$ there exist non-null connected sums of elements of H in h, namely X_{1} and X_{2} with $X_{1} \supset Z_{1}^{*}, X_{2} \supset Z_{2}^{*}$, and X_{1} and X_{2} having no element of H in common. H is said to interlace H^{\prime} if H interlaces each element of H^{\prime}.

A sequence $\left\{F_{i}\right\}$ is said to be a λ-defining sequence of a continuum

M provided
(1) for each i, F_{i} is a simple one-dimensional collection covering M,
(2) for each i, F_{i+1} is a refinement of F_{i},
(3) $M=\bigcap_{i} F_{i}^{*}$
(4) ${ }^{5}$ for any $\varepsilon>0$ there exists a number n such that $m\left(F_{n}\right)<\varepsilon$,
(5) for each i, F_{i+1} is interlaced in F_{i}, and
(6) if two elements of F_{i} intersect then each contains two elements of F_{i+1} intersecting elements of F_{i+1} in the other but neither contains any element of F_{i+1} intersecting two elements of F_{i} distinct from the one containing it.

A non-degenerate continuum for which there exists a λ-defining sequence is called a C-set.

The following theorem is proved in [1]:

Theorem. Each C-set is homeomorphic to the universal curve.

Notation. If E_{i} is a finite collection of closed point sets and $T g\left(G_{i}, E_{i}^{*}\right)$ or $T g S\left(G_{i}, E_{i}^{*}\right)$ is such that for $h \in E_{i}$, and any $g \in G_{i}, g h$ is an element of E_{i} then we will write $\operatorname{Tg}\left(G, E_{i}^{*}, E_{i}\right)$ or $\operatorname{Tg} S\left(G_{i}, E_{i}^{*}, E_{i}\right)$ respectively. If $\left\{E_{i}\right\}$ is a λ-defining sequence and $T g S\left(G_{i}, E_{i}^{*}, E_{i}\right)$ and $T g S\left(G_{i+1}, E_{i+1}^{*}, E_{i+1}\right)$ exist, then $T g S\left(G_{i+1}, E_{i+1}^{*}, E_{i+1}\right)$ is said to refine $\operatorname{TgS}\left(G_{i}, E_{i}^{*}, E_{i}\right)$ provided that for any $g \in G_{i+1}$ and any $x \in E_{i+1}$, if x^{\prime} denotes the element of E_{i} containing $x, \pi_{i}(g) x^{\prime}$ contains $g x$.

AGREEMENT 3. In what follows we shall make many constructions in E^{3} using 3-cells and homeomorphisms. Every 3-cell used is to be polyhedral and every homeomorphism defined over finite sums of 3-cells is to be piecewise-linear, that is, is to carry polyhedra into polyhedra. We interpret this understanding to apply also to appropriate subsets (2-cells) and homeomorphism over these subsets, such being used in the constructions and lemmas. All constructions are to be in E^{3}.
4. Statements of lemmas and proof that the lemmas imply Theorems 1 and 2.

Lemma 1. Let n be any positive integer. Let K and K^{\prime} be elements of a simple one-dimensional collection of 3 -cells in E^{3}. Let D and D^{\prime} be collections of n disjoint 2 -cells on the boundaries of K and K^{\prime} respectively. Let φ be a homeomorphism of D^{*} onto $D^{* *}$ preserving orientation on the elements of D and D^{\prime} relative respectively to K and K^{\prime} as embed-

[^4]ded in E^{3}. Then there exists an orientation-preserving ${ }^{6}$ homeomorphism ψ of K onto K^{\prime} such that for each point $p \in D^{*}, \psi(p)=\varphi(p)$.

Proof. This lemma is geometrically obvious and is well known.

Lemma 2. Let, for any $i, X_{1}, \cdots, X_{n\left(G_{i}\right)}$ be a set X of disjoint continua all homeomorphic to each other. For each $j, 1 \leqq j \leqq n\left(G_{i}\right)$, let η_{j} be a homeomorphism of X_{1} onto X_{j} with η_{1} the identity on X_{1}. Let ρ_{i} be a one-to-one transformation of X onto G_{i} with $\rho_{i} X_{j}=g_{j}$ for each j. Then $\operatorname{TgS}\left(G_{g}, X^{*}, X\right)$ exists with $g x$ defined as follows:

$$
\text { for } \quad x \in X_{j}, g_{j} x=\eta_{k^{\prime}} \cdot \eta_{k}^{-1} x \quad \text { where } \quad g_{k^{\prime}}=g_{j} g_{k} .
$$

Proof of Lemma 2. This lemma is almost obvious and is well known. We state it separately to simplify the argument for Lemmas $3,3^{\prime}$ and $3^{\prime \prime}$. To prove the lemma it is sufficient to note that

$$
\begin{gathered}
g_{j_{1}}\left(g_{j_{2}} x\right)=\left(g_{j_{1}} g_{j_{2}}\right) x \text { for } x \in x_{k} \quad \text { and } \quad g_{j_{1}}, g_{j_{2}} \in G_{i}, \\
g_{j_{1}}\left(g_{j_{2}} x\right)=g_{j_{1}}\left(\eta_{k^{\prime}}, \eta_{k}^{-1} x\right)=\eta_{k^{\prime}} \eta_{k^{\prime}}^{-1} \eta_{k^{\prime}}, \eta_{k}^{-1} x=\eta_{k^{\prime}} \eta_{k}^{-1} x
\end{gathered}
$$

where $g_{k^{\prime}}$ is $g_{j_{2},} g_{k}$ and $g_{k^{\prime \prime}}$ is $g_{j_{1}} g_{k^{\prime}}$. Therefore $g_{k^{\prime \prime}}$ is $\left(g_{j_{1}} g_{j_{2}}\right) g_{k}$ as was to be shown.

Lemma 3. There exists a continuum M and a-defining sequence $\left\{F_{i}\right\}$ of M such that for each $i, T g S\left(G_{i}, F_{i}^{*}, F_{i}\right)$ exists with $T g S\left(G_{i+1}\right.$, $\left.F_{i+1}^{*}, F_{i+1}\right)$ refining $T g S\left(G, F_{i}^{*}, F_{i}\right)$ and for each element f of $F_{i}, G_{i}(f)$ consists of $n\left(G_{i}\right)$ disjoint elements of F_{i}.

Lemma 3^{\prime}. The same as Lemma 3 with the added condition that there exist a λ-defining sequence $\left\{H_{i}\right\}$ and a sequence $\left\{\mu_{i}\right\}$ such that
(1) for each i, μ_{i} is a mapping of F_{i}^{*} onto H_{i}^{*} with for $f \in F_{i}$, $\mu_{i}(f) \in H_{i}$ and μ_{i} a homeomorphism over f,
(2) for any $g \in G_{i}$ and $x \in F_{i}^{*}, \mu_{i}(x)=\mu_{i}(g x)$, and
(3) for each $i, f \in F_{i}$ and $\tilde{f} \in F_{i+1}, \mu_{i}(f) \supset \mu_{i+1}(\tilde{f})$ if and only if $f \supset \tilde{f}$.

Lemma $3^{\prime \prime}$. The same as Lemma 3 with the added condition that there exists a sequence $\left\{H_{i}\right\}$ of simple collections and a sequence $\left\{\mu_{i}\right\}$ such that

[^5](1) for each i, μ_{i} is an $n\left(G_{i}\right)$-to-one mapping of F_{i}^{*} onto H_{i}^{*} with for $f \in F_{i}, \mu_{i}(f) \in H_{i}$ and μ_{i} a homeomorphism over f,
(2) for any $g \in G_{i}$ and $x \in F_{i}^{*}, \mu_{i}(x)=\mu_{i}(g x)$
(3) for each $i, f \in F_{i}$ and $\tilde{f} \in F_{i+1}, \quad \mu_{i}(f) \supset \mu_{i+1}(\tilde{f})$ if and only if $f \supset \tilde{f}$
(4) for each $h, h^{\prime} \in H_{i}$ for which $h \cdot h^{\prime}$ exists, H_{i+1} contains exactly one element in h intersecting an element of H_{i+1} in h, and
(5) for any $\varepsilon>0$ there exists an n such that $m\left(H_{n}\right)<\varepsilon$.

Before proving Lemmas $3,3^{\prime}$ and $3^{\prime \prime}$ in $\S \S 5$ and 6 we wish to note that Lemma 3 implies a weaker form of Theorem 1 to the effect that $T g S(G, M)$ exists, that Lemma 3^{\prime} implies the full strength of Theorem 1, and that Lemma $3^{\prime \prime}$ implies Theorem 2.

Clearly, from the characterization of the universal curve cited in $\S 3, \cap_{i} F_{i}^{*}=M$ is a universal curve. Let $g \in G$. Then g is defined by a unique sequence $\left\{g_{i}\right\}$ with, for each $i, g_{i} \in G_{i}$ and $\pi_{i} g_{i+1}=g_{i}$. For any point $p \in M, g p$ is defined as $\bigcap_{i} g_{i} f_{i}$ where $\left\{f_{i}\right\}$ is a sequence such that for each $i, f_{i} \in F_{i}, f_{i} \supset f_{i+1}$, and $p \in f_{i}$. But $g p$ must be unique for $m\left(F_{i}\right) \rightarrow 0$ and if $\left\{f_{i}^{\prime}\right\}$ is another such sequence then, for each $i, g_{i} f_{i}^{\prime}$ intersects $g_{i} f_{i}$.

That such definition of the association of G and M satisfies the conditions of the definition of topological transformation group is straigtforward. First, $e x=x$ for all $x \in M$ as, for each i, e_{i} leaves all elements of F_{i} fixed. Second, as for each $i, g, g^{\prime} \in G_{i}$ and $f \in F_{i}, \quad g\left(g^{\prime} f\right)=\left(g g^{\prime}\right) f$, it follows that $g\left(g^{\prime} x\right)=\left(g g^{\prime}\right) x$ for $g, g^{\prime} \in G$ and $x \in E$. Third $g x$ is continuous simultaneously in g and x. Let $g^{j} \rightarrow g$ in G and let $x^{j} \rightarrow x$ in M. We wish to show that $g^{j} x^{j} \rightarrow v x$ in M. Let $\varepsilon>0$. Let k be an integer such that (1) $m\left(F_{k}\right)<\varepsilon$, (2) for all $i>k$, x^{i} is in an element of F_{k} containing x, and (3) for all $j>k, \pi_{k} g_{k+1}^{j}=\pi_{k} g_{k+1}$ where g_{k+1}^{j} and g_{k+1} are the elements of G_{k+1} of the sequences $\left\{g_{\lambda}^{j}\right\}$ and $\left\{g_{\lambda}\right\}$ defining g^{j} and g respectively. Then for all $j>k, g^{j} x^{j}$ is at a distance of less than ε from $g x$ as was to be shown.

We have now established that Lemma 3 imphes the weak form of Theorem 1 and it remains to show that Lemmas 3^{\prime} and $3^{\prime \prime}$ establish additionally that $O[\operatorname{TgS}(G, M)]$ is, in the first case, a universal curve and, in the second, a regular curve.

We wish to show next that $H=\bigcap_{i} H_{i}^{*}$ is homeomorphic to $O[T g S(G$, $M)]$ with $\left\{H_{i}\right\}$ and $T g S(G, M)$ as in either Lemma 3^{\prime} or Lemma $3^{\prime \prime}$. For any $x \in H$, let $\left\{h_{i}\right\}$ be a sequence such that, for each $i, h_{i} \supset h_{i+1}$, $h_{i} \in H_{i}$, and $x \in h_{i}$. But then there exists a sequence $\left\{f_{i}\right\}$ such that, for each $i, f_{i} \supset f_{i+1}, f_{i} \in F_{i}$, and $\mu_{i}\left(f_{i}\right)=h_{i}$. For $x \in H$, let $\nu(x)=G\left(\bigcap_{i} f_{i}\right)$ for such a sequences $\left\{f_{i}\right\}$. For any other such sequence $\left\{f_{i}^{\prime}\right\}, G\left(\cap_{i} f_{i}^{\prime}\right)$ is $G\left(\cap_{i} f_{i}\right)$. As $m\left(H_{i}\right) \rightarrow 0, m\left(F_{i}\right) \rightarrow 0$, and for $h_{i}, h_{i}^{\prime} \in H_{i} h_{i}$ intersects
h_{i}^{\prime} if and only if and only if for any $f_{i} \in F_{i}$ with $\mu_{i}\left(f_{i}\right)=h_{i}$ there exists an f_{i}^{\prime} with $\mu_{i}\left(f_{i}^{\prime}\right)=h_{i}^{\prime}$ and f_{i} intersecting f_{i}^{\prime}, then it follows that ν is one-to-one onto. A standard argument shows the continuity of ν. Hence ν is the desired homeomorphism of H onto $O[T g S(G, M)]$.

Finally for Theorem 1 we note that by the condition that $\left\{H_{i}\right\}$ is a λ-defining sequence in Lemma 3^{\prime} it follows that H is a universal curve.

For Theorem 2 by Condition (4) of Lemma $3^{\prime \prime}$ we note that if $p \in H$ and k_{i} denotes the sum of all elements of H_{i} containing p then for any $i, H \cdot k_{i}$ has only a finite number of points on its boundary with respect to H. Hence H is a regular curve.
5. The first step of the proof of Lemmas $3,3^{\prime}$ and $3^{\prime \prime}$. The demonstration of the existence of suitable F_{1} and $T g S\left(G, F_{1}^{*}, F_{1}\right)$ is applicable to each of the Lemmas 3, 3^{\prime} and $3^{\prime \prime}$ and thus only one argument need be given.

Definition. Let S denote a set of k disjoint 3-cells. A collection R is said to be an n-developed collection about S provided (1) R is a simple one-dimensional collection, (2) R contains S as a sub-collection, (3) $R-S$ contains $3 n\binom{k}{2}$ elements, (4) for each pair of elements s_{1} and s_{2} of S there exist exactly n simple chains of elements of $R-S$ each consisting of 3 links and each having one end link intersecting s_{1} and the other intersecting s_{2}, and (5) no link of any such 3 -link chain intersects more than two elements of R distinct from itself.

Let S_{1} be a set of $n\left(G_{1}\right)$ disjoint 3 -cells and let R_{1} be an $n\left(G_{1}\right)$ developed collection about S_{1}. Let R_{1} be the desired set F_{1}.

For $s, s^{\prime} \in S_{1}$ let $B\left(s, s^{\prime}\right)$ be the set of chains of $R_{1}-S_{1}$ which join s and s^{\prime}. Let λ be a one-to-one transformation of S_{1} onto G_{1} and for $s, s^{\prime} \in S_{1}$ let $\mu_{s, s^{\prime}}$ be a one-to-one transformation of $B\left(s, s^{\prime}\right)$ onto G_{1}.

In defining $\operatorname{Tg}\left(G_{1}, F_{1}^{*}, F_{1}\right)$ which we shall show to be strongly effective and hence $\operatorname{TgS}\left(G_{1}, F_{1}^{*}, F_{1}\right)$ we impose consecutively the following conditions:
(A) For any $s \in S_{1}$ and $g \in G_{1}, g s=\lambda^{-1} g \lambda s$.
(B) For any $g \in G_{1}, s, s^{\prime} \in S_{1}$, and f a link of an element b_{f} of $B\left(s, s^{\prime}\right), g f$ is that link of $\mu_{g s, g_{s^{\prime}}}^{-1}\left(g\left[g_{s, s^{\prime}}\left(b_{f}\right)\right]\right)$ which intersects $g s$, intersects $g s^{\prime}$ or intersects neither $g s$ nor $g s^{\prime}$ according as f intersects, s, intersects s^{\prime} or intersects neither s nor s^{\prime}.

With these conditions being satisfied, G_{1} acts in a strongly effective way on the finite set F_{1} as we show. (A) implies that G_{1} thus acts on S_{1} by permuting the elements of S_{1} among themselves, for $s \in S_{1}$, and $s^{\prime} \in S_{1}$ there is a unique $g \in G_{1}$ for which $g s=s^{\prime}$ and if $s=s^{\prime}, g=e_{1}$. For
$f \in F_{1}-S_{1}, e_{1} f=f$ by (B). For $g, g^{\prime} \in G_{1}$ and $f \in b_{f} \in B\left(s, s^{\prime}\right), g\left(g^{\prime} f\right)$ must be ($\left.g g^{\prime}\right) f$ for

$$
\begin{gathered}
g\left[\mu _ { g ^ { \prime } s , g ^ { \prime } s ^ { \prime } } ^ { - 1 } \left(g^{\prime}\left[\mu_{s, s^{\prime}}\left(b_{f}\right)\right]=g b_{f}^{\prime}=\mu_{g\left(g^{\prime}, s\right), g\left(g^{\prime} s^{\prime}\right)}^{-1} g\left[\mu_{g^{\prime},, g^{\prime} s^{\prime}}\left(b_{j}^{\prime}\right)\right]\right.\right. \\
\quad=\mu_{\left(g g^{\prime}\right) s,\left(g g^{\prime}\right) s^{\prime}}^{-1}\left(\left[g g^{\prime}\right]\left[\mu_{s, s^{\prime}}\left(b_{f}\right)\right]\right)=b_{f}^{\prime \prime}
\end{gathered}
$$

and consistent with this, $g\left(g^{\prime} f\right)$ and $\left(g g^{\prime}\right) f$ are each determined solely by the orders on b_{f} and b_{s}^{\prime} and on $b_{s}^{\prime \prime}$ respectively relative to s and s^{\prime} and $g^{\prime} s$ and $g^{\prime} s^{\prime}$ on the one hand and $\left(g g^{\prime}\right) s$ and $\left(g g^{\prime}\right) s^{\prime}$ on the other. It is easy to see that such operation is not only strongly effective but if $f, f^{\prime} \in F_{\mathrm{I}}$ with for some $g \in G_{1}, g f=f^{\prime}$ then f and f^{\prime} do not intersect the same element of F_{1}.

Furthermore, it follows directly from the construction that if f, $f^{\prime} \in F_{1}$ intersect then for any $g \in G_{i}, g f$ and $g f^{\prime}$ intersect.

With this information in mind we proceed to define $\operatorname{Tg}\left(G_{1}, F_{1}^{*}, F_{1}\right)$. Let C_{1} be the set of all 2-cells which are the intersections of elements of F_{1}. Then we may think of G_{1} acting on C_{1} consistent with G_{1} acting on F_{1}, that is, for $c \in C_{1}, c$ is $f \cdot f^{\prime}$ for some $\mathcal{f}, f^{\prime} \in F_{1}$, and for $g \in G_{1}$, $g c$ is $g f \cdot g f^{\prime}$. But G_{1} structures C_{1} into orbits. From Lemma 2 by considering these orbits one at a time we may define $\operatorname{Tg} S\left(G_{1}, C_{1}^{*}, C_{1}\right)$ such that $g c$ is $g c$ as defined above and such that g is a homeomorphism of c onto $g c$ which is oriented to be consistent with some orientation preserving homeomorphism of $f+f^{\prime}$ onto $g f+g f^{\prime}$ carrying f onto $g f$ and f^{\prime} onto $g f^{\prime}$. That the orientation property of this latter statement is true follows from a consideration like that of the proof of Lemma 2. The orientation property may be made valid directly for the homeomorphisms from an element c to the elements in its orbit but any other homeomorphism between elements of such orbit is composed from these and for any $f^{\prime}, f^{\prime}, f^{\prime \prime} \in F_{\perp}$ with f^{\prime} intersecting $f^{\prime \prime}$ there is at most one $g \in G_{1}$ for which $g f=f^{\prime}$ or $f^{\prime \prime}$.

But now Lemma 1 and Lemma 2 applied to the various orbits of the elements of F_{1} under G_{1} assert the existence of $T g S\left(G_{1}, F_{1}^{*}, F_{1}\right)$ as we set out to show. Clearly there exists an H_{1} as in Lemmas 3' and $3^{\prime \prime}$ such that we may map F_{1}^{*} onto H_{1}^{*} as in the Lemma.
6. The inductive step of the proofs of Lemmas 3, 3^{\prime}, and $3^{\prime \prime}$. To complete the proofs of Lemmas 3, 3^{\prime}, and $3^{\prime \prime}$ it now suffices to define and establish the existence of F_{i} and $T g S\left(G_{i}, F_{i}^{*}, F_{i}\right), i>1$, given F_{1} and $T g S\left(G, F_{1}^{*}, F_{1}\right)$ defined as above and F_{j} and $T g S\left(G_{i}, F_{j}^{*}\right.$, $\left.F_{j}\right), 1<j<i$, defined by the inductive procedure to be given. We seek to do this so that applicable parts of Lemma 3 are satisfied. Then we shall note variations on the argument to yield Lemmas 3^{\prime} and $3^{\prime \prime}$.

The construction we give will be similar in many ways to that of the preceding section. We shall require that $m\left(F_{i}\right)<2^{-i}$.

Let C_{i-1} denote the collection of intersections of the various elements of F_{i-1} with each other. Each element of C_{i-1} is a 2 -cell. Let $c \in C_{i-1}$ and let $f(c)$ and $f^{\prime}(c)$ be the two elements of F_{i-1} for which $c=f(c) \cdot f^{\prime}(c)$. Let $S_{i}(c, f(c))$ and $S_{i}\left(c, f^{\prime}(c)\right)$ be collections of exactly $\frac{n\left(G_{i}\right)}{n\left(G_{i-1}\right)}$ disjoint 3cells in $f(c)$ and $f^{\prime}(c)$ respectively such that
(1) each element of $S_{i}(c, f(c))$ intersects exactly one element of $S_{i}\left(c, f^{\prime}(c)\right)$ and that in a 2 -cell in c,
(2) each element of $S_{i}\left(c, f(c)\right.$) or $S_{i}\left(c, f^{\prime}(c)\right)$ intersects $B(f(c))^{7}$ or $B\left(f^{\prime}(c)\right)$ respectively in a 2-cell and such 2 -cell is in $S_{i-}^{*}\left(c, f^{\prime}(c)\right)$ or $S_{i}^{*}(c, f(c))$ respectively, and
(3) there exist $R_{i}(c, f(c))$ and $R_{i}\left(c, f^{\prime}(c)\right)$ which are $n\left(G_{i}\right)$-developed collections about $S_{i}\left(c, f(c)\right.$) and $S_{i}\left(c, f^{\prime}(c)\right)$ respectively such that (a) $\left[R_{i}(c, f(c))-S_{i}(c, f(c))\right]^{*} \subset f(c)-B(f(c))$ and $\left[R_{i}\left(c, f^{\prime}(c)\right)-S_{i}\left(c, f^{\prime}(c)\right)\right]^{*}$ $\subset f^{\prime}(c)-B\left(f^{\prime}(c)\right)$ and (b) $m\left[R_{i}(c, f(c))\right]<\varepsilon$ and $m\left[R_{i}\left(c, f^{\prime}(c)\right)\right]<\varepsilon$.

As it is possible to define such sets $S_{i}(c, f(c)), R_{i}(c, f(c)), S_{i}\left(c, f^{\prime}(c)\right)$ and $R_{i}\left(c, f^{\prime}(c)\right)$ for all $c \in C_{i-1}$ such that for $c^{\prime} \neq c, R_{i}^{*}(c, f(c))+R_{i}^{*}(c$, $f^{\prime}(c)$) does not intersect $R_{i}^{*}\left(c^{\prime}, f\left(c^{\prime}\right)\right)+R_{i}^{*}\left(c^{\prime}, f^{\prime}\left(c^{\prime}\right)\right)$, we consider such a collection of sets to exist, each $c \in C_{i-1}$ being identified with just two elements $R_{i}(c, f(c))$ and $R_{i}\left(c, f^{\prime}(c)\right)$.

For $f \in F_{i-1}$ let $R_{i}(f)$ and $S_{i}(f)$ be the union of all such sets $R_{i}(c$, f) and $S_{i}(c, f)$ respectively for $c \in C_{i-1}$ and $c \subset f$. Thus $S_{i}(f)$, for example, is a particular collection of disjoint 3-cells in f.

Definition. Let S denote a set of n disjoint 3 -cells. A collection R is said to be an (n, m)-weakly developed collection about S provided (1) R is a simple one-dimensional collection, (2) R contains S as a subcollection, (3) $R-S$ contains $m \cdot\binom{n}{2}$ elements, and (4) for each pair of elements s_{1} and s_{2} there is a simple chain of m elements of $R-S$ having one end link intersecting s_{1} and the other intersecting s_{2} such that no link of any such chain intersects more than two elements of R distinct from itself.

Let $n\left(S_{i}(f)\right)$ be the number of elements of $S_{i}(f)$. For some fixed integer m and any $f \in F_{i-1}$ let $Q(f)$ be an $\left(n\left(S_{i}(f)\right), m\right)$-weakly developed collection about $S_{i}(f)$ such that (1) each element of $Q_{1}(f)-S_{i}(f) \subset f$ $-B(f)$, (2) no element of $Q_{1}(f)-S_{i}(f)$ intersects any element of $R_{i}(f)$ $-S_{i}(f)$, and (3) $m\left(Q_{i}(f)\right)<2^{-i}$.

Let $L_{i}(f)$ be that subset of $Q_{i}(f)$ consisting of $S_{i}(f)$ and all links of all chains of the development of $Q_{i}(f)$ between elements of $S_{i}(f)$ not both in any one set $S_{i}(c, f)$ for $c \in C_{i-1}$ and $c \subset f$.

Let $\quad S_{i}=\bigcup_{f \in F_{i-1}} S_{i}(f), R_{i}=\bigcup_{f \in F_{i-1}} R_{i}(f)$ and $L_{i}=\bigcup_{f \in F_{i-1}} L_{i}(f)$.

[^6]The set F_{i} is defined as the set of all elements in one or more of S_{i}, R_{i}, and L_{i}.

Next we shall define G_{i} acting on F_{i} in a strongly effective manner such that
(a) for $f \in F_{i}$, and $g \in G_{i}, f$ and $g f$ do not intersect the same element of F_{i},
(b) if $f, f^{\prime} \in F_{i}$ for which $f \cdot f^{\prime}$ exists then for each $g \in G_{i}, g f \cdot g f^{\prime}$ exists, and
(c) for $f \in F_{i}, \tilde{f} \in F_{i-1}$ with $\tilde{f} \supset f$ and for any $g \in G_{i}, g f \subset \pi_{i-1}(g) \tilde{f}$.

Let D_{i-1} be the collection of all sets $G_{i-1}(c)$ for $c \in C_{i-1}$. Each element of D_{i-1} consists of $n\left(G_{i-1}\right)$ 2-cells. For $d \in D_{i-1}$, let $f(d)$ and $f^{\prime}(d)$ be the two sets each of which is an element of F_{i-1} containing an element of d plus the sum of its images under G_{i-1}. Let $S(f(d))$ and $S\left(f^{\prime}(d)\right)$ be the collection of those elements of S_{i} which (1) intersect d^{*} and (2) lie in $f(d)$ and $f^{\prime}(d)$ respectively. Then $S\left(f(d)\right.$) and $S\left(f^{\prime}(d)\right)$ each consist of $n\left(G_{i}\right)$ disjoint 3-cells.

For $d \in D_{i-1}$ let $\lambda_{f(a)}$ and $\lambda_{f^{\prime}(a)}$ be one-to-one transformations of $S(f(d))$ and $S\left(f^{\prime}(d)\right)$ respectively onto G_{i} such that
(1) for $s \in S(f(d))$ and $s^{\prime} \in S\left(f^{\prime}(d)\right)$, s intersects s^{\prime} if and only if $\lambda_{f(a)}(s)$ is $\lambda_{f^{\prime}(l)}\left(s^{\prime}\right)$ and
(2) for $g \in G_{i}, s \in S(f(d))$ and $f \in F_{i-1}$ for which $s \subset f, \pi_{i-1}(g) f$ $\supset \lambda_{j(d)}^{-1} g \lambda_{f(a)}(s)$.

Each element of S_{i} belongs to exactly one set $S(f(d))$ or $S\left(f^{\prime}(d)\right)$ and thus S_{i} is structured by these sets. We may now define $\operatorname{TgS}\left(G_{i}\right.$, S_{i}) as follows: for $g \in G_{i}$ and $s \in S(f(d))$, $g s$ is $\lambda_{f(d)}^{-1} g \lambda_{f(d)}(s)$.

Next, for any $s, s^{\prime} \in S_{i}$ for which $\left.s, s^{\prime} \in S(f) d\right)$) for some $d \in D_{i-1}$ and for which for some $f \in F_{i-1}, s+s^{\prime} \subset f$, let $B\left(s, s^{\prime}\right)$ denote the set of 3 -element chains from s to s^{\prime} of the definition of R_{i} and let $\mu_{s, s^{\prime}}$ be a one-to-one transformation of $B\left(s, s^{\prime}\right)$ onto G_{i}.

Then we may define $\operatorname{TgS}\left(G_{1}, R_{i}\right)$. For $s \in R_{i}$ and $s \in S_{i}$ and for any $g \in G_{i}, g s$ is $g s$ as defined in $T g S\left(G_{i}, S_{i}\right)$. For any $g \in G_{i}$ and $s, s^{\prime} \in S_{i}$ for which $B\left(s, s^{\prime}\right)$ is defined as above and for any x a link of an element b of $B\left(s, s^{\prime}\right), g x$ is that link of $\mu_{g s, g s^{\prime}}^{-1}\left(g\left[\mu_{s, s^{\prime}}(b)\right]\right)$ which intersects $g s$, intersects $g s^{\prime}$ or intersects neither $g s$ nor $g s^{\prime}$ according as f intersects s, intersects s^{\prime} or intersects neither s nor s^{\prime}.

Next we define $T g S\left(G_{i}, L_{i}\right)$. For $s \in L_{i}$ and $s \in S_{i}$ and for any $g \in G_{i}, g s$ is $g s$ as defined in $T g S\left(G_{i}, S_{i}\right)$. For $s, s^{\prime} \in S_{i}, f \in F_{i-1}$, with $s+s^{\prime} \supset f$ and s and s^{\prime} not both elements of any set $S(c, f(c)$), there is a simple chain $\beta\left(s, s^{\prime}\right)$ of exactly m elements of $L_{i}(f)-S_{i}(f)$ with $\beta\left(s, s^{\prime}\right)$ having one end element intersecting s and the other s^{\prime}. For each link x of $\beta\left(s, s^{\prime}\right)$ let, for $g \in G_{i}, g x$ be that link of $\beta\left(g s, g s^{\prime}\right)$ which is the same number of links removed from $g s$ as is x from s.

The definition of $T g\left(G_{i}, F_{i}\right)$ is now complete and it may easily be
verified that conditions (a)-(c) above are satisfied.
Let C_{i} be the set of all intersections of pairs of elements of F_{i}. Let $T g S\left(G_{i}, C_{i}\right)$ be defined as follows: for $c \in C_{i}, c$ is a 2-cell which is the intersection of some two elements $f, f^{\prime} \in F_{i}$; for $g \in G_{i}, g c$ is $g f \cdot g f^{\prime}$. Then as in § 5 employing Lemma 2, we may define $T g S\left(G_{i}, C_{i}^{*}, C_{i}\right)$ so that $g c$ is $g c$ as defined immediately above and g preserves orientation on c and $g c$ relative to the orientations on (f, f^{\prime}) and ($g f, g f^{\prime}$) respectively.

Finally employing Lemmas 1 and 2 we may define $\operatorname{TgS}\left(G_{i}, F_{i}^{*}, F_{i}\right)$ consistent with $T g S\left(G_{i}, F_{i}\right)$ and $T g S\left(G_{i}, C_{i}^{*}, C_{i}\right)$ so that with this inductive definition, Lemma 3 is satisfied. In this connection we note that under $T g S\left(G_{i}, F_{i}\right)$, for $f \in F_{i}, G_{i}(f)$ consists of $n\left(G_{i}\right)$ disjoint 3-cells so that Lemma 2 is applicable.

To modify the argument given so as to prove Lemma $3^{\prime \prime}$ we must introduce some extra conditions. The sets $H_{j}, 1 \leqq j \leqq i-1$ exist as in the Lemma. Then when we define S_{i} we also define a set $S_{i}(H)$ where for $h, h^{\prime} \in H_{i-1}$ with h intersecting h^{\prime} exactly one 3-cell is introduced in $S_{i}(H)$ in each of h and h^{\prime} intersecting the other. In defining R_{i} we also define a set $R_{i}(H)$ where $R_{i}(H)-S_{i}(H)$ consists of exactly $3 \cdot n\left(G_{i}\right) \cdot N$ elements with N the number of elements in $S_{i}(H)$ and with for each element s of $S_{i}(H)$ there being $n\left(G_{i}\right)$ 3-link simple chains in $R_{i}(H)-S_{i}(H)$, both end links of each such chain intersecting s. We may additionally require that $m\left(R_{i}(H)\right)<2^{-i}$. Then for each pair of elements of $S_{i}(H)$ in the same element of H_{i-1} we introduce a simple chain of 3-cells joining them, the simple chain having m links with m being so chosen that $m\left(H_{i}\right)<2^{-i}$. This imposes an extra condition on the " m " of the preceding argument. It is now straightforward to see that the sequences of Lemma $3^{\prime \prime}$ can be asserted to exist.

Finally to prove Lemma 3^{\prime} we need one extra device. For each c $\in C_{i-1}$, we choose not one but two pairs of sets $\left[S_{i}(c, f(c)), S_{i}(c, f(c))\right]$ and $\left[S_{i}^{\prime}(c, f(c)), S_{i}^{\prime}(c, f(c))\right]$ such that we may introduce two pairs of sets $\left[R_{i}(c, f(c)), R_{i}\left(c, f^{\prime}(c)\right)\right]$ and $\left[R_{i}^{\prime}(c, f(c)), R_{i}^{\prime}(c, f(c))\right]$ similar to the one pair we introduced before with additionally $R_{i}^{*}(c, f(c))+R_{i}^{*}\left(c, f^{\prime}(c)\right)$ and $R_{i}^{* *}(c, f(c))+R_{i}^{\prime *}\left(c, f^{\prime}(c)\right)$ not intersecting each other. Finally for any $f \in F_{i-1}$ we may define $S_{i}(f)$ in the similar fashion to that used before but with $S_{i}(f)$ here containing twice as many elements as the corresponding set in the preceding argument. Then we may form the set $Q_{i}(f)$ as an $\left(n\left(S_{i}(f)\right), m\right)$-weakly developed collection about $S_{i}(f)$ and proceed as before using extra conditions analogous to those of the argument sketched for Lemma $3^{\prime \prime}$.

It is clear that under such conditions $\left\{H_{i}\right\}$ and $\left\{\mu_{i}\right\}$ can be defined so that $\left\{H_{i}\right\}$ will be a λ-defining sequence.

Thus Lemma 3^{\prime} is proved and our argument for Theorems 1 and 2 is completed.

References

1. R. D. Anderson, A characterization of the universal curve and a proof of its homogeneity. Submitted to Ann. of Math.
2. L. Keldys, Example of a one-dimensional continuum with a zero-dimensional and interior mapping onto the square. Dokl. Akad. Nauk SSSR (N.S.) 97 (1954), 201-204 (Russian).
3. A. Kolmogoroff, Über offene Abbildungen, Ann. of Math., (2) $\mathbf{3 8}$ (1937), 36-38.
4. D. Montgomery and L. Zippin, Topological transformation groups, Interscience Publishers Inc., New York.
5. P. A. Smith, Periodic and nearly periodic transformations, Lectures in Topology, The University of Michigan Conference of 1940, pp. 159-190.
6. Leo Zippin, Transformation groups, Lectures in Topology, The University of Michigan Conference of 1940, pp. 191-221.

The Institute for Advanced Study and University of Pennsylvania

[^0]: Received May 11, 1956. Presented to the American Mathematical Society August 1956, and in part, December 1954. The research leading to this paper was supported in part by National Science Foundation Grant G 1013.
 ${ }^{1}$ The universal curve is a particular one-dimensional locally connected continuum. Its description and a characterization of it are given in $\S 3$.

[^1]: 2 A locally connected continuum is said to be a regular curve provided every point of it has arbitrarily small neighborhoods with finite boundaries or, equivalently, provided every pair of points of it can be separated by a finite point set,

[^2]: ${ }^{3}$ Smith, in [5], states " There exist, however, nearly periodic transformations which are not periodic. In all known examples the space M under transformation is of a highly irregular local structure which suggests the problem referred to above: Can there exist a non-periodic nearly periodic transformation T operating in M if M is fairly regular in its local structure, for example, locally Euclidean." If G is a p-adic group, if $T g S(G, M)$ exists, and if $g \in G$ with $g \neq e$, then g as a homeomorphism of M is a non-periodic nearly periodic transformation. As the universal curve is homogeneous, it is, in a sense, fairly regular in its local structure and thus our Theorems 1 and 2 contribute to this question of Smith.

[^3]: ${ }^{4}$ If H is a collection of point sets, H^{*} denotes the sum of the elements of H.

[^4]: ${ }^{5}$ If H is a finite collection of point sets, $m(H)$ denotes the mesh of H, that is, the l.u.b. of the diameters of H.

[^5]: ${ }^{6}$ Orientation-preserving with respect to embedding in E^{3}.

[^6]: ${ }^{7}$ By $B(f)$ is meant the boundary of f.

