INVERSION AND REPRESENTATION THEOREMS FOR A
GENERALIZED LAPLACE INTEGRAL

K. M. SAKSENA
1. Varma [8] introduced a generalization of the Laplace integral
(1) T () = S:e"”d)(t)dt
in the form
(2) F) = S:(xt)m—me-wW,c,m(xt)¢>(t)dt

where ¢(f)e L(0, ), m > —1/2 and « > 0. This generalization is a
slight variant of an equivalent integral introduced earlier by Meijer [7]
and reduces to (1) when %k + m = 1/2. In a recent paper [1] Erdélyi
hag pointed out that the nucleus of (2) can be expressed as a fractional
integral of ¢ ** in terms of the operators of fractional integration in-
troduced by Kober [6]. In this note two theorems have been given-one
giving an inversion formula for the transform (2) and another giving
necessary and sufficient conditions for the representation of a funection
as an intgral of the form (2) by considering its nucleus as a fractional
integral of e="'.

2. The operators are defined as follows.

I{wﬂ (.’1}') _[;(,,) x - wS (w . u)f” lunf(u)du

1
I'(«
where 7 (x)e L0, ), I/p+1/g=1if 1<p< o, ljg=0if p=1,
a>0,7>—1/g, ¢>—1/p.

The Mellin transform M, % (x) of a function .7 (x)e L, (0, =) is
defined as

K;u (z) = )x‘:‘g:(u — e (w)du

T (2) = S“y‘(x)xndx (»=1)
0
and
indexq (X .
- l.i.mg (@) (» > 1)
X—>o0 J1/X

Recelved May 8, 1958.
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The inverse Mellin transform M-'¢(t) of a function ¢(t)€ L(— oo, =)
is defined by

(3) T-git) = 5| (ot (¢=1)

and

1 inr'lexy 7 X
= 2 ;1.1.ms B(t)ar- 17 dt (@ >1).
-7

T—o00

If the Mellin transform is applied to Kober’s operators and the
orders of integration are interchanged we obtain, under certain con-
ditions,

MAIL .7 (@)} = I‘l:a e %_ zt)] M, 7 (x)
and
B I‘(c + 1 it) B
MAK;..7 (x)} = - L M, 7 (x)
['[:a +(¢+ 11) + zt>]
But
(o) = S:e‘”x““’/“dx - r(zl; + z't) if ;_ >0.
Therefore
MAL (e7)} = F<7'+ % - it)f<% ; ﬂ
F[a-l—(v-}-,(l———dt)]
and

1A L
T {K;ue)} = P(f T %tyi(? +#) _

l"[ac + (c: %- + jwj]

By (3)
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1 . 1 .
I (e7®) = -Lsm 11(77 i ?I;t_ %t)r(; i ?}t> - it=1nd¢

S P )

and
PP Sl Gl i Rl
e = 5 i, 7
r oz+(C+ v +’bt)]

provided that 1/p >0, 7+ 1/¢ > 0 and ¢ + 1/p > 0.

It has also been shown by Erdélyi [2] that if the integral in (4) is
evaluated by the calculus of residues then it can be expressed in terms
of a confluent hypergeometric function. In particular,

K;m,(lﬁ)-m—k(e_z) = a7m_ll23_z/2W7c,m(x)
where © > 0, (1/2) — m — k > 0.
3. THEOREM 1. Assume ¢(t) € L,(0, o), 1=p< o, £>0. If

2m >— 1/q when (1/2) —m — k>0 and (1/2) +m — k > — 1/q when
1/2) —m — k>0, then Ks, ap-m-sl F ()] exists and is equal to

| Kan o -nosle (81t = F (@)
where F (x) and F(x) are given by (1) and (2) respectively.
Proof. Case I (1/2) —m — k>0, 1 <p < .

If ¢p(t)e Ly(0, ), 1 < p < o and = > 0 it is easy to see that & ()
exists. Therefore

K a-m-x[ 7 (2)] = ['((1/2)x—2mm — k)

x| — ayrem - em el "oty du
0

x

But from a theorem of Hardy [5] we know that if ¢(¢) € L,(0, ),
1 < p < o then u'~** 7 (u)e L0, ) and therefore

(v — x)*uP. 7 (u) € L,(x, ©) provided that « + # =1 — 2/p and ap >—1.
Therefore the integral

Sw(u — @)~ @D-m-Ey - (1/2)-m+K‘jd¢"(u)du
z

= Sm{(u — )~ WD mokay = =mrE-pl {(y — 2)*uP F (u)}du
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will exist if the expressions within the brackets in the integrand be-
long to L,(x, ) and L, (w, «) respectively. The conditions for these
are (—12)—-m—-k—a)yqg>—-1, (-1—2m — a— P)g < —1 and
a+f=1-—2/p, ap > — 1 which reduce to 2m > — 1/q and (1/2) — m —
k> 0. Hence under these conditions the integral converges absolutely
and we can change the order of integration. Therefore

” G S aizm o -~ =(1/2)-m~-k —(1/2) —m+k,~vt
K2m,(!/2)—m—K[f(x)] 1_,((1/2) —om— k) 50 v (CL' + ?)) e
Tt t = . ,,,,_w,,m,n . ,.Asw -zt (¢
x{goe & )dt}dv P == 1y O
X {Swv*‘/z""‘"‘(x + )" -mkg=vidy }dt
= “@ty-ome-omw, @ttt = F)

as W, _n(@)=W, ().
If p =1, it is similarly seen that the change in the order of in-
tegration is justified if 2m > 0 and (1/2) — m — K > 0.

Case 1I. (1/2) —m — k<0, 1 <p < oo,
If a < 0 then the operator K; .{. (x)} is defined as the solution,
if any, of the integral equation .&# (z) = K;,s -o{g(x)}. Now

K& +m-t, -y +mnl 2 (20)]
2D +m—k

T (12 +m+ k)
X {S:(Ut)m’(l/ ")9‘“’”“‘WK,,,,(ut)d)(t)dt}du .

Sw(u _ w)-(m) +m Ky = 2m
0

Again from a result of Hardy [5] we know that if
F@) = | Ky
then
P D _1_ o= D
Som (F(2)}rde < {sb(q)} S {$(y)}dy
where
d(s) = S:xs"K(x)dw .

If
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K(x) — lxm— (1[2)6— (1/z)ka,m(w) l
then

S!J(s) — 1__1:(,2?1@ + S){j(s:)_f o
1(m~ k + 2—+s>

by Goldstein’s formula [4]. Therefore

i J r(2m+ l)r( l) 1 )
R e i [ wwiay
I'm — - L
[ (m k + 2 + ¢ )J
provided that 2m > — 1/q, or a'"¥"F(x) € L,(0, ) if ¢(y)e L,(0, )
(p >1). Hence (u— z)uPF(u)e Ly(x, ») if a+pf=1-—(2/p) and
a> —1/p. Also (u — z)-CPmes=ay=mm-s e [ (x o) if (— (3/2) + m + k —
ayg+1>0 and (—B/2) —m+k—a—F8)qg+1<0. These four con-
ditions reduce to m + k& — (1/2) > 0 and m — k + (1/2) > — 1/q. So the

integral S (u — )~ C+m+ky—m B (y)dy exists under these conditions and

K(—I/Z)+m—lx‘,,—(1/2)+m+k[F(x)]
w(w) +m—K Soo o
=TT\ e amg(t)dt
= +mih b’ 0

X Sw(u _ x)m+k-—(3/z)u-m—(1/z)e— (IIZ)MLW’C m(ut)du
x

on changing the order of integration which is permissible since the in-
tegral is absolutely convergent. But [4]

X

| w0 = @y e W) = T — 2516 W, ()
where & > 2 and x is positive. Therefore

Kapyem—t,-am+mes[F(@)] = S:(Wt)m—(lll)en(“m W ey m(@t)p(t)dt
- re—"qs(t)dt
0

under the conditions m + &k — (1/2) > 0, m — k + (1/2) > — 1/q, @ > 0.
If p =1, the change in the order of integration is justified if

m+ K— (1/2) > 0 and (1/2) + m — k > 0.

Hence KG,»m-k,-/p+msi F(@)] = F (x) and the theorem is proved.

THEOREM 2. Under the conditions of Theorem 1 we have
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(5) S:Q” Izm (1/2) ~m- K{¢(t)}dt S sz /2 —m— K(e ’”)gb(t)dt

This is a consequence of Theorem 2 of Erdélyi [3] and is proved
similarly.

4, We are now in a position to give inversion and representation
theorems for the transform.
We have seen that, under certain conditions,

K(—1/2)+m-—k.—(1/2)+m+k[F(x)] = f(.’l}) .

Also # (x) has derivatives of all orders for x sufficiently large and
vanishes at infinity. So we can apply the Post-Widder operator L, ,
defined by the relation

L[5 (%)] = ..(a:!l_')i‘/(/z“(;\)(%>(-z—))\+l

U

(where 2 is a positive integer and u a real positive number) to F# (x)
and obtain an inversion theorem.

LEMMA. If ¢(t)e L, in (0 =t < =) and

v = | o) — (o)t

then

(i) %ﬂ%@ < llllp for =0
and

(ii) #) =0 as w1

where || .7 ||, denotes the norm of the function F# (t)€ L,(0, ), that is
- a/m
Ll = {17 orae ™
Proof. We have

1! = [ lsorae + [Tlowyrae = (1+ 1)1 par

which proves (i).
Also, by a change of variable,
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pe) = | 19te) — gle) et

If a(xr) = e®»¢p(e”) then

[ Jat@ras = | 10 rear = 1ol
and 50 a(@)e L(— oo, ). Again
weny = [~ Hata + we-omw — a@ye-om)
+ {a@)e o — a(a) o |
< e‘<”/“’>|:glla(a: +y) — a@) lpdx}‘“’

leom —1[ | lat@)az]”

by Minkowski’s inequality. And Sm la(x + y) — a(x)|?de — 0 as y —> 0

if a(x)e L(— o, ) and so does |e ¥ — 1|. Therefore ¢(¢¥) =0 (1) as
y—0 or ¢(u) >0 as u — 1.

THEOREM 3. Assume ¢p(t)eL, 1 <p < o) in 0 <t < R for every
positive R. If the integral F (x) converges for x> 0 and 2m >— 1/q
when (1/2) —m —k > 0; (1/2) +m — k > —1/q when (1/2) — m — k <0,
then, for almost all positive t,

index p

Lim L)\,t[K(—llz)i-m-k.—(1/‘.’.)+m+k{F(x)}] = ¢(t) .

A=

Proof. We have seen in the proof of Theorem 1 that, under the
conditions of the theorem,

KGp smet-amamsx{ F @)} = F (@) .
Therefore
L)\,t = LA.:[Ka/z)+m-k,—(l/2)+m+k{F(x)}]

A+1ff
_ 421,' (%) S o= D ()
I\ ¢ 0

by simple computation and

L = 91 = L ()] e ewmaton — wo)ldu

:%MS: e p(vt) — o(t)|dv
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Therefore

»

o = 9001 = |57 wioten) — atyiaw

A+1 o0 +1f
< [/12_‘ SO e~ MM p(vt) — P(t) I”dv:l[%:—‘g e‘“’v*dv]p/q
. . 0
2A+1

2! S: e 0 p(vt) — B(t)|"dv .

Hence
(120 = oypa = 2 "ae [ "errtgtor) — aeypao

2A+1

,},,,iS:e-*vv*dv{S:I¢(vt) — (t) l“’dt} .

In changing the order of integration, this becomes

2)\-;-1 oo
(6) S e M d(v)dv

A1 Jo
where ¢(v) is defined as in the lemma. From the lemma it is easily
seen that

$u) = 0(1)  (u— o)
=0 (u—>0+).

Therefore Sme‘“vN/f(v)dv converges for 2 =1 and the inversion of the
0

order of integration is justified by Fubini’s theorem. By a familiar re-
sult [9, Theorem 3¢, p. 283] the integral (6) approaches ¢(1) as 2 —> .
But, by the lemma, ¢(u) = o(1) as v — 1. Therefore L,, converges in
mean to ¢(t) with index p on 0 £¢ < o and the result is proved.

THEOREM 4. The necessary and sufficient conditions for o function
F(x) to have the representation (2) with ¢(t) € L0, ), p =1, = > 1,
and with 2m >—1/q when 12— m — K >0 and m — k+ 1/2 >— 1/q
when 1/2 —m — k<0 are

(1) Kipsm-x.-1pemec{F(@)} = G(x) exists, has derivatives of all orders
in 0 < x < o and vanishes at infinity and

(il) there exist comstants M and p (p = 1) such that

|1 dG@nrat < a (=1,2).

Proof. First let F'(x) have the representation (2). Then, from
Theorem 1,
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G@) = Kijpem-i,-yzemer A F (@)} = F (2)

and as in the proof of Widder [9, Theorem 15a, pp. 313-14] we see
that the conditions are satisfied.

Conversely, let the conditions be satisfied. Then again, as in the
proof of Widder’s theorem referred to before, we see that

G(z) = S:e""qb(t)dt = 7 (@).
Therefore [3, p. 300]

F(x) = (K(—1/2)+m—k,—(1/2)+m+k)—1'-7(x) - K;n,1/2—m—k{ﬂ‘(m)}
- r(wt)’”‘l’ze'“‘” W (at)b(£)dt
0

by Theorem 1; and the theorem is proved.

COROLLARY. If the fractional derivatives or imtegrals

Ka/z)+m—k+r,—(1/2)+m+k~r{F(w)}

exist for r = 0 and every positive integer, then the integral in the con-
dition (ii) of Theorem 4 can be replaced by

50 S < . > Z( 1) A K em-sr, 4 ¢ mev k- T{F( A )det
where

2! |
A =2Cm — &+ (U2))0m — T — (1[2)) =+ (m — & — 2+ (3/2) + 7)
(r=01,---,2—-1), A, =1.
For [6]

'K {7 (0)} = Kiuait® 7 (1) .
Therefore
K; {F(x)} = *K;  {a~F(z)}
and
& [KeuFa) | = fdigx%[Kaw{w*F(x)}}
Yy di_l(xs’)_[Ko w{w“;F(x)}]

d

+*Ci- ld

@ I KrutartFa)} |
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By Leibnitz’s theorem this becomes
=8¢ —1) -+ (£ =2+ 12" MKgu{oFlx)}]
—*CLE — 1) -+ (£ — A4 228 MK o {5 () }]
+ oo+ (1K pr {25 F ()]

Therefore
—1)® A+1 d)\ "
;(.,,E—)f—m ~;z/x—)\"[K§'w{F(x)}]
where
Ar___xcrc(c_1)...(§—Z+fr+1)
A, =1, (1"'—“0,1,'",1‘1),
and

o] 58 a2 oA (1) )
= C(A) S cvraf K {F( D]

Putting ¢ =m — %k +1/2 and a=m + k — 1/2 we have the re-
quired result.

THEOREM ba. If F(x) has representation (2) with the conditions of
Theorem 4 on ¢(t), x, k and m satisfied and if the fractional derivatives
or integrals Kpyem-ger, - +men-r 12 (@)} exist forr = 0 and every positive
integer, than

lim S”" CEOYAY S 1y Kimemvercmemerrd A 2 )}]

Ao JO x ! t r=0 t

»

"dt = i!¢

where the A, ’s have values as in the Corollary to Theorem 4.

Proof. The proof is similar to that of Widder [9, Theorem 15b,
p. 314]

THEOREM 5b. If the function F(x) has representation (2) with the
conditions of Theorem 4 on ¢(t), x, k and m satisfied, then

lim {1 L0 F@) 7t = 11 i - (9O} PE

Proof. If F(x) has the representation (2), then, by Theorem 2 we have
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(@) = | e Lin o -m-u {80}t

Also if ¢(¢)eL,(0,00) so does I, jn-n-1{#(t)} provided that 2m > — 1/q.

Therefore, as in Widder [9, Theorem 15b, p. 314], we can prove again
that

lim S:ILA,AF(@wdt - j“u;n,am-m_k{qs(t)}f’dt :

I am deeply grateful to Professor A. Erdélyi for many helpful sug-
gestions.
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