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1. Introduction* Recently, the theory of abelian groups has be-
come an active field. This note is devoted to it. One of the important
theorems, called " the theorem on the subgroups of a free abelian group
Un of finite rank n [2, p. 145] will be studied here. From now on the
term " g roup" will be used instead of "abelian group", for sim-
plicity. Since the notations, the definitions, and the terminologies vary
for different authors, we refer to Kurosh [2] and Kaplansky [1] as
standards. For example, for the definitions of the height of an element
x in a primary group G (denoted by hG(x)), of the lowest layer of a
primary group we refer to [2], and the definitions, of Z(n)9 of Z(p°°) we
refer to [1]. Moreover, the subgroups spanned by the subset {uΛ} of
a given group G is denoted by ({%*}), and in a primary group we write
o(x) z=z n if the order of the element x is equal to pn.

For convenience, the following terminology is adopted.
I. A group G has property (A), if for any non-zero element x of

G there exists a cyclic direct summand of G containing x.
II. A group G has property (B), if G is a direct sum of cyclic

groups, and for any subgroup H of G there exists a basis {hΛ} of H
and a basis {gβ} of G such that for any hae {ha} we can find a gae {gβ}
with the property hoύe{ga).

III. A group G has property (C), if for any independent subset
{hΛ} of G there exists another independent subset {gΛ} of G such that
hΛ e (gΛ) and ({g*}) is a direct summand of G.

The purpose of this paper is to give an analysis of these classes of
groups. In particular, we show that a free group Un of finite rank
n ^ 2 has properties (A) and (B) but not (C).

GENERAL LEMMA. A torsion group G has property (A), (B) or (C)
respectively, if and only if each of its primary components has property
(A), (B) or (C) respectively.

Proof We decompose G into its primary components,

We prove that G has property (C) if and only if each Gp has property
(C). If for an independent subset {x(f} c Gpy we can find an independ-
ent subset {ga} c G such that x(f e (ga) for all a, and the subgroup
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is a direct summand of G, then we can find a subset {g(f} c Gp such
that a#> e (g^) and Σ*φ(£«p )) is a direct summand of Gp. To find
the desired subset {gip)} aGp, we need only consider the p-components
of ga's, since x%° e (ga) implies that x^ is contained in the p-component
of (ga) which is a cyclic subgroup of Gp generated by the p-component
of gΛ.

Conversely, if for every p-component {xc

a

p)} c:Gp of an independent
subset {xa} c G, we can find an independent subset {g^} such that
a£?° e (9*p)) for all α's and the subgroup Σ Λ Φ ( ^ P ) ) is a direct summand
of Gpf then there exists an independent subset {ga} c G such that
%* e (ga) for all α's and the subgroup Σ* Φ (^) is a direct summand of
G. Since every xa has only a finite number of p-components different
from zero, we can set g^ = 0 when x^ — 0. To find the desired subset
{#*} c G, we need only set

The independence of {#α} follows from the independence of {g^} for
all p, and a?Λ e (̂ Λ) follows from

(»-) = Σ Φ 04p)) c Σ Φ (^p)) - (g*).

The other two parts of the lemma are proved in an analagous
manner.

2* Groups with property (A). To discuss groups with property
(A), we need several lemmas.

LEMMA I. If G is a primary cyclic group of the type Z(pn), and x
is a non-zero element of G, then

o(x) + hG(x) = n .

This is clear.
LEMMA II. If G is a primary group of the type

where 3 ^ hλ + 2 ^ h2, then it is not a group with property (A).

Proof Let uly u2 be the generators of Z(phή, Z(phή respectively.
Therefore,

o(ut) = h.2 ^ hi + 2 = o{uλ) + 2 .

To prove Lemma II, it is sufficient to show that there does not exist
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any cyclic direct summand of G containing ph^ιuλ + phm2 . Suppose the
contrary. Then, we can find a cyclic direct summand V = (v) contain-
ing p^-^Ux + phm2. Since h2 — 2 ^ hlf it is clear that the lowest layers
of V and of the cyclic group (p^'1^ + phm2) are both equal to (p**"1^),
and oip^Ui + phlu2) = h2 — hλ. Let o(v) = k. Since (v) and (u2) are
direct summands of G,

h G { p k ' ι v ) - M P * " 1 * ) = k - l

a n d

But since the lowest layer of (v) is (p^"1^;) = (phz~ιu2), we have Λ — 1 =
&2 — 1, and o(v) = k — h2. Therefore, it follows from Lemma I that

Ux + phm2) — h2— (h2 — hλ) = hλ .

On the other hand, we have

heip^Ux + phlu2) = min (hτ — 1, ̂ ) = hx — 1 .

This is a contradiction since V — (v), being a direct summand, is a pure
subgroup of G, so that for x e V, hv(x) = kG(x).

LEMMA III. A primary group G has property (A) if and only if it
is of the type

Proof First, G must be a reduced group. If this is not the case,
we can find a non-zero x of G which is of infinite height in G. It is
clear that x cannot be contained in a cyclic direct summand (g) of G.
Second, G must be of bounded order, therefore G is a direct sum of
cyclic groups. Otherwise, by [1, Theorem 9] there exists a direct
summand 0O®(%2) °̂  ^ °̂  ^ e type

Then, by Lemma II, G is not a group with property (A). Moreover,
the bounded group G must be of the type

Conversely, if G is of the type

P λ

we claim that it is a group with property (A). Let {up} and {̂ λ} be
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the generators of the cyclic subgroups of the type Zp(ph) and Zλ(ph+1)
respectively. Then, for any non-zero x e G, we can express it as

such that (aif p) = φj9 p) = 1 and 0 ̂  lh < h, 0 £ l5 ^ h.
It is obvious that

hG{x) = min (llf , l8, l8+1, , lt)

o(x) = max (h — llf , h — l8, h + 1 — ίβ+1, , h + 1 — iβ) .

If o(x) is equal to a certain & — ^(1 ^ i ^ s), that is h — lu then the
generator 5 of the lowest layer of (x) is of height h — 1 in G. Since

h - l ^ h - k (l^i^s)

h-l^h + 1-lj (s + 1 ̂  i ^ ί) ,

we have

Zi ̂  Zi (1 ^ i ^ s)

t < lj (8 + l^j^t) .

Hence, the cyclic subgroup

is pure, and by [1, Theorem 7] is a direct summand, which contains the
element x. The cyclic subgroup is pure by [1, Lemma 7].

If o(x) is equal to a certain h + 1 — lj(s + 1 <Ξ; j ^ £), that is
& + 1 — ίs+1, but not equal to any h — Z«(l <̂  i <̂  s), then the generator 5 of
the lowest layer of (x) is of height k in £?. We have

k > ls+1 - 1 (1 ^ i ^ s)

Consequently, by the same argument as we used above,

( s t \

i ι s+i V

is the desired direct summand containing x. This proves our lemma.

THEOREM A:. A group G with property (A) cannot be mixed, i.e., it
is either torsion or torsion-free. Moreover, a torsion group G has prop-
erty (A) if and only if G is of the type
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Proof. If G is a torsion group, the theorem follows from the
General lemma, and Lemma III. Now, we are going to prove that G
cannot be mixed. If G has property (A), then the torsion subgroup
T(G) of G must be of the type

Σ ® (Σ Φ ZΛv^) φ Σ Φ zβ(v^
P \ <*p

 V βp

 J

If this is not the case, T(G) does not have property (A), and there ex-
ists a non-zero element x e T(G) which is not contained in any cyclic
direct summand (g) of T(G)f and therefore, it cannot be contained in a
cyclic direct summand of G. We shall prove that if T(G) Φ 0, then
G — T(G). Suppose the contrary. There exists a non-zero x e G, such
that we can find an infinite cyclic direct summand {u^) of G containing
x. Select a non-zero primary component TPι(G) of G, which is of the
type

We have

by [1 Theorem 7]. Consider the element p{uλ + aPl, where s > hPl + 1 ^ 1
and hτ (β) (ap) = 0. Since G has property (A), there exists a cyclic

direct summand (g) containing plUx + aPι. We have

g = ιlUl + bPι + g\ where gf eGf, b9χ e TPl(G) .

By the hypothesis, there exists an integer I such that

Ig = ll&x + lbpl + lgf = p\ux + aPl .

Consequently, we have

I — pc

lf lτ — p*, and g' — 0, where c + d — s .

Thus

0 = K + P&u and aPl = φPl .

Since hτ caΛap) = 0, we must have also c = 0, that is Z = 1 and # =

+ αP l. Hence (p\Uι + aPl) is a direct summand of G. Since

we have that (p8^ + αPl) is also a cyclic direct summand of TPl(G) φ (wj).
It is clear that

= TPl(G) φ (P;M l + ap) .
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Then

Mi = f{v\nλ + aPι) + bPl = /p;%χ + / α P l + bPl

for a non-zero integer /, and an element bPι e TPL(G). It follows that
uλ — fp[uιy which contradicts s > 1. Therefore the proof is complete.

THEOREM A2. A free group G has property (A).

Proof. Since G = Σv φ (wv), each a; ^ 0 in G can be written

a? = a{ϋvΛ + α^v, + + anUv . Hence

and it follows from the theorem on the subgroups of a free group of

rank n [2, p. 145], that there exist a basis v19v29 -- ,vn of Σ " φ ( ^ v 4 )

such that a? e (vx). But (vα) is a direct summand of G, so that G has

property (A).

REMARK.1 A torsion-free group with property (A) need not be a
free group. The counter-example is the unrestricted direct sum of in-
finitely many infinite cyclic groups. This group has property (A) and
is not free [2, p. 216],

EXAMPLE. Let G be the unrestricted direct sum of infinitely many
infinite cyclic groups. Then G has property (A).

Proof Let g e C, g = ΣΓ-i &A> where G is the unrestricted direct
sum of infinite cyclic groups (a). Let m = (ki9 I = 1, 2, •)• Then g.c.d.
there exists a finite subset of the kt9 say &χ, k2, , &„, such that g.c.d.
(klf k.i9 , &w) = m. Then we have

9 — Σ ^ A = Σ ml&n — m Σ ^A + Σ ^ t

where g.c.d. (l19 , ln) = 1. Let

0i = Σ ^ t + Σ ίi«ι

and

H = U = Σ r t 4 α f e G\a, = 0, i = 1,2, . . . ,
( i = l

Then G/ίί is isomorphic to ΣΓ® (°O> a free Rro^P of rank n. Now,

(H, flrO/H = ( Σ U + H )

1 This remark and the following example are due to R. A. Beaumont.
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is a cyclic subgroup of G/H. By the theorem on subgroups of a free group
of rank n, there exists a basis vl9 v29 •••, vn of GjH such that

Thus

so that (eβi — Z0<̂  = 0> i = 1, 2, , w. Hence ϊ4 = e/9o i = 1, 2, , n
and

g.c.d. (Zj, 4, , ln) = g.c.d. (eβl9 eβ2, , β^) = e = 0 .

We have proved Σ?-i ^α« + H = Vi, so that

Then G = fe)0G', and g — mgλe (gj. The problem of characteriza-
tion of torsion-free groups with property (A) is still open.

3. Groups with property (B), We prove first that for primary
groups, properties (A) and (B) are equivalent.

LEMMA IV. A primary group G has property (B) if and only if it
is of the type

Proof. The necessary condition follows from Lemma III since prop-
erty (B) implies property (A). Conversely, suppose that G~M@N
where

M=ΣΘ Uvh) and N s Σ φ W 1 )
λ μ,

Let H be a subgroup of G. Then,2 ( S n I ) c S . Since both HΠM
and ΪZ" are of bounded height in H, by [1, Lemma 11], applied to the
primary group H, we have a basis {haj U {K2} of i ϊ such that

and

2 We denote the lowest layer of a primary group K by if. Thus K = {a? 6 JK" | £># = 0}.
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By Lemma III, every hΛ is contained in a cyclic direct summand (ga) of
G. We are going to prove that {gΛ} — {gΛi} \j {gΛ2} is a pure independ-
ent subset of G. The independence of {ga} follows from the independ-
ence of {hΛl} U {/&*a}. We need only prove that

is pure in G. It is sufficient to prove that every gx e ft has the same

height in Gx as in ft by [1, Lemma 7]. The element gx(ψ 0) e f t can
be written as

where (Z4, p) = (lJf p) = 1.
If the first sum does not occur in the above expression for g19 hGl{g*) — h,

which is the maximal height of the element of order p in G, and we
have hGl{gτ) = hG(g1).

If t h e first s u m does occur t h e n gτ = g[M) + gγ° w h e r e g[m{Φ 0 ) e I

and g[N) e N.

Since G = .M® JV, it follows that

hG{gι) - min (^(flfί^), M ^ ) ) = h - 1

which is the minimal height of the element of order p in Glf hence

Therefore, {̂ Λ} is a pure independent subset of G. By [1, Lemma 11]
the set {gΛ} can be enlarged to a basis {gβ} of G7 which is the desired
one.

LEMMA V. A torsion free group G has property (B) if and only if
it is a free group of finite rank.

Proof If G is a free group of finite rank, by the theorem on the
subgroups of a free group of finite rank, it has property (B).

It is well known that a group of order σ is isomorphic to a factor
group of a free group of rank σ, and for any infinite cardinal p there
exists a group of order p which is not a direct sum of cyclic groups.
Since the group G with property (B) is a free group, we shall show
that it must be of finite rank. Suppose to the contrary that G is of
infinite rank. Then, select a subgroup V of G such that GjV is not a
direct sum of cyclic groups. It is clear that G cannot have property
(B) with respect to V.

THEOREM B. A group G has property (B) if and only if either
(a) G is a free group of finite rank, or
(b) G is of the type
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ΣΘΣΘ

Proof. The sufficiency follows from Lemma IV, Lemma V and the
General lemma. Since (B) implies (A), G must be a torsion-free group
or a group of the type (b) by Theorem A2. If G is torsion-free, by
Lemma V, G must be a free group of finite rank. Therefore, the con-
dition is also necessary.

4Φ Groups with property (C) We note first that (C) implies (A)
and (B). It is immediate that (C) implies (A). Let G have property
(C) and let {ha} be a maximal independent set in G. Then there ex-
ists another independent subset {gΛ} of G such that hae (gΛ), and ({gα})
is a direct summand of G. Since {hΛ} is maximal, G = ({&»}), that is
G is a direct sum of cyclic groups. If {K} is a basis of a subgroup
H of G, then the independent set {gΛ} such that hΛ e {gΛ) is pure (since
({9*}) is a direct summand) and can be enlarged to a basis of G by [1,
Lemma 11]. Hence (C) implies (B).

LEMMA VI. A primary group G has property (C) if and only if it
is of the type

Proof Since (C) implies (A), the group G is of the type

If both sets of indices for λ, μ are non-empty, then there exists (ut) φ (u2),
a direct summand of G such that o{uτ) — h >̂ 1 and o(u2) — h + 1.
Now, consider the independent subset {ph'τuu ph-Ύuλ + phu2} of G. It
is clear that

phu2 6 (ph~ιuu ph-ιuλ + phut) .

If there exists a direct summand V — (u^ φ (%2) of G such that

ph~lux e (uι), ph~ιux + phu2 e (u2), then

Since phu2 e F, we must have

hv{phu2) = h = min.

which is a contradiction, therefore the condition is necessary.
Conversely, if G is of the type

ΣΘW),
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then it follows from Lemma III, that any element h^ of an independent
subset {hΛ} of G can be contained in a cyclic direct summand of G,
viz., (ua). Now, we are going to prove that {ua} is a pure independent
subset of G, hence by [1, Theorem 7], U — Σ<* © (ua) is a direct sum-
mand of G. The independence of {uΛ} follows immediately from the
independence of {ha}. Since every element x of order p in U has height
h — 1 in U which is the height of x in G, Z7 is pure in G, by [1,
Lemma 7]. Thus, G has property (C).

LEMMA VII. A torsion free group has property (C), if and only if
G — I {the integers).

Proof. If G = /, it clearly has property (C). Conversely, we shall
prove that G = / is also necessary. Suppose to the contrary that G is
a free group of rank not less than 2. (Since (C) implies (B), G is a
free group of finite rank.) Then, there exists a subgroup V of G such
that

Let ux and u2 be the generators of Z(p) and Z(p3), respectively. Let H
be the complete inverse image of (ux + pu2) with respect to the homo-
morphic mapping of G onto Z(p)@ Z(p3). Then, H is a free group of
finite rank, therefore, a group with property (B). There exists a basis
{vΛ} of V and a basis {hβ} of H such that for any vΛ there is an hΛ e {hβ}
with the property vΛ e (hΛ). If G is a group with the property (C),
then there exists a basis {gy}, such that hβ e (gβ) for all β, where
ββ e {</γ}. Hence GjV^Σ**® (9«)l(v«) and HI V = Σ * θ (^)/(O where
(hΛ)l(vΛ)c(g*)l(vΛ). Since H / F ^ ( ^ + ̂ 2 ) is cyclic, ίf/F - {hΛ)\{va)
consists of a single summand of order p2 which is contained in a cyclic
direct summand of G\V ~ Z(p)@ Z(pd) of order p3. Thus ux + pu2 =

pu2, where (u2) is a direct summand of GjV. This implies that
ho/vtyi + pΰ2) = 1, but on the other hand it is clear that ^G/F(^I + V^ί) = 0.
This contradiction completes the proof.

THEOREM C. A group G has property (C), if and only if either

(a) G = /, or

(b) G is o/ £/&£ type

Proof. Since (C) implies (A), the theorem follows from Theorem
Al9 Lemma VI, Lemma VII and the General lemma.

5* Conclusion* We have analyzed the groups characterized by
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their independent subsets. The classical theorem on the subgroups of
a free group Un of finite rank is obviously a particular case of Theorem
B Theorem A, Theorem Ax and Theorem C are its generalizations.

I extend my sincerest appreciation to Professor Ross. A. Beaumont
for his suggestions, comments and corrections in the preparation of this
paper. And I wish to thank my friends for their encouragement.
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