
(C, oo) AND (H, oo) METHODS OF SUMMATION

G. SZEKERES AND A. JAKIMOVSKI

1. Introduction. Let

T: ί» = Σ r » , α , , n = 1, 2,

be a linear transformation of the sequence a = {αw} into the sequence
0 = {βn} we write

β = Ta, βn = (β)n = (Ta)n.

a is said to be summable T to the value a if

(1)

and Ϊ7 is said to contain T if every sequence summable T to the value
a is also summable U to α. In particular T is called regular if it con-
tains the identity transformation /.

We shall generalize the concept of regularity in several directions.
A sequence of transformations {Tk} (k Ξ> 0, To = I) will be called regular
if each Tk is included in Tk+1. As an example of a regular sequence
we mention the iterates of a regular transformation T they are defined

Ta = a , Γfc+1<α = T{Tkά) , fc = 0, 1, 2, .

Given a regular sequence of transformations, {Γfc}, we say that α is
summable T^ to a if

lim (Tka)n = αw

exists for rc ^ ^0 and lim^oo^ = a. For T^ to be significant, it is plainly
desirable that it shall contain each Tk. A regular sequence {Γfc} will
be called strongly regular if, whenever for some k lim^oXΪVx),, = a, then
α is summable IL to α. With trivial modifications these definitions also
apply to families of transformations Γλ which depend on a continuous
real parameter Λ ;> 0.

Of particular interest are sequences of transformations of the type

( 2 ) {Tka)n = i ^

where ε is the unit sequence εw = 1, ra = 1, 2, , and Γ is a transforma-
tion such that Tke exists for k ^ 0. By an extension of the concept of
regularity we say that T is strongly regular if the particular sequence (2)
is strongly regular, and summability T^ for this sequence will be denoted
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by summability (Γ, oo).
To examine the usefulness of these concepts and in particular the

possibility of 'infinite iteration', let us consider the Holder process

(Ha)n = i- f ocm .
n m-i

It follows from

1 1
/ TTIr.4.1 Λ . \ i •*• /ΓTfcΛΛ( f f « α ) M = ^ _

ft ro-1 ft ft

by induction on ft, that

lim (ΈPa)n = α x ,

for every ft. Thus we find the disconcerting result that every sequence
is summable (H, oo) to the first term of the sequence.

Similary if (Ca)n = Σ ϊ = A > we have

ΎYI + k — 1\ /^fc x _ /ft + Λ — 1
ft — m y m > i , λι — ^ % _ i

a n d h e n c e

for every ft. As in the case of (H, oo), we find that the (C, oo) limit
always exists and is equal to the first term of the sequence. Thus
neither the Holder, nor the Cesaro process is strongly regular, and
infinite iteration gives nothing useful.

In the next section we shall reconsider the problem of (H, oo) and
(C, oo) from the point of view of generalized limits of functions; this
will lead quite naturally to strongly regular transformations. Here we
mention an interesting example of a strongly regular family of trans-
formations, known as the 'circle methods' of Hardy and Littlewood.
For λ > 0 define

( 3) (Tκa)n = />••! Σ (™) (1 - P)m-nam , n ^ 0 ,
m = w \ft /

where p = e'λ (3) certainly exists if

(4) Ϊim|<xw|1/M ^ 1

If a satisfies this condition and μ > λ ;> 0, then Tμ contains Tλ this
follows from the regularity of Tk and the formula

( 5 ) Tμa = Tμ.κ(Tλa)

which is valid for sequences satisfing (4) (See [4, p. 218]). It is seen
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directly from the definition of Tλ that if lim an = a then for every

fixed n ^ 0,

lim {Tλa)n = a

it follows, by (5), that lim^JT^cήn = α for some λ > 0 implies
liniμ^T/x)?* — α Hence TΌo contains 2\, and the family ϊ \ is strongly
regular, at least for sequences which satisfy the condition (4).

2. (C, oo) and (H, oo) limits. Let us consider the problem of in-
finite iteration from the point of view of generalized limits of functions.
For the sake of definitness we consider limits at x = oo. We say f(x)
has a (generalized) limit a at x — oo by the process

( 6 ) Γ: Tf(x)= \\(x,t)f(t)dt
Jo

if \imx^coTf(x)ITe(x) = α, where e(x) is the unit function e(x) = 1 for all
a? > 0 we assume that

T«e{x) = Γτ(tf, ίOciίxΓτίt!, ί2)dί2 \~(tk-lf tk)dtkJ J J

S CO

φ(t)dt are understood
0

to be improper Lebesgue integrals in the following sense : φ(t) is assum-
ed to be L-integrable in every interval 0 < ί 1 ^ ί ^ ί 2 < o o and

[°φ(t)dt = lim [φ(t)dt + lim
Jθ 8 j θ J ε a Too

The domain of T is the class of functions f(x) for which the integral
(6) exists but since we are interested in the limit of f(x) when x -> oo f

it is convenient also to consider the subclass of these functions in the
domain of T for which f(x) — 0 for x < x0 (where xQ is not necessarily
the same number for every /(#)). This subclass will be called the
essential domain of T.

The definitions given in § 1 apply equally well to transformations of
the form (6) in particular, T is called strongly regular if the sequence

( 7 ) TM = %$\, £^o,
Tke(x)

is regular and lima!_>ββ2
7

fc./](aθ = a for some k > 0 implies

lim lim Tkf(x) = a .

The natural analogues of the Cesaro and Holder limits at x = oo
are obtained by the transformations

1 Unless the contrary is stated, letters k.m.n, denote non-negative integers,
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Cf{x) = [f(t)dt
Jo

Hf(x) = —\Xf(t)dt = Fflαί)dί
a? Jo Jo

and

their domain is the class of functions L-integrable over every interval

0 < tλ ^ t ^ t2 < oo for which \f(t)dt (as an improper integral) exists.
Jo

Denote this class by Φ1>0. Clearly f(x) e Φ1>0 implies the existence and
continuity of Cf(x) for x > 0 and \imxί0Cf(x) = 0 therefore Ckf(x) exists
for every k > 0. On the other hand Hkf(x) does not always exist when
f(x) 6 0 M for example f(x) = (a? log2^)"1 is in 0ljO, but notf(x) = (x log a?)"1,
so that IΓf(x) does not exist We denote by Φky{) the class of functions
for which EPf(x) exists Φ^^ denotes the intersection of all classes Φk>0

0o,o denotes the class of functions L-integrable over every interval
0 < tτ ^t ^t2 < oo. For later use we also define : ΦQtVaf the class of
functions s(x) such that f(x) = s(l/#) is in Φm>0 Φkm = 0fc>o Π ΦQ,m. If
s(x) 6 Φfc>m then /(^) = β(l/a?) e (?m)fc. Finally 0, shall denote the class of
functions for which \ f(t)dt exists, and ΦB is the subclass of bounded

Jo

functions of Φ0}0 clearly Φ1 is a subclass of Φ1Λ and ΦB is a subclass of
^ 0 0 , 0 0 .

The examination of the infinite iteration of the C and H methods
for functions leads to a result which is analogous in some respects to
the corresponding result for sequences. It turns out that the limit by
(C, oo) or (H, oo), if it exists at all, depends on the behaviour of the
function in the neighbourhood of zero rather than infinity. If in parti-
cular \imxίQf(x) = a exists then

lim HkJ\x) = lim Ckf(x) = a
fc->oo fc->oo

for all x > 0. More generally we shall show :

THEOREM 1. Suppose that f(x) e ΦlιQ and

( 8 ) lim Ckf(x) = a
310

for some k ^ 0. Then

( 9 ) lim Cnf(ξ) = a
n—>oo

for every fixed ξ > 0 .

T H E O R E M 1 * . Suppose that f ( x ) e Φkf0 for some k^O and

(8*) \im Hkf(x) = a,
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Then f(x) e ΦootQ and

(9*) lim Hnf(ξ) = a

for every fixed ξ > 0.

Theorem 1 and Theorem 1* show that although C and H are not
strongly regular with respect to x f oo , they are strongly regular with
respect to limits of the form

(10) lim CJ{x) and lim HJ{x) .

Generalized limits of the type (10) were first considered by Hardy and
Littlewood in connection with the summability problem of Fourier series
[5] in the present context they appear as natural extensions of the
Cesaro and Holder processes distinguished by the property that they
admit infinite iteration.

Proof of Theorem 1. For k > 0 we find by repeated integration by
parts

(ID c«f(χ) = TΓ—TT \\* - ty-
(k — 1)! Jo

(11*) C*e(x) = -A-xk, x > 0
kl

and

(12) Ckf(x) = ftf\l - t)k-ιf(xt)dt , fc > 0 .
Jo

The relations (11) and (12) define Ck and Ck also for non-integral k > 1.
The existence of Cσ/(#) for σ > 1 can be seen from

the expressions on the right have a limit when ε | 0, since limxioQf(a?) = 0.
Clearly Cσf(x) is continuous for σ ^ 1, a; > 0, and \imxi0C°f(x) = 0. By
partial integration we obtain, for fixed ξ > 0 and σ- > & 2

(13) cσ/(f) = - ^ i L
/χ& + l)Γ(σ — k)

This can be regarded (for fixed ξ and k) as a transformation from
Ckf(ξt) to Cσf{ξ) and Theorem 1 is proved if we can show that this
transformation is regular. Now regularity follows immediately from a
remark to § 3.5(3) in [4, p. 61], since the following three conditions are
satisfied:

2 This is a well-known identity; see for example [2, p. 3],
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(1)

(2)

Γ(k
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Γ(σ + 1) n _ ty-*-φ ^ 0 far σ>k, O ^ t ^ l .
σ-k)

Γ(σ

TJk""
(3) For a fixed x, 0 < x < 1, and a fixed k,

lim
Γ(k k)

f' (l - = 0

since

0 <
l)Γ(

1) f1 (i _ tY-k-ι
-k-ιtkdt

Γ(λ; + l)Γ(σ - Λ) .

Γ(fc + V)Γ{p -k + 1)
as

Proof of Theorem 1*. We note first that Hke{x) = 1 for every & ̂  0,
a? > 0, and conditon (8*) implies that EPf(x) is bounded for 0<#^ikf+oo.
Therefore Hmf(x) exists for m ^ ί; and hence /(#) e Φoo,0. Condition (8*)
implies

(14) Hkf(x) = a + ψ{x)

where \ιmxiQψ(x) = 0 we have to show that \imn^<x>H
nψ{x) = 0. For

bounded functions repeated partial integration gives

(15) H*+f(x) = -^(Ylog ±)kf(xt)dt , A; ̂  0 .

Thus the statement to be proved is, that for any fixed ξ > 0,

(16) lim [—(log λ)nψ(ζt)dt - 0 .
rctoo Jon I \ t /

Choose 5 > 0 so that | <p(ξt) \ < ε/2 f or 0 < t < δ and let | ψ(ξt) \ < K for
0 < t ^ 1 then

n\ Jo
i
2

for

which proves (16) and our theorem.
The proof of Theorem 1 suggests that limn_ooCn/(£) = a implies

limσTooCσ/(?) = a. The following lemma shows that this is in fact so.

LEMMA 1. Suppose that g(x) e Φ1)Q and
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(17) lim n I (1 — t)n~ιg(t)dt = α .
n^oo Jo

(18) lim σ P(l - tγ-ιg{t)dt = α .
σjoo Jo

Proof. The proof follows easily on integration by parts and by

noticing that the function G(x), defined by G(x) — \ g(t)dt, is bounded
Jo

for 0 < x < 1 and that \imxί0G(x) = 0.
In the formulation of Theorem 1 and Theorem 1* we have made a

distinction between the limits (8) and (8*). This is not really necessary :
the two limits are equivalent.

THEOREM 2. f(x) e Φkι0 and

(19) lim Ckf(x) = a

for some k > 0 imply

(20) lim Hkf(x) = a .

Conversely, f(x) e Φk)0 and (20) imply (19).

THEOREM 2*. f(x) e ΦliQ and

(19*) lim Ckf(x) = α

/or some h > 0 impfo/ ίAαί /(#) 6 Φfci0

(20*) lim Hkf(x) = α .
l Oa s l O

*)Conversely, f(x) e Φk>0 and (20*) impZi/ (19*).

Theorem 2 and Theorem 2* are the continuous analogues of the
well-known Knopp-Schnee equivalence theorem for sequences. Note that
in the first statement of Theorem 2 it is necessary to assume f(x) e Φtet0

otherwise it may happen that Hkf(x) does not exist, for example f(x) =
(#2 log x)'1. This is not a serious restriction, though, since the assump-
tion only affects the behaviour of f(x) in the neighbourhood of 0 and is
obviously satisfied in the essential domain of (C,k). There is no restric-
tion of this kind in Theorem 2* where the assumption f(x) e Φlt0 and
the existence of the limit (19*) automatically ensures that f(x) e ΦkiQ.

Theorem 2 is due to Landau [7] Theorem 2 is stated (without proof
and without specifiying the precise conditions of f(x)) by Hardy and
Little wood [5, p. 96]. It can be proved by an argument similar to the
one used in [4, p. 112].
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Once we have established the strong regularity of the limits (10),
there is no difficulty in constructing strongly regular methods for x t °°
and hence for sequences. We first note that limits at 0 by any method
T can be converted into limits at oo by a ' reciprocal' method T* which
is defined as follows.

Suppose that T is given by

Tf(x) = f
Jo

t)f(t)dt .

To indicate clearly the function that is transformed and tne point where
the transform is taken, we shall use the notation

Tf{x) = T[f(t)](x) .

By an obvious change of variable

θ = \"Aτ

= !"[/(j
where

τ*(x, t) = t-h(K
\χ

Clearly

T"[/(ί)](-ί) = T** [/(y)](«) - k = 1, 2,

Therefore

implies

and conversely. Also

Km Tt[Λt)l(-) = Hm Γ*Γ/(i-)Ί(α;) ,

in the sense that if one of the expressions exists then so does the other
and the two are equal. It follows therefore that if T is strongly regular
with respect to x \ 0 then T* is strongly regular with respect to α? | °° •
In particular

(25) Q*s{x) = [~t-2s(t)dt,
Jx
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and

(26) fl*φ) = α J Yaβ(*)dί = (°°^s{xt)dt

are strongly regular for x\ oo. Note that the domain of C* and if* is

0o.i.

The processes (25) and (26) can easily be converted, if we wish,
into strongly regular methods for sequences for instance

(27) (H*a)n = n± /V-n
m=n m(m + 1)

is such a method. Its strong regularity is proved if it is shown that
βn-+0 implies limfc_>oo(ίZ'*A: )̂w = 0 for every fixed n. This can be shown
for instance by comparing the sequence (H*kβ)n with suitable integrals
and applying Theorem 1*.

Altough the method (27) is equivalent (in the ordinary sense) to
(H, 1)3, the two methods behave very differently from the point of view
of iteration. The Holder process has no useful infinite iterate whereas
the process (27) has an infinite iterate which contains (and is compatible
with) every finite (iϊ*, k). There exist in fact sequences (both bounded
and unbounded) which are summable (if*, oo), but not summable by any
finite (if*, k) and (if, k) 4. On the other hand, there exist (unbounded)
sequences which are summable (Ht k), but not by any (H^f k), k > 0
for instance (H^y 1) is not even applicable to an = ( — l)nn(n + 1). This
raises the question of the relative strength of (H^f k) and (Hy k) we
shall consider the problem only for the continuous case.

The following theorem is due to R. P. Agnew [1] it is the con-
tinuous analogue of Knopp's equivalence theorem and asserts the equiva-
lence of H and H^ for functions.

THEOREM 3. f(x) e Φ0A and

(28) lim x f V2f(t)dt = a

imply f(x) e Φhl and

(29) lim x-1 [Xf(t)dt = a .
z j O Jo

Converesely, f(x) e Φ10 and the existence of the limit (29) imply
f{x) 6 Φltl and (28).

A similar statement (with Φ01 and ΦhQ interchanged) holds when
x 10 is replaced by α? f oo.

3 A proof is given in [6, p. 487].
* Examples for the continuous case will be given below.
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In the general case of (C, k) and (C*, k) or (H, k) and (iϊ*, k) a
stronger assumption on f(x) is necessary. Because of the Theorem 2
and Theorem 2* it is sufficient to consider one of the possible combina-
tions, say C and C*.

THEOREM 3.* Let f(x) e Φhl and suppose that for some n > 0y

(30) lim C:f(x) = a

then

(31) Km Cnf(x) = a .

Conversely, the existence of the limit (31) and f(x) e Φltl imply (30).
A similar statement holds when x I 0 is replaced by x f oo.
Theorem 3* shows that (C, n) and (C*, n) are equivalent within Φ1Λ,

that is within the class of functions to which both methods are applic-
able. However, if we disregard the difficulty that f(x) may behave
badly at oo (0) when we are interested in the limit at 0 (oo), that is, if
we restrict ourselves to the essential domain of the two methods, then
it appears that C* includes C for limits at 0, and C includes C* for
limits at oo. C* is actually stronger than C for x I 0, as shown by the
example f(x) — 2x'3 sin ar a. In fact C[2£~3 sin t~2](x) does not exist since
the function is not integrable down to 0, but

C*[2r3 sin t'*](x) = — i + sin - ί

\χ

hence

This example shows that the condition f(x) e Φltl cannot be relaxed and
for instance f(x) e ΦO>1 and the existence of lima.10C*/][ίi?) = a does not
imply f(x) e Φltl.

For the proof of Theorem 3 we need the following lemma.

LEMMA 2. Given oo ̂  αx ̂  α2 ̂  ^ an > 0, n > 0, andf(x) e ΦλΛ.
Let fk(x) for k = 0, 1, , n be defined by

fix) =J\χ) , fk(χ) = I t-%^(t)dt for k>0 .

Then

l i m xkJrlfk{x) — 0 for k = 1, 2, , n ,
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rx

Proof. \ f(t)dt exists by assumption. Therefore given ε > 0 we
Jo

can choose a positive δ such that
[f(t)dt < ε

for every 0 < ξ < η < δ. Let ξ < δ. By the second mean value theorem

HV2/(ί)cZέ = [f(t)dt

for some ^ in the interval (ξ, δ). Hence

Also

\'t-2jχt)dt

1 (

< e for every 0 < ξ < δ .

< ε for every 0 < ξ < ξQ g

provided that £0 is sufficiently small. Therefore

< 2ε for every ξ in (0, £0).

This proves the lemma for fc = 1. Suppose now that k > 1 and Λ-i(a?) =
o(α?-fc), as α?|.O. Given ε > 0 choose δ ^ aft so that |Λ-i(£)| < εέ~fc for
0 < t < δ. For 0 < x < δ

) I ^ +
But

and
k + 1

k + 1

provided that x is sufficiently small, 0 < x < x0 <£ (5, say. Therefore
) I < εa?-fc-1 for all a;, 0 < x < a?0 = a?0(ε).

COROLLARY. For k > 0 cmd

0.
have C*kf(x) =

Proof o/ Theorem 3*. For simplicity we shall write D = C* through-
out the proof. It is convenient to prove the first statement of the
theorem in the following more general form : Suppose that f(x) e Φ1Λ

and for some n > 0 and p ;> 0,

(32) lim p)ϊ xn+pDn+pf{x) = α ,
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t~2f(t)dt then for every r ^ 0, a ̂  0
X

(33) lim (S + n) ΛP + r) . .χ-Cn*s)Qn^.p+r+8j)i

The proof is by induction on n. We first note that (32) implies

(34) Dmf(x) = —-L ar™ a + o(x~m) , as x | 0,
m !

for every m ̂  n + p. Now let k ̂  0 and m ̂  ?z + p. We have, by
partial integration,

k(m - 1 ) ! a?

= -k(m - 1 ) ! χ-k[tm+kDmf{t)]x

0

+ k(m - 1)! (m

The first expression on the right is — k(m — 1)! xmDmf(x) which, by (34),
tends to — (kjnήa when a? J, 0 similary, the second term tends to
[(m + fc)/m] α. Hence

(35) lim k(m - 1)! x~* [ V^-'Z^-yiφdέ - α .
x i o Jo

This proves (33) for n = 1 (with & = s + l, m = p + r + l). Note that
f(x) e (̂ 0)1 and the existence of the limit (32) implies the existence of
the integral in (35) therefore in particular f(x) e Φo>1 and (28) in Theorem
3 implies f(x) e Φ1Λ and (29). Suppose now that n > 1, and write
m = n + p + r, r ^ O . We have

k(m - 1 ) ! χ-x

- k(m - 1) ! x-^tΓ^dt, [°t^dtz f" tZ^dtnS t-*D^f{tn)dtn
Jo J f l Jίn-a J i n-1

= k(m - 1)! χ-k\lJM-1f(x)[Xt?+k-*dt1 + D^fix^tr+^dtX t;2dt2
{ Jo Jo Jtj_

(m + k — l)!i.^i

(36)

The last expression in the brackets is obtained by repeated partial
integration, and using Lemma 2 Equations (35) and (36) give
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J——α
p + r)l

*vι 0" + k + P
(k + p + r)ϊ

Hence

(A; - 1)!

(ί» + r)J_(»_+_Λ + p + r - . 1 ) ! α

(& + p + r ) ! (n + p + r - 1)!

_ t ι (w + k - 1)! (k + i +_p_+r - 1)! (Pjf r ) ! —-*+ i
j-i (Λ + p + r)!(Λ"-ΊL)Γ~

+ o(l) .

Here we have, by the induction hypothesis (33), applied to Df{x) instead
of f(x) and n — 1, p + 1,

l a c ? [ ί Z ) / ( ί ) ] ( a j ) = α
A/ !

Hence by (37)

_ (p + r ) ! Λ ! ί(n + k + p + r - 1\ »=} (j + k + p + r - 1\\ .

= α + o(l) .

This proves (33). The proof of the converse is very similar. With the
notation s(x)~f(ljx) the converse statement can be formulated as
follows :

(30*) Km n ! xnDns(x) = a

implies

(31*) Km n \χ-nCns{x) = a .
X T *

The proof is identical with the derivation of (31) from (30) except that
f(x) has to be replaced everywhere by s(x) (which is also in Φltl) and
x I 0 by x t oo.

3* The relative strengh of the (H, oo) and (C, oo) methods. So far
we did not consider the relative strengh of the (H, oo) and (C, oo)
methods. We know from Theorem 1 and Theorem 1* that both these
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methods include the finite (H, k) and (C, Jή methods for x \ 0, more
precisely, if

lim CJ{x) = lim Hkf{x) = a

exists for some k ^ 0 then

/ ( ^ ί ^ / ^ ) and C/fr) = lim C^a;)
TO T oo TO ΐ oo

exist for every x > 0 and are in fact the constant function H«,f{x) =
Coo/M = α.

Now the following theorems show that this is always so : whenever
CΌo/fa) and Hoof{x) exist at all, they are a constant.

THEOREM 4. Let /(#) e Φz and suppose that for some fixed ξ > 0

(38) lim Cnf(ξ) = a

then

(39)
σ|oo

Conversely, f(x) e Φt and (39) imply

lim Cw/(#) = a

for every x > 0.

THEOREM 4*. Let f(x) e Φ^^ and suppose that for a fixed ξ > 0,

(40)

ίΛew /or βi βr?/ a; > 0

lim Hnf{x) = α .

Theorem 4 shows that (C, oo) is essentially equivalent to the Abel-
Poisson method L :

(41) Lf(x) = [°°e-f(xt)dt
Jo

in the. sense that limxί0Coof(x) — a if, and only if, limxl0Lf(x) = a provided
that f(x) is in the essential domain of the two methods. As a corollary
we find that L includes every (C, k)5 but we know of no example to
show that (C, oo) or L is actually stronger than the collection of every
(C,k). For bounded functions (C, oo) is equivalent to (C, 1) more
generally the following is true.

5 A dual of this statement, referring to x -> <», is proved by G. Doetsch in [3, p. 204].
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THEOREM 5. f(x) e ΦlιQ, f(x) = 0 for x ^ a?0, /(#) = O£(l) αrccZ C^fiμs)
= a, x > 0, im^%

lim Cx/(a?) = α .

Proof of Theorem 4. By Lemma 1 we can replace the integral
variable n by the continuous variable σ. The assumption f(x) e Φj im-
plies that JFXa?) = Cf(x) is bounded for x > 0 and \imxi0F(x) = 0. There-
fore we obtain f or σ > 1

(42)

ξ Jo

!ΓΎl - ».rVί!L
Jo \ σ/ \ σ*

= (σ - l)["e-σtf{ξt)dt
J

where all 0 and o symbols refer to fixed ξ and σf oo, Hence limσίooCσf(ξ)

= a implies limσίooσl e"σtf(ξt)dt = α. Therefore
Jo

lim p\ e~puf(xu)du = α
Pί«> Jo

for any fixed x > 0. By (42) we see that limpTooCp/(#) = a.

Proof of Theorem 5. Theorem 5 is an immediate consequence of
Theorem 4 and the following lemma, which is a special case of a well-
known Tauberian theorem for the Laplace transform (see [3, p. 210,
Satz 3]).

LEMMA 3. Suppose that g(x) = OL(1), \ e~σtg(t)dt converges for all
Jo

σ > 0 and

Then

lim — 1 q(t)dt = a .

lim σ\ e~σtg(t)dt = a .
σToo Jo

lim—I £
JC I 0 O* J 0
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The statement remains true if σ- \ oo is replaced by σ 10 and x \, 0 by x f oo.

Proof of Theorem 4*. Without loss of generality we may assume
a = 0 otherwise consider f{x) — a instead of f(x). Let xl9 x2 be two
fixed positive numbers a?x < ξ < a?Jβ Write gr(a?) = Hf(x). Then Hnf(x) =
Hn-τg{x\ for n > 0, and limn_oofl*0(6) = 0. We shall show that

(40*) Km Hng(x) = Km Hn+1f(x) = 0, uniformly for ^ ^ a? g a?a.

Denote

= — upper bound {\g(x) | xλ ^ a? ̂  x2} < + °° ,

We

(44)

u* = ι ip
prove that

l ^ ( * ) l
^ ξ

for

n I
V l

1

&> 0 .

x - ξ

X,

P

&n-p for a;

For n — 0 the statement follows from (43) suppose therefore that n > 0
and that (44) is true for n — 1.

— Hn-ιg(t)dt
X Jo

c Jo
+

.y.2

'fit)

n-i

•Σ
$ ; •

1

p\

t-ξ
xτ

e.-ι}

which proves the statement for n. From (44) we obtain, by writing

λ = max {£ — a?χ, a;2 — ζ},

(45)

But for any λ > 0,

a?) | ^ -^- Σ
a? o

p)!

is a regular transform of the sequence {sfc}, fc ^ 0 it follows therefore
that the expression on the right side of (45) tends to zero when n -> oo.

By Theorem 5 (C, oo) does not extend the range of (C, 1) for bounded
functions. This is in striking contrast with {H, oo) which is decidedly
more powerful for bounded functions than (H, 1). An example is
furnished by cos log #, or more conveniently by e~ίlogx. We find by
induction
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which has no limit at x = 0 by Theorem 2* and Theorem 5 it has
therefore no limit by (C, oo). On the other hand it has limit zero by
(ff,co):

\imHk[e'ίlost](x) = 0 for every x > 0 .
fc->oo

Also for unbounded functions (H, oo) appears to be more effective than
(C, oo) a suitable example is — x~lβ cos log # or x~ll2e'ilosX which can
be shown to have no limit by (C, oo), and limit zero by (H, oo). These
examples reveal a remarkable difference (in favour of the Holder process)
between the Cesaro and Holder processes which remains completely
hidden when finite iterations alone are considered.

For bounded functions repeated partial integration gives

(46) H^f(x) = yytYlog -f Xf(xt)dt
k ! JoV t /

and we find the following analogue of the equivalence of (C, oo) and L
for (if, oo):

THEOREM 6. Let f(x) e ΦB and

I0(x) EE J0(ix) = Σ y ^
(ft !

(47) lim f'-1 (log λ)njχt)dt = lim β- [f(t)lh(v log 4-)
w ̂ oo J o n ! V ί / «̂ oo Jo \ V t /

ijf one side exists then the other side exists too and
they are equal.

By making use of the well-known asymptotic expression

IQ(x) = (2τr)-1/2^-1/4^(l + 0 (—Y) , as x t 00 ,

Theorem 6 can be put in a more convenient form. For bounded func-
tions we have

lim eA
JO

= lim ±π-
lise-Λ f(t)( v log — ) exp 2( v log — ) \dt

»too 2 J o V ί / L \ ί / J

- lim π-A~f{e-u") β-c—)2 . ( ^ d u
σfoo Jo \ σ J

(by the substitution v = σ2, ί = β~w2), and the latter is easily seen to be
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equal to

lim π-^
σt°° JO

This gives

THEOREM 6*. Let f(x) e ΦB then \\mx[j{x) = a by (H, oo) if, and
only if,

lim π M Λ β ) β d u lim
Jo ι>t~ 2

The following estimate of (H, oo) for bounded functions is weaker,
but it has the advantage of great formal simplicity.

THEOREM 7. he f(x) e ΦB and suppose that for a fixed ξ > 0

then

Theorem 6, Theorem 6* and Theorem 7 do not remain valid for
unbounded functions a suitable counter example is ar1 / 2coslog(l/#). Also
the converse of Theorem 7 is not true a counter example is furnished
by f(x) = exp (i(log l/a?)1/2). Clearly

λ[xf(e-nt)dt = — ("exp (ir1/2)dέ = O(xιlί) -> 0 when x | 0 .
07 Jo ί» Jo

On the other hand

lim Γ^-flog 1Y exp \i (log i)1/2]di
w->oo J o w l V έ / L V ί / J

does not exist for otherwise by Theorem 6*

lim 7r"1/2\ exp {in — (u — σf)du
σΐoo Jo

= lim 7r"1/2 exp ( —— — iσ ) \ exp — ( u — σ ) \du
o-Too V u /Jo L V 2 / J

existed, But the last expression is asymptotically equal to e~ιlί"iσ when
CΓ I o o .

In the proof of Theorem 6 we use

LEMMA 5. Let f(x) e ΦB. Then for every fixed ξ > 0,

O(n-^) as n-+oo .
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Proof. Observing the relations

885

— [°un+1e-udu - —
(n + 1)1 Jx n\

= - 1 \une~udu - ί \ %n+

rc! Jo (n + 1)! Jo

we obtain

n ! ~ v/2πnn+ll2e~n ,

\f(t) \ ̂  K for a suitable constant K > 0 ,

1 \n fl 1 / 1 \w + l
• -1) dί - /(et)7_iττ(iog i ) dt

t s Jo (w + 1) ! \ t '

dt

-Λ: n\
e~udu

(n + 1)!

^ V2π " Vn"+Ϊ *

Proof o/ Theorem 6. By the regularity of the Borel transform,
im ôoŜ  = a implies

lim e~υ V, -8n.~ vw = a .

Hence

(48)

implies

lim Θ -
( I) V t

= lim β -

- l imβ- l o g -(49)

the interchange of the order of summation and integration is clearly
permissible if f(t) is bounded. Conversely, from Lemma 5 and the
Tauberian theorem of Hardy-Littlewood for the Borel transform [4, p.
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220, Theorem 156] we conclude that (49) implies (47).

Proof of Theorem 7. If in the proof of Theorem 6 we use the Abel
transform instead of the Borel transform, Theorem 7 is obtained. First

w — I at = α
7 z ! V £

implies

α = lim (1 - v) Σ ίVω-V(^log-Y^
f » τ i w=ojo n ! V ί /

= lim(l - v)(/(^"^
»t i Jo

= lim \~f(—)u-σ+1du
<r|0 Jl \ % /

= lim σ\
σjO JoJo

and this implies by Lemma 3

Km λ[xf(e-t)dt = lim #1/(0]0*0 = α -

By Theorem 3 the last equation is equivalent to

lim L[*f(e-U')dt = li
a lO X Jo x

= a .
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