(C, ») AND (H, «) METHODS OF SUMMATION

G. SZEKERES AND A. JAKIMOVSKI

1. Introduction. Let

T: ﬂn:irnm'amv n:192;"°

m=1

be a linear transformation of the sequence a = {a,} into the sequence
B = {A,}; we write

ﬂ =Ta s ﬂn = (lg)n = (Ta)n .
«a is said to be summable T to the value a if

(1) lim (Ta), = a ;

n—rco

and U is said to contain T if every sequence summable 7' to the value
a is also summable U to a. In particular 7' is called regular if it con-
tains the identity transformation I.

We shall generalize the concept of regularity in several directions.
A sequence of transformations {T.} (k = 0, T, = I) will be called regular
if each T, is included in T,.,. As an example of a regular sequence
we mention the iterates of a regular transformation 7' ; they are defined

Ta=a, Te=T(T), £E=0,1,2 --- .

Given a regular sequence of transformations, {T,}, we say that « is
summable T., to a if

%Gim (Tka)n = a’n
exists for n > n, and lim,_.a, = @. For T to be significant, it is plainly
desirable that it shall contain each 7',. A regular sequence {7} will
be called strongly regular if, whenever for some k lim,_ .(T:«), = a, then
« is summable T. to a. With trivial modifications these definitions also
apply to families of transformations 7', which depend on a continuous

real parameter 1 = 0.
Of particular interest are sequences of transformations of the type

_ (T*a),
(2) (Tya), = ’(Tke)’"

where ¢ is the unit sequence ¢, =1, n =1,2, ---, and T is a transforma-
tion such that T*e exists for k¥ = 0. By an extension of the concept of

regularity we say that T is strongly regular if the particular sequence (2)
is strongly regular, and summability 7., for this sequence will be denoted
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by summability (7', ).
To examine the usefulness of these concepts and in particular the
possibility of ‘infinite iteration’, let us consider the Holder process

(Ha)y =+~ 3 at,, .
n m=1
It follows from
cmw»——z&ﬁm—ﬁ‘Hmwml-gmmu

by induction on n, that
lim (H*a), = a, ,

k—oo
for every n. Thus we find the disconcerting result that every sequence
is summable (H, =) to the first term of the sequence.
Similary if (Ca), = >%..«,,, we have
Cap=3(""r " a,, ©a.=("F 1Y),

= n—m n—1
and hence

(C _
2 (),

for every m. As in the case of (H, ), we find that the (C, o) limit
always exists and is equal to the first term of the sequence. Thus
neither the Holder, nor the Cesaro process is strongly regular, and
infinite iteration gives nothing useful.

In the next section we shall reconsider the problem of (H, «) and
(C, o) from the point of view of generalized limits of functions; this
will lead quite naturally to strongly regular transformations. Here we
mention an interesting example of a strongly regular family of trans-
formations, known as the ‘circle methods’ of Hardy and Littlewood.
For 2 > 0 define

(3) (Lo = 0 35 (M) (L = Py "at nz0,

where p = ¢7*; (3) certainly exists if
(4) lim|a, " <1.

If « éatisﬁes this condition and ¢# > 21=0, then 7, contains 7 ; this
follows from the regularity of 7', and the formula

(5) Toa =T, \(T\@)
which is valid for sequences satisfing (4) (See [4, p. 218]). It is seen
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directly from the definition of 7', that if lim«, = @ then for every
fixed n = 0,
lim(T\a), = a;

A—roo

it follows, by (5), that lim,..(T,«@),=a for some 1> 0 implies
lim, ..(T.«), = a. Hence T. contains T',, and the family T, is strongly
regular, at least for sequences which satisfy the condition (4).

2. (C, ) and (H, ) limits. Let us consider the problem of in-
finite iteration from the point of view of generalized limits of functions.
For the sake of definitness we consider limits at x = . We say f(x)
has a (generalized) limit @ at £ = « by the process

(6) T: Tfw) = S:r(w, By f (t)dt

if lim, .. Tf(x)/Te(x) = a, where e(x) is the unit function e¢(x) = 1 for all
xz > 0; we assume that

Tre(w) = | et 80t ettr, )t - | (toms

exists for every k£ > 0.! Integrals of the form Swgo(t)dt are understood
0

to be improper Lebesgue integrals in the following sense : ¢(¢) is assum-
ed to be L-integrable in every interval 0 < ¢, <¢ < ¢, < o« and

S”go(t)dt = lim Slgo(t)dt + lim S”go(t)dt .
0 glo -4 xTeo J1

The domain of T is the class of functions f(#) for which the integral
(6) exists; but since we are interested in the limit of f(x) when & — oo,
it is convenient also to consider the subclass of these functions in the
domain of T for which f(x) = 0 for = < x, (where 2, is not necessarily
the same number for every f(«)). This subclass will be called the
essential domain of T.

The definitions given in §1 apply equally well to transformations of
the form (6); in particular, T is called strongly regular if the sequence

(7) Tufte) = 3.0 k=0,

is regular and lim,..7T.f(z) = o for some k& = 0 implies

lim im T, f(x) = a .

x—oo k—co

The natural analogues of the Cesaro and Holder limits at ¢ = «
are obtained by the transformations

! Unless the contrary is stated, letters k, m, =, --- denote non-negative integers,
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Cf() = S:f(t)dt
and

Hfw) = L iyt = | flanas

their domain is the class of functions L-integrable over every interval
0<t =t=t,< o for which Slf(t)dt (as an improper integral) exists.
Denote this class by @,,. Cleax?ly f(z) e @,, implies the existence and
continuity of Cf(x) for « > 0 and lim,,,Cf(x) = 0 ; therefore C*f(x) exists
for every & > 0. On the other hand H*f(x) does not always exist when
flx) e @, ; for example f(x) = (= log’r)~" is in @, ,, but not f(x) = (x log 2)™*,
so that H*f(x) does not exist; We denote by @,, the class of functions
for which H*f(x) exists; @.., denotes the intersection of all classes @, ;
@,, denotes the class of functions L-integrable over every interval
0<t =t=<#¢ < o. For later use we also define: @,,, the class of
functions s(x) such that flx) =s(l/x) is in @ny; Ppm = ProN Py If
s(x) € @y, then f(x) = s(l/x) € @, Finally @, shall denote the class of
functions for which wf(t)dt exists, and @, is the subclass of bounded

functions of @, ; cleaorly @, is a subclass of @,, and @, is a subclass of
@00'000
The examination of the infinite iteration of the C and H methods

for functions leads to a result which is analogous in some respects to
the corresponding result for sequences. It turns out that the limit by
(C, ) or (H, o), if it exists at all, depends on the behaviour of the
function in the neighbourhood of zero rather than infinity. If in parti-
cular lim,,,f(x) = a exists then

lim H,f(x) = lim C, f(x) = a

koo k—oo

for all x > 0. More generally we shall show :
THEOREM 1. Suppose that f(x) € D, and

(8) 11?3 C.f(@) =a

Sor some k= 0. Then

(9) lim C,/(¢) =

Jor every fixed & > 0.

THEOREM 1*. Suppose that f(x) € @, for some k = 0 and
(8%) ﬁ}’n H.f(x)=a,
zl0
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Then f(x) € @.., and
(9%) lim H,f(¢) = a
for every fiwed & > 0.

Theorem 1 and Theorem 1* show that although C and H are not
strongly regular with respect to x4 o, they are strongly regular with
respect to limits of the form

(10) li{n C.f(x) and lilm H,f(x) .

Generalized limits of the type (10) were first considered by Hardy and
Littlewood in connection with the summability problem of Fourier series
[5]; in the present context they appear as natural extensions of the
Cesaro and Holder processes distinguished by the property that they
admit infinite iteration.

Proof of Theorem 1. For k > 0 we find by repeated integration by
parts

(1) Cte) = gty Lo — orvinae,

(11%) Cre(a) = %'x , @ >0
and

(12) C,f(x) = kS:(l — O fat)dt E>0.

The relations (11) and (12) define C* and C, also for non-integral k > 1.
The existence of C7f(x) for o > 1 can be seen from

S:(x — byt = [(@ — 8GR — (o — 1)5”(90 YA ;
the expressions on the right have a limit when ¢ | 0, since lim,,,Cf(x) = 0.
Clearly C°f(x) is continuous for ¢ =1, # > 0, and lim,,,C’f(x) = 0. By
partial integration we obtain, for fixed £ >0 and ¢ > k *

— I (‘T + 1) ! o—k—11k
(13) Cofl® = o B = 50(1 — )L (S
This can be regarded (for fixed & and k) as a transformation from
C.f(&t) to C,f(¢); and Theorem 1 is proved if we can show that this
transformation is regular. Now regularity follows immediately from a
remark to §3.5(3) in [4, p. 61], since the following three conditions are
satisfied :

2 This is a well-known identity; see for example [2, p. 3].
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I'ic+1) \o— =14k
1 - 1—¢ t" =0 f kE,0Zt<1.
@) [+ Ol Y = ore >k 0=
P(U+1) S T-k-11k
2 1-1¢ thdt = 1.
@ 'k +1)I'(c — k) ( )
3) For a fixed o, 0 < 2 <1, and a fixed £,
 I'(c+1) S o-k-1tkJs
1 L e ttdt =
o+ DI — )Y 0
since
F(0'+1) Sl o-k-14k
0= 1—1¢ tEdt
= T+ Do — &)L~ Y
F(0'+1) S 1 — ¢)°-*-1d¢
= T+ Dl =)= Y
_ I'(e+1) (1 —z)y*—>0 as ol oo.

(k4 1) —k+ 1)

Proof of Theorem 1*. We note first that H*e(x) = 1 for every k = 0,
z > 0, and conditon (8*) implies that H*f(x) is bounded for 0 <z =M+ .
Therefore H™f(x) exists for m = k and hence f(x) € @..,. Condition (8*)
implies
(14) H* f(x) = a + ¢(x)

where lim,,,0(2) = 0; we have to show that lim,..H"¢(z) =0. For
bounded functions repeated partial integration gives

(15) He'f(z) = %LS (1og ) ‘Aat)dt £E>0.
Thus the statement to be proved is, that for any fixed & > 0,
(16) lim SI~*<log ) o(Et)dt = 0 .

nte Jog !

Choose 0 > 0 so that |¢(&t)| < ¢/2 for 0 < ¢t < & and let | ¢(ét)| < K for
0<t<1; then

|L.Sz(1og %)nw(ft)dt‘ < % € LS <log > dt==+¢,

n! n! 2
1 1\" 1
’nlg <log )(p(ét)dt)<K <1og5> <_2_s, for n = n,,

whichk proves (16) and our theorem.
The proof of Theorem 1 suggests that lim,..C"(§) =a implies
lim,;.C,f(¢) = a. The following lemma shows that this is in fact so.

LEmMMA 1. Suppose that g(x) € @, and
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an lim 7 - S:(l — gt = a .
Then
(18) lim o -S:a —tg(t)dt = a .

Proof. The proof follows easily on integration by parts and by
noticing that the function G(z), defined by G(x) = rg(t)dt, is bounded
for 0 < 2 < 1 and that lim,,,G(x) = 0. '

In the formulation of Theorem 1 and Theorem 1* we have made a

distinction between the limits (8) and (8*). This is not really necessary :
the two limits are equivalent.

THEOREM 2. f(x) € @, and
(19) lim C.f(x) = a
x 1 oo

for some k > 0 imply
(20) li¥n H.f(x) =a.

Conversely, f(x) € @,, and (20) imply (19).

THEOREM 2*. f(x)e @,, and
(19%) lifn Cifle)=a
zl0

for some k > 0 tmply that f(x) € @, and
(20%) li{n H.f(x)=oa.
xzl0

Conversely, f(x) € @,, and (20*%) imply (19%).

Theorem 2 and Theorem 2* are the continuous analogues of the
well-known Knopp-Schnee equivalence theorem for sequences. Note that
in the first statement of Theorem 2 it is necessary to assume f(z) € @, ,;
otherwise it may happen that H%f(x) does not exist, for example f(z) =
(x*log 2)~'. This is not a serious restriction, though, since the assump-
tion only affects the behaviour of f(x) in the neighbourhood of 0 and is
obviously satisfied in the essential domain of (C, k). There is no restrie-
tion of this kind in Theorem 2* where the assumption f(zx)e @,, and
the existence of the limit (19*) automatically ensures that f(x) € @,,.

Theorem 2 is due to Landau [7]; Theorem 2 is stated (without proof
and without specifiying the precise conditions of f(x)) by Hardy and
Littlewood [5, p. 96]. It can be proved by an argument similar to the
one used in [4, p. 112].
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Once we have established the strong regularity of the limits (10),
there is no difficulty in constructing strongly regular methods for 1 «
and hence for sequences. We first note that limits at 0 by any method
T can be converted into limits at o by a ‘reciprocal’ method T* which
is defined as follows.

Suppose that 7' is given by
T(w) = | o, .10t
0

To indicate clearly the function that is transformed and tne point where
the transform is taken, we shall use the notation

T fl@) = TLA())=) .

By an obvious change of variable
mo(2) = (L o
- S:r*(w, t)f (%)dt

e

where
o = (L, 1)
Clearly
ron(d) =D, ket
Therefore
lim T,[f(#)l(z) = a
implies

1 * _1_ ] P
ilgolTk[:f<t) @) =a,
and conversely. Also

o ninen(d) =t ()

in the sense that if one of the expressions exists then so does the other
and the two are equal. It follows therefore that if 7' is strongly regular
with respect to @ | 0 then T™* is strongly regular with respect to ot .
In particular

(25) C*s(w) = S:t'2s(t)dt ,
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and
(26) H*s(a) = xrt"s(t)dt = rt'*'s(wt)dt
x 1
are strongly regular for x4 . Note that the domain of C* and H* is
Dy ;.

The processes (25) and (26) can easily be converted, if we wish,
into strongly regular methods for sequences; for instance

* — < Ay,
(27 (H*a), = an:n mim 4+ 1)
is such a method. Its strong regularity is proved if it is shown that
B. — 0 implies lim,_..(H**8), = 0 for every fixed n. This can be shown
for instance by comparing the sequence (H**8), with suitable integrals
and applying Theorem 1%*.

Altough the method (27) is equivalent (in the ordinary sense) to
(H, 1)3, the two methods behave very differently from the point of view
of iteration. The Holder process has no useful infinite iterate whereas
the process (27) has an infinite iterate which contains (and is compatible
with) every finite (H*, k). There exist in fact sequences (both bounded
and unbounded) which are summable (H*, o), but not summable by any
finite (H*, k) and (H, k)*. On the other hand, there exist (unbounded)
sequences which are summable (H, k), but not by any (H* k), k> 0;
for instance (H*, 1) is not even applicable to «, = (—1)"n(n + 1). This
raises the question of the relative strength of (H*, k) and (H, k) ; we
shall consider the problem only for the continuous case.

The following theorem is due to R. P. Agnew [1]; it is the con-
tinuous analogue of Knopp’s equivalence theorem and asserts the equiva-
lence of H and H* for functions.

THEOREM 3. f(x)e€ @,, and

(28) lim @ -rt‘%f(t)dt _

zl0

wmply f(x) € @,, and
(29) limar rf(t)dt ~a.
zl0 0

Converesely, f(x)e @,, and the existence of the limit (29) imply
flx) e @,, and (28).

A similar statement (with @,; and @,, interchanged) holds when
2 ] 0 is replaced by « 1 oo.

3 A proof is given in [6, p. 487].
4 Examples for the continuous case will be given helow.
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In the general case of (C, k) and (C* k) or (H, k) and (H* k) a
stronger assumption on f(x) is necessary. Because of the Theorem 2
and Theorem 2* it is sufficient to consider one of the possible combina-
tions, say C and C*.

THEOREM 3.* Let f(x) € @,, and suppose that for some n > 0,

(30) lirln Ci¥flx) =a
then
(31) lifn C.fx)=a.

Conversely, the existence of the limit (31) and f(x) € @,, imply (30).

A similar statement holds when z | 0 is replaced by x4 oo.

Theorem 3* shows that (C, ) and (C*, n) are equivalent within @, ,,
that is within the class of functions to which both methods are applie-
able. However, if we disregard the difficulty that f(x) may behave
badly at « (0) when we are interested in the limit at 0 (), that is, if
we restrict ourselves to the essential domain of the two methods, then
it appears that C* includes C for limits at 0, and C includes C* for
limits at . C* is actually stronger than C for « | 0, as shown by the
example f(x) = 2z*sina™. In fact C[2t~°sin ¢~*](x) does not exist since
the function is not integrable down to 0, but

CH[2t= sin ¢ (a) = —L + sin L
a? x
C"‘[——t‘2 cos l + sin l,](m) = 0<l> ,
t* t* x
hence

lim xC*[ 2 gin H(x) —0.

xl0 ts

This example shows that the condition f(x) € @,, cannot be relaxed and
for instance f(x) e @,, and the existence of lim,,,C; f(x) = a does not
imply f(x) € @, ,.

For the proof of Theorem 3 we need the following lemma.

LEMMA 2. Given o Za,Za, = -+ = a, >0, n >0, and f(z) € ?,,.
Let fi(x) for k=10,1, -+, n be defined by

Jo@) = flx), filx) = S:k tf(t)dt for kB> 0.

Then
lim 2**f(x) = 0 for k=1,2,.--,n,
zla
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Proof. Sxf(t)dt exists by assumption. Therefore given ¢ >0 we
0
can choose a positive 6 such that

}S:f(t)dt} <
for every 0 < ¢ <7< 4. Let £ < 4. By the second mean value theorem
?S: £ () dE = SZ ft)d
for some 7 in the interval (¢, §). Hence

SZ

SZt‘zf(t)dt. <e for every 0 < £ < 0.
Also

52

S:lt'zf(t)dt l <e for every 0<é6<E =0
provided that &, is sufficiently small. Therefore
| ?S:lt‘zf(t)dt\ <2 forevery ¢ in (0, &).

This proves the lemma for & = 1. Suppose now that & > 1 and f,_(x) =
o(x7*), as [ 0. Given ¢ > 0 choose 6 < a, so that |fe_(t)| < et~* for
0<t<d. For0<z<d

[fu(@) | = Igit'zf'x_l(t)dt‘ + 1 S:kt‘sz_l(t)dt .
But

) 8
l Sxt-zf,._l(t)dd <e Lt"“zdt < »k—i T
and

Yy ik,A —k-1
oo < % o
provided that « is sufficiently small, 0 <z < x, <6, say. Therefore
[fu(@) | < ex=*' for all @, 0 < & < @, = @y(€).

COROLLARY. For k>0 and f(z) € @,, we have C*f(x) = o(z™*"") as
x 0.

Proof of Theorem 3%, For simplicity we shall write D = C* through-
out the proof. It is convenient to prove the first statement of the
theorem in the following more general form: Suppose that f(z)e @,
and for some # > 0 and p = 0,

(32) lzlf? (n + p)la"+?D"*2f(x) = a ,
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where Df(x) = rt’?f(t)dt; then for every =0, s=0

(33) h{n (S -+ TI/) ! ('p -+ 7') ! w-—(n+s)Cn[tp+r+st+rf(t)](x) =a.
zlo 8.

The proof is by induction on n. We first note that (32) implies
(34) Df(z) = %17 ca a4 o@ ™), as x 0,

for every m=n + p. Now let k=0 and m = n + p. We have, by
partial integration,

J(m — 1) 1 m"“S:t"“”“zD’”‘lf(t)dt
= —k(m — 1) | x~*[t"**D"f(¢)]
+ km — 1) (m + k)x"‘g:tm”‘"lef(t)dt .

The first expression on the right is —k(m — 1) ! a™D™f(«) which, by (34),
tends to —(k/m)a when 2} 0; similary, the second term tends to
[(m + k)/m]-a. Hence

(35) lim k(m — 1) 2% - Sxt’“"“‘Dm’lf(t)dt —a.
x2l0 0

This proves (33) forn =1 (with k=s+ 1, m =p + r» 4+ 1). Note that
flz) e @, and the existence of the limit (32) implies the existence of
the integral in (85) ; therefore in particular f(x) € @,, and (28) in Theorem
3 implies f(x) € @,, and (29). Suppose now that n > 1, and write
m=n-+p+r r=0. We have

F(m — 1) == - rt"”’“"’Dm'lf(t)dt
0

t;ildtn_lr t2* DY f(E)db

Iy -1

= k(m — 1) ! x—krtr+k-2dt1 rt;Zdtz r
0 tq

bp—2

t;2dt,

x
31

= Kom — 1) La={ D@ orerdt, + Dot | ererrae |

oot poep)| et e () e
1

n=2

t72dt, - - 5 DAt )t |

1 Ip-1

+ {Ttree-san|
0

= _ ]‘,:(?l?i,j,l)l, {ni (_7 + k + D+ r— 1) ! x.i+p+rDj+p+7f(x)

(m + k — 1)1
(36) + (k + D + 7,) ! x-lcS:tk+p+r+1Dz;+rf(t)dt} )

The last expression in the brackets is obtained by repeated partial
integration, and using Lemma 2 Equations (35) and (36) give
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S geersr-1 Do)t = ( lﬁ;.)ﬂ;_(%i%_bsvwa
Hence
(n(;r L o D! grmsiopeer e )](2)
_ (n+ k(;i);)(l'? + T.)Lx—n-wCn-l[gzu“w-lpwjf(u)du] (@)

k+p+n)in+p+r—1)!
g(n+k—D'%+y+p+r—DWp+U'-%m

(p+r)'(n+k+p+7'—1)'a

= k+p+r)(k—1)!
X Cn—l[tj+k+p+rDj+p+z:f‘(t)](x) + 0(1) .

Here we have, by the induction hypothesis (33), applied to Df(x) instead
of f(w) and n — 1, p + 1,

(nf“'ﬁk - !-) !k(“i:*-—‘pi—rl!——x’"'kﬁcn"l[tj“‘”’"D“”“f(t)] (x) =a + 0(1) .

Hence by (37)
m+k—Dl@+n)!
(k—1)!
o £t (G A B (R T s F
=a+0(1).
This proves (33). The proof of the converse is very similar. With the

notation s(x) = f(1/x) the converse statement can be formulated as
follows :

_n_k+1Cn[tk+p+r—1Dp+’:f(t)] ()

(30*) litm n!l-x"Ds(x) = a

implies

(31%) limn lz"C"s(z) = a .
Z oo

The proof is identical with the derivation of (31) from (30) except that
f(x) has to be replaced everywhere by s(x) (which is also in @,;) and
|0 by 1 .

3. The relative strengh of the (H, ) and (C, ) methods. So far
we did not consider the relative strengh of the (H, «) and (C, «)
methods. We know from Theorem 1 and Theorem 1* that both these
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methods include the finite (H, k) and (C, ¥) methods for z |0, more
precisely, if

li{n C.flx) = lifn H.f(x) =«
xlo x}l0
exists for some k& = 0 then
H,. f(x) = 1i¥n H,f(x) and C.f(z)= liﬁn C,f(x)

exist for every x > 0 and are in fact the constant function H.f(x) =
C.f(x) = a.

Now the following theorems show that this is always so: whenever
C.f(x) and H.,f(x) exist at all, they are a constant.

THEOREM 4. Let f(x) € @, and suppose that for some fixed § > 0

(38) lim C,f(€) = a
then
(39) lim are"’”f(t)dt —a.

Conversely, f(x) € @, and (39) tmply
lim C,f(x) = a

n—roo

for every x > 0.

THEOREM 4*. Let f(z) € .., and suppose that for a fived & > 0,
(40) lim H"f(§) = a ;

n—oo

then for every x >0
lim HYf(x) = o .

Theorem 4 shows that (C, «) is essentially equivalent to the Abel-
Poisson method L :

(41 Lf(z) = S:e“f(xt)dt

in the sense that lim,,, C. f(x) = a if, and only if, lim,,, Lf(x) = a provided
that f(x) is in the essential domain of the two methods. As a corollary
we find that L includes every (C, k)°; but we know of no example to
show that (C, ) or L is actually stronger than the collection of every
(C, k). For bounded functions (C, «) is equivalent to (C,1); more
generally the following is true.

5 A dual of this statement, referring to  — o, is proved by G. Doetsch in (3, p. 204].
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THEOREM 5. f(x) € @y, f(x) =0 for = = x,, f(x) = 0,(1) and C.f(x)
=a, x>0, imply

lim C,f(@) = a .
x|0

Proof of Theorem 4. By Lemma 1 we can replace the integral
variable n by the continuous variable +. The assumption f(z) e @, im-
plies that F(z) = Cf(x) is bounded for = > 0 and lim,, F(x) = 0. There-
fore we obtain for ¢ > 1

@) Cofl®) = o] (L~ o-irienyit
= =) TR (5
o—1 S"W<1 — L) F(* Jau + Oee)

§ Jo o
o (o of ()

5 0 o

du)

+ O(o‘e""l/z)

- ”_(‘Tillg”e-ﬂF(st)dt + o(1)
£ o
= (o — 1)S:e'”f(5t)dt + o(1)

where all O and o symbols refer to fixed £ and o 1 . Hence lim,,..C,f(§)
= @ implies limﬂwas e~ 'f(tt)dt = a. Therefore
0

lim pre"‘“f(mu)du =
plo 0
for any fixed x > 0. By (42) we see that lim,;.C,f(2) = a.
Proof of Theorem 5. Theorem 5 is an immediate consequence of
Theorem 4 and the following lemma, which is a special case of a well-

known Tauberian theorem for the Laplace transform (see [3, p. 210,
Satz 3]).

LEMMA 3. Suppose that g(x) = O, 1), re“”g(t)dt converges for all
0
>0 and

lim GS”e-ﬂg(t)dt —a.
oo

0

Then

lim lg“g(t)dt —a.
zl0 L Jo
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The statement remains true if o t o is replaced by o |} 0 and € | 0 byx 1 .

Proof of Theorem 4*. Without loss of generality we may assume
a = 0; otherwise consider f(x) — a instead of f(x). Let a;, x, be two
fixed positive numbers », < § < z,. Write g(z) = Hf(x). Then H*f(x) =
H"'g(x), for n > 0, and lim,_ .H"g(f) = 0. We shall show that

(40*)  lim H*g(z) = lim H**f(x) = 0, uniformly for = < = < z,.

Denote
¢ =1 - upper bound {|g(@)|; = Sz <} < +oo,

(43) 3

& = | H*g(¢) | for k> 0.

We prove that

D
15

— £

for o, <z 2, .

@) @)= =3

P

_1_
op! & v

For » = 0 the statement follows from (43) ; suppose therefore that n > 0
and that (44) is true for n — 1.

| Hg(a)| < ’%Sjﬂn-lgw)dt ‘ + I%S:H"’lf(t)dt'

<|£. lSEH“‘Ig(t)dt 1 -IS t=C e db
. §Jo z i lepl| a
S j n-1 1 lp

< =, mpe

= xl 15 +p§=._(‘,) (p + 1) 1 I & » 1}

which proves the statement for n. From (44) we obtain, by writing
l = max {E—xl,xz—_ 5}7

(45) | Hg() | < 5 "z L e, B<osa.
=0 (v —p)!

But for any 1 > 0,
A 1
]

An—l’sﬂ

is a regular transform of the sequence {s.}, & = 0 ; it follows therefore
that the expression on the right side of (45) tends to zero when n — o,

By Theorem 5 (C, ) does not extend the range of (C, 1) for bounded
functions. This is in striking contrast with (H, «) which is decidedly
more powerful for bounded functions than (H, 1). An example is
furnished by coslogx, or more conveniently by e¢-*'¢*, We find by
induction
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H[e"1"¢|(z) = (L;:&) g-iloge

which has no limit at 2 =0; by Theorem 2* and Theorem 5 it has
therefore no limit by (C, «). On the other hand it has limit zero by
(H, ©):

lim H*[e~*"*s*](x) = 0 for every « > 0.
k—o

Also for unbounded functions (H, «) appears to be more effective than
(C, =) ; a suitable example is —a~1* - coslogx or x~'?¢~*°¢* which can
be shown to have no limit by (C, ), and limit zero by (H, ). These
examples reveal a remarkable difference (in favour of the Holder process)
between the Cesaro and Holder processes which remains completely
hidden when finite iterations alone are considered.

For bounded functions repeated partial integration gives

(46) He+f() = S (1og ) Fat)dt ;

and we find the following analogue of the equivalence of (C, «) and L
for (H, «):

THEOREM 6. Let f(x) € @, and
1 t n
L) = Jim) = 5 L (5)
Then

@) lim Sl 1 <log ) Ab)dt = lim e““S Fo1(2(vlog %)”2)@

n—>oc0 V>0

in the sense that if one side exists then the other side exists too and
they are equal.

By making use of the well-known asymptotic expression
L@) = @) are(1 +0(), as 1 oo,

Theorem 6 can be put in a more convenient form. For bounded func-
tions we have

lim e‘”S J@)1, < (v log%yﬂ)dt

v oo
~1/ 2
ol

v 1o

1 12\ T o p—u? —(u—c)? w\
=lim = fle®) - e (=) du
0 g

o1

(by the substitution v = o ¢ = e~"), and the latter is easily seen to be
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equal to
lim n-mr fle)em @ dy,
ol 0

This gives

THEOREM 6*. Let f(x) € @4 ; then lim,, f() =a by (H, ©) if, and
only if,

im e e = tim Lo i 0 OB 1) g,
111127: Sof(e )e du 11’11111271 e of(t (log 1/)"" dt=a .

The following estimate of (H, «) for bounded functions is weaker,
but it has the advantage of great formal simplicity.

THEOREM 7. Le f(x) € @5 and suppose that for a fixzed & > 0
lim H,f(¢§) = a,
then
lim H[f(e™) @) = lim HLf(e](@) = a .

Theorem 6, Theorem 6* and Theorem 7 do not remain valid for
unbounded functions ; a suitable counter example is 2% cos log (1/x). Also
the converse of Theorem 7 is not true; a counter example is furnished
by f(x) = exp (¢(log 1/x)'?). Clearly

igxf(e‘”‘)dt = lSxexp (it~*)dt = O(@'*) -0 when 20 .
X Jo X Jo

On the other hand
. o 1 1 n . 1 1/2}
i 1 i 1) oo 1) o

does not exist ; for otherwise by Theorem 6*

lim n-wg‘” exp (i — (u — o))du
0

oo
— lim 72_—1/2 exp <—_1_ —_ 1:0')5“ exp[—(“ o l)z:|6l'u
ol u N ° 2

existed, But the last expression is asymptotically equal to e"'*** when
ot oo,
In the proof of Theorem 6 we use

LEMMA 5. Let f(x) € @5. Then for every fized & > 0,
H"'f(§) — H™*'f(§) = O(n~'?) as m—> oo ,
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Proof. Observing the relations

——( _: D1 Smu"“e'“du — i'ru”e'“du
n I Jx x

n.
z x
_ Al, u”e"”du _ krl_“ o un+1e—udu
n!Jo (n+1)! Jo
_ e
(n+1)1!°
n !~ 1/ Banntite s,

|f(¢®)] = K  for a suitable constant K > 0,

we obtain
‘S:,f (%) ﬁlf(log }E> Sf GO 1 + 1 (1 %Yﬂdt
<] 2 L2
=K 5 R
(n + 1"+ _g-(+D
(m+1)!

~ 2K 1
V2r Vn4+1'
Proof of Theorem 6. By the regularity of the Borel transform,

lim,_.s, = a implies

lime> S 5 .on=gq.
n=0 7|

Hence "
(48) 11535 f(t)w(log 1>ndt —a
implies
hm e‘”ngo Sof( )‘('“',)z (log 1) vrdt
— lim e“”S s o <vlog Ly as
(49) = lim e"”gof(t)lo<2<v log %) Vit =a;

the interchange of the order of summation and integration is clearly
permissible if f(¢) is bounded. Conversely, from Lemma 5 and the
Tauberian theorem of Hardy-Littlewood for the Borel transform [4, p.
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220, Theorem 156] we conclude that (49) implies (47).

Proof of Theorem 7. 1f in the proof of Theorem 6 we use the Abel
transform instead of the Borel transform, Theorem 7 is obtained. First

. 1 1 1\,
im [ 712l ) "dt = a

implies
a=Tlm@1—2) 3 Slf(t)—1—<v log l)"dt
»11 n=0J0 nl t

= lim (1 - v)Sl Abytrds

= lim S?f(%)udu

alo
= lim ag“”f(e—n)e—wdt
olo 0
and this implies by Lemma 3

lim —1—Sxf(e‘t)dt — lim H[f(e")] (=) = a .
et I Jo 2o

By Theorem 3 the last equation is equivalent to

lim lg”f(e-l/t)dt = lim H[fle"")](@) = a.

z}0 X Jo z
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