
A NOTE ON POLYNOMIAL AND SEPARABLE GAMES

DAVID GALE AND OLIVER GROSS

l Introduction. A two-person zero-sum game Γ is called poly-
nomial-like or separable if its payoff function is of the form

M(x, y) - Σ/*(aj)flr«(2/),
i = l

where x and y are elements of any strategy sets X and Y. Important
special cases of separable games are those in which X and Y are
bounded (usually compact) subsets of Euclidean spaces and M is a poly-
nomial in the coordinates of x and y. These latter are called polynomial
games.

It is a basic and fairly elementary fact concerning separable games
[1], that, if optimal strategies exist, then these can always be chosen
to be finite mixed strategies. We consider here the inverse question :
Given a pair of finite mixed strategies, does there exist a separable
(respectively, polynomial) game whose unique optimal strategies are the
given pair ? In case either X or Y is finite the answer is known to
be in the negative. We here show, however, that.

THEOREM 1. If X and Y are metric spaces containing infinitely many
points and μ and v are any finite mixed strategies on X and Y respec-
tively, then there is a payoff M, bounded continuous and separable on
X x Y, such that the associated game has μ and v as unique optimal
strategies.

COROLLARY. If X is a metric space containing infinitely many points
and μ is any finite mixed strategy on X, then there is a skew-symmetric
payoff M, bounded continuous and separable on X x X such that the as-
sociated symmetric game has μ as the unique optimal strategy.

For the case of polynomial games we show :

THEOREM 2. If X and Y are bounded subsets of Euclidean spaces
whose closures contain infinitely many cluster points, then for any finite
mixed strategies μ and v there exists a polynomial payoff function M such
that the associated game has μ and v as its unique optimal strategies.

(An analogous corollary holds here, also.)
Concerning Theorem 2, we remark that Glicksberg and Gross, [2],
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have shown that any pair of mixed strategies can be the unique solution
of a continuous game on the unit square. For finite mixtures, however,
their construction is complicated, involving consideration of four special
cases, and the payoff function is not a polynomial, nor even separable.
The rather simple construction involved in our proof of Theorem 2 shows
that their result still holds under the much stronger requirement that
the payoff be a polynomial.

Finally, we credit Dresher, Karlin and Shapley, [1], for their rather
exhaustive study of the structure of solutions of separable and poly-
nomial games. However, their results do not include the theorems proved
in this note. Indeed, one of the above authors has pointed out that
the construction of the next section provides a counter-example to one
of the conclusions of a structure theorem in [1], and fortunately (for
mathematics) an error in the proof of that part of the theorem1 was
subsequently uncovered.

2, Polynomial games with prescribed unique solutions* This section
contains the proof of Theorem 2. Let X and Y be sets satisfying the
hypothesis of the theorem (We pause to note that boundedness of X
and Y is required to insure integrability, since polynomials may other-
wise be unbounded.). Let μ be the mixed strategy which assigns the
weight μt to the point xi of X, i — 1, , m, where Σ μ% = 1. Similarly,
let v assign the weight vό to the point yό in Y, j = 1, •••, n where

The set of points {xl9 •• ,#TO}, the spectrum of μ, will be denoted
by σ{μ). Similarly, σ(v) will denote the spectrum of v.

We now define the following set of polynomials :

/o(*)= Π

/ . ( * ) = II \X~X}~ , i = !,-••,m,

where \x — x'\ is the usual Euclidean distance from x to x'.
It is clear that the above functions are polynomials however, aside

from continuity, the only properties of them which we shall use are
the following :

Six) > 0 for all x e X and fQ(x) = 0

if and only if x e σ(μ).

fi{x) > 0 for all x e X and ft(x) = 0

if and only if x e σ(μ) — {α?J, (i — 1, , m).

1 Theorem 6, fourth inequality pp. 175-176 of [1].
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fi(Xt) = 1, i = 1, •••, m .

In a precisely analogous manner we define the polynomials gQ and
gJf J7 = 1, , w, on the set Y.

Next, let <x0, au , an be n + 1 distinct cluster points of X (the
closure of X) which do not meet σ(μ) (these exist by hypothesis), and
define polynomials φ and φJf j — 0, , n on X via

= Π I x - ock |
2, i = 0,

The only properties of these functions we shall use are that they
are all non-negative, that φ vanishes only on the ak, and that φ5 van-
ishes only on ak with k Φ j .

Finally, let βQ, , βm be m + 1 distinct cluster points of Y which
do not meet σ(v), and define polynomials ψ and ψ% on Y analogous to
the functions φ and φj above.

We now define the desired payoff M by

M(x, y) =fQ(χ)Φ(χ)(gϋ(y)ΦQ(χ) + Σ (gAv) ~ ^)ΦA^
J~ι
in

ί

We show first that /* and v are optimal strategies. If we compute
M{x, v) (in the usual extension), we obtain

( 2 ) M(x,v)= -(fϋ(x)Ψ(x)f<0.

To see this, it is sufficient to observe that, according to the properties

noted above, \gόdv = v5 and gQ and ψ vanish on σ-(v). Similarly, we

obtain

M(μ, y) - (gQ(y)Φ(y)f > 0.

Thus μ and v are optimal and 0 is the value of the game.

It follows also from (2) above that if μ' is any optimal strategy
for player /, then the spectrum of μ' is contained in the zeros of foφ.
Thus any optimal μ' has weight only on the pure strategies x% and aJf

and similarly any optimal v for player // restricts its weight to

We now show that v is the only optimal strategy for player //.
For suppose */ is optimal. Then, in the expression for M(x, v)f the
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second and fourth terms in (1) drop out in view of the remark of the
preceding paragraph and the payoff becomes

M(x, vr) = / B ( Φ ( » ) [ φ ) j ^ + Σ ψA

For x close to <x0 the expression in brackets above approaches

Ψo(ao) \9odv, and since φQ(aQ) is positive we must have \gϋdv — 0. Other-

wise the a -player by choosing x sufficiently close to αa could achieve a

positive payoff, contradicting the optimality of ι/. Next, since \gQdv'=0, v

must concentrate all of its mass on the zeros of g0, that is, on the
points Vj. Finally, if v'k Φ v% for some index k then the x-player could
again achieve a positive payoff by choosing x sufficiently close to xk.
It follows that v = v as asserted.

Thus, Theorem 2 is established.

3* Metric space games—construction of payoff This section is dedi-
cated to the construction of the payoff required for the establishment
of Theorem 1 and its corollary, which will be proved in the final section.
The construction and method of proof are quite similar to those used
in proving Theorem 2 however, to preserve continuity of presentation,
we shall paraphrase identical details.

Therefore, let X and Y be the respective spaces according to hy-
pothesis, μ and v the respective finite probability measures on them, μ
and v will be described with the same notations used previously. Final-
ly, let p and p' denote the associated metrics of X and Y respectively.
Then, without further ado, we initiate our construction.

The basis of our construction hinges on the fact that any infinite
metric space contains a sequence of disjoint neighborhoods. To see this
for X, say, there is no loss in generality in assuming that X has a
cluster point, for otherwise we are guaranteed a sequence by the dis-
crete topology induced by p and the infiniteness of X Therefore, let
x* denote a cluster point of X. First, choose a± Φ X*, and, for i > 1
choose a% so that 0 < p{x*, at) < p(x*, αz_1)/2. Then, as our sequence of
neighborhoods, {iV*.}, we set

#* t = ix 1 K»ι ad < Λ} , i = 1, 2, f

where rt = p(x*, cc^/S. It is easy to verify, using the triangle inequality,
that these neighborhoods are disjoint.

Therefore, let {Nai} denote a sequence of disjoint neighborhoods
contained in X (spheres of radius rt centered at at). Define functions
φjf j = 0, , n, as follows :
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ry ___ f)(Ύ f)f \ 1

—-— r v - — *;- -7-if x e Naι. for some i (at most one) and
φjW = * i = j (mod (w + 1))

v0 otherwise.

One verifies that φ3 is a bounded continuous function on X into the
non-negative reals, and which, moreover, satisfies

ί— if i = j (mod (n + 1))
(6) ΦJ(*i)= *

I 0 otherwise.

Next, let the function φ be given by

m

( 7 ) φ(#) = Π p(%, #0, # e X,
ί-l

(where, as previously, {#J = <r(μ)). There is no question about conti-
nuity here. We note merely that

/o\ (= 0 if α e σ(μ)
( 8 ) φ(a ) j

I > 0 otherwise.

Finally, we define functions /_,, j = 0, , m, as follows :

v *J ) J ϋV ̂ / — Ψ\^) y

and, for i e {1, , m}, set

(10) / ^ ) = Π p(χ' Xi\ .
i^J P\Xj, X%)

Here, again, continuity is immediate, and we note merely that

(11) fj(xt) = δυ, i, j = 1, , m,

where δ is Kronecker's delta. Moreover, to insure boundedness of these
functions, if such is not the case, we need only replace p by the func-
tion pl(l + p) in the formulas (7) and (10) without affecting subsequent
arguments.

The remainder of our construction involves defining certain bounded
continuous functions on Y into the non-negative reals. To accomplish
this we merely repeat the foregoing construction with the replacements:

ί ί

ί (

(ί

i ί

(i

p " ->

x" ->

α " ->

r " ->

Y
P'
y'
β'

y

y y

y

\

y

y

y

"m" ->
" n " - > •

"φ" -+ '

" / " -»> '

"a" -> '

"n",
"m"

"Φ",
"9",
"u".
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In terms of these functions, then, and using the convention μ0 =
vQ = 0, we define our bounded continuous polynomial-like payoff M as
follows :

M(x, y) = -Φ{y) Σ

Σ

(x, y) e X x F. This completes our construction.

4«, Verification, of solution and proof of uniqueness* To verify
that (μ, v) is a solution, we calculate first the expectation M(μ, y):

M(μ, y) = ψ{y) Σ ΦAvf > 0, all neΓ.
J-0

To see this, we note that the remaining sums vanish by virtue of (8),

(9), and (11), i.e. φ vanishes on σ(μ) and \fjdμ = μj9 j — 0. « ,m.

Similarly,

(12) M{x, v) = -φ(x) Σ Φj(*Ϋ ^ °̂  a 1 1 x e x-
j = 0

Thus, (μ, v) is a solution and 0 is the value of the game.
To show uniqueness for the first player, let μ' denote an optimal

strategy for him. From the non-negativity of the functions φ, φ3 in

(12), we see that \φφ2jdμf = 0 for all je {0, •••,%} and hence that

φφβμ' = 0; for otherwise, by (12), a counter strategy is provided by

v. Thus, if μ' is optimal, we have

(13) M(μ', v) = -Φ(y) Σ (β - μ3)ΦAy) + <Kv) Σ ΦAvf,
J0 j 0

) Σ
j=0

where we have written μ] — \fjd^, j = 0, , m. Next, suppose μό =

ί j

/oc£// =̂= 0 (and hence, positive). Choose as possible counters a subse-
quence of the β's, {βΛi} such that nt = 0 (mod (m + 1)). Then, by virtue
of the minimizer's counterpart of (6), (13) becomes

(14) M(μ', βn) - ~ 1 V

nt
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Since ψ vanishes only on a finite set and is positive elsewhere, we see
that the expression above can be made negative for i sufficiently large.
Hence μ'Q — 0, and if follows from (8) and (9) that σ(μ') c σ(μ), i.e. any
optimal μr must restrict its spectrum to the set {xl9 , xm}. Thus,
finally, to establish uniqueness, we need only show that the correspond-
ing weights are equal. Let μ\ denote the weight on xi placed by μ'.
Substituting in our payoff M we obtain (noting μ'o — 0),

(15) M(μ\ y) = -φ(y) Σ G4 - ^)ΦAv) + Φ(v) Σ ΦM

Now suppose μh Φ μk for some ke {1, •• ,m}. Then, since

Σ μ's = Σ μ, = l ,

we would have some j — jQ e {1, , m} such that μ'j0 > ^ j 0 But, by
choosing the subsequence {βn,} with nt = j0 (mod (m + 1)), by the iden-
tical argument used before, we would find a counter rendering the
expectation (15) negative. Hence μ] — μ3 and thus μf = μ. Uniqueness
for the minimizer can be established in a similar manner, as is clear.
So Theorem 1 is proved.

Finally, to establish the corollary, we need only make the appropri-
ate identifications in our payoff to ensure that M(x, y) = ~M(y, x).

The authors would like to thank Dr. Irving Glicksberg for his
valuable comments on this paper. As a matter of fact, Dr. Glicksberg
suggested an alternate proof for Theorem 1 which extends it to com-
pletely regular spaces X, Y. The gist of his proof involves obtaining
the extended theorem by making it a corollary of Theorem 2 via a
mapping : X -> if1, Y -> R"1.
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