
MINIMAL COVERINGS OF PAIRS BY TRIPLES

M. K. FORT, JR. AND G. A. HEDLUND

1. Introduction^ Let F be a finite set with n members, n ^ 3. An
F-covering of pairs by triples, which we abbreviate .F-copt, is a set S of
triples of distinct members of F which has the property that each pair
of distinct members of F is contained in at least one member of £. If
n is a positive integer, n ^ 3, then an %-copt is an .F-copt for the set
F = {1, 2, •••,%}. We assume throughout that n ^ 3.

For any finite set A, let C(A) denote the number of members of A,
An F-copt S is minimal if C(S) ^ C(S') for every F-copt S\ If n = 1
(mod 6) or n Ξ= 3 (mod 6), then a minimal %-copt S turns out to be exact
in the sense that each pair is contained in exactly one member of S.
Such exact coverings are called Steiner triple systems. The existence of
Steiner triple systems for all n (of form 6h + 1 or 6h + 3) was proved
by M. Reiss [2] in 1859.

Let S be a minimal %-copt and let C(S) = μ(n). The main result
of this paper is obtained in §2, where we determine μ(n) explicitly for
n ^ 3. In § 3 we discuss certain properties of minimal w-copts, and
give several methods for constructing minimal w-copts.

2. Determination of μ(ri). Let S be a minimal w-copt. For each
integer i, 1 ^ i ^ n, we define a(i) to be the number of members of S
that contain i. Then

Since i must appear in members of S with n — 1 other numbers we
have α(i) ^ [^/2]. ([ίc] is the largest integer which is not greater than
x.) Thus,

( i ) M^)

Since (%/3) [̂ /2] may not be an integer, we define ψ{n) to be the least
integer which is not less than (nβ) [w/2]. It is easy to compute

φ(n) =

W76 if n = 6fc ,

(n? + 2)/6 if n = 6A: + 2 or % = 6fc + 4 ,

(^2 - w + 4)/6 if w = 6/b + 5.
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We may clearly improve (1) to

( 3 ) μ(n) = C(S) ^ φ(n) .

Our main theorem proves that in (3) equality holds for every n.

Let A, B and C be pairwise disjoint sets, each having the same
number n of members. A tricover for the system {A, Bf C) is a set K
of triples (x, y,z), xeA,yeByzeC such that each pair uv, u and v in
different ones of A, B, C, is contained in exactly one member of K.

LEMMA 1. If n is a positive integer and A, B, C are pairwise disjoint
sets each of which has n members, then a tricover K for (A,B, C) exists.
Moreovery ifaeAybeB and ce Cy then Kmay be chosen so that (a, δ, c) e K.

Proof. Let the members of A, B, C be respectively

a19 a%y , an bί9 δ 2 , , bn clf c2 , cn ,

where ai = α, δx = δ, c1 = c. We define K to be the set of all triples
(aif bjy ck) for which k == i + j — 1 (mod w), 1 ^ i, j , k ^ ?z. The set K
obviously has the desired properties.

REMARK. Any tricover for (A, B, C) must have n2 members.

LEMMA 2. Let A, By C be pairwise disjoint setsf each having n
members. Let p be an integer such that 0 < p ^ n/2. Let A * c 4 , £ * c J 5 ,
C* aC be sets, each of which has p members and let K* be a tricover for
(A*, JB*, C*). Then there exists a tricover K for (A, By C) such that

Proof. Let

A = {alf a2y , an) ,

B = {blf δ2, , bn} ,

C = {Cly C,y , Cn} .

We can assume that

A* = {al9 a,, , ap} ,

£ * = {&i,δ« ,δp} ,

C* = {clf c2, , cp} .

For 1 ^ iyj ^ pt let mζ be the unique integer k such that
(o>u bjy ck) e K*. Clearly 1 ^ m% ^ p and the square array (m*5) is a
Latin square of order p. It follows from a theorem of Marshall Hall
[1] that there exists a Latin square (m^), 1 ̂  i, i ^ nf such that m έ j = m*j9
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1 ^ i, j ^ P Let

K = {(αt, δ, , cw..) [1 ^ i, i ^ n) .

The set if is the desired tricover.
In order to produce an inductive proof of our main theorem, it is

convenient to restrict ourselves to a special type of minimal %-copt for
the case n = 5 (mod 6). Also, for n = 3 (mod 6), there is a special type
of minimal w-copt whose existence we wish to establish, and it is possible
to include this result in our main theorem. For these reasons we intro-
duce the notion of " admissible .F-copt."

An F-copt S is admissible if C(S) = φ(ri), n — C(F), and :
(1) n ΞΞΞ 0, 1, 2, or 4 (mod 6)
(2) n ΞΞΞ 3 (mod 6) and S contains a set of pairwise disjoint triples whose
union is F or
(3) n = 5 (mod 6) and S contains four elements of the form (α, δ, x),
(α, 6, y), (a, δ, 2), (a?, 2/, 2).

THEOREM 1. // n is a positive integer, n >̂ 3, £&e% ί^erβ exists an
admissible n-copt.

Proof. Our proof is by induction on n. However, it is neces-
sary to prove independently that there are admissible ?z-copts for
n — 3, 5, 7, 9, 11, 13, and 15. We accomplish this by exhibiting such
admissible w-copts.

n — S n = 9 n = 13

(1,2,3)

71 = 5

(1,2,3)

(1,2,4)

(1,2,5)

(3,4,5)

n = 7

(1,2,3)

(1,4,5)

(1,6,7)

(2,4,6)

(2,5,7)

(3,4,7)

(3,5,6)

(1,2,3)!
1(4,5,6)1

ΪTJM
(1,4,7)

(1,5,9)

(1,6,8)

71 =

X.l,_2,_3)l

;αΓ27~4):
1(1, 2, 5)(

K3Γ47~5)j

(1, 6, 7)

(1, 8, 9)

(1,10,11)

(2, 6, 8)

(2, 7,10)

(2, 9,11)

(2,4,9)
(2,5,8)

(2,6,7)

(3,4,8)

(3,5,7)

(3,6,9)

11

(3, 6,10)

(3, 7, 9)

(3, 8,11)

(4, 6,11)

(4, 7, 8)

(4, 9,10)

(5, 6, 9)

(5, 7,11)

(5, 8,10)

(1, 2, 3)
(1, 4, 5)

(1, 6,13)

(1, 7, 8)

(1, 9,12)

(1,10,11)

(2, 4,10)

(2, 5, 6)

(2, 7, 9)

(2. 8,12)

(2,11,13)

(3, 4,11)

(3, 5, 7)

(3, 6,12)
(3, 8,13)

(3, 9,10)

(4, 6, 7)

(4, 8, 9)

(4,12,13)

(5, 8,11)

(5, 9,13)

(5,10,12)

(6, 8,10)
(6, 9,11)

(7,10,13)

(7,11,12)
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(1727Ί3)

(1, 4,14)

(1, 5, 9)
(1, 6,10)

(1. 7,12)

(1, 8,15)

(1,11,13)

(2, 4,12)

(2, 5,13)

(2, 6, 8)

(2, 7,14)

(2, 9,11)
(2,10,15)

(3, 4, 7)

(3, 5,11)

(3, 6,15)

(3, 8,10)

(3, 9,13)

n = 15

(3,12,14)

(4, 8,13)~
(4, 9,10)

(4,11,15)

(5, 7,15)

(5, 8,12)

(5,10,14)

(6, 7.11)

( 6, 9,14)

( 6,12,13)

KAADJ
( 7,10,13)

( 8,11,14)

( 9,12,15)

K10,ll,12)|

,(13,14,15)|

Our proof now divides into six cases. In Case r, 0 ^ r ^ 5, we
assume that n = r (mod 6), that n > 3 and that there exist admissible
m-copts for 3 ^ m < n. We then show that these assumptions imply
that there exists an admissible w-copt.

Case 0. Let Ŝ  be an admissible (n — l)-copt having (1, 2, 3), (1, 2, 4),
and (1, 2, 5) as three of its members. If we delete (1, 2, 3) from St and
add

(1, 3, n), (2, 3, n), (4, 5, n), (6, 7, n), , (n - 2, w - 1, n) ,

we obtain a set S of triples which is an %-copt. Since £x has

[(n - I)2 ~ (n - 1) + 4]/6 = (n2 - 3n + 6)/6

members, £ has

{n% -Sn + 6)/6 - 1 + rc/2 = ^2/6 = y(%)
members.

1. We have exhibited admissible %-copts for n = 7 and ^ = 13.
Therefore we may assume n = 6^ + l , & > 2 .

We consider two subcases.
Subcase i. Either h == 0 or h Ξ= 1 (mod 3). Then there exists ^

such that 2h + 1 = 6k + 1 or 2h + 1 = 6A: + 3.
L e t

A χ = {1, . . . , 2 Λ , w }

and let S3 be an admissible A^-copt for j = 1, 2, 3. Let Γ be a tricover
for ({l,...,2fe},{2fe + l , . . . ,4Λ}, {4Λ + 1, ,6A}) We now define
S = Sλ U S z U £3 U T. It is easy to verify that S is an rc-copt, and that
S has

members.

3 . (2A±l)2λ + ( 2 Λ ) . = ^ΦL^
6 6
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Subcase ii. h = 2 (mod 3). In this case there exists k such that
2h + 1 = 6k + 5. We define Al9 A2, A, as above. Now, for j = 0,1, 2,
we let Sj+1 be an admissible Aj+1-copt such that SJ+1 contains a subset
Rj+1 whose members are :

(2jh + 1, 2jh + 2, 2jh + 3)

(2jh + 1, 2jh + 2, 2jh + 4)

(2jh + 1, 2j& + 2, w)

+ 3, 2jh + 4, n) .

Let T be a tricover for ({1, , 4}, {2h + 1, , 2h + 4},
{4A + 1 , . . ,4& + 4}), and let JP* be a tricover for ({1, , 2^},
{2A + 1, , 4Jι), {Ah + 1, , 6h}) that is an extension of Γ. Since
h ^ 5, the existence of such a tricover follows from Lemma 2. We
next take an admissible copt U for

Finally, we define

r y / r̂ f τr-> \ i i / Π 73 \ ι i / O ~D \ ι ι ί?T1 ?K A#I\ I I 7" 7"

It is easy to check that S is an w-copt. The number of member of S is

-26

nr* , r n(n — 1)
= 6Λ-2 + h — -v—-——.

6

Thus, S is admissible.

Case 2. Let Sx be an admissible (n — l)-copt. We define S to be
the set of triples obtained by adding to Si the triples

(1, 2, n), (3, 4, w), , (n — 3, n — 2, ra), (w — 2, w — 1, n) .

Then, S is an w-copt and 5 has

(n - 1)(^ - 2) ^ = tf + 2
6 2 6

members. Thus S is admissible.

Case 3. There exists A such that n = 6A + 3. Since we have listed
admissible w-copts for n = 3, 9, 15, we may assume h>2. We consider
two subcases.
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Subcase i. h = 0 or h = 1 (mod 3). In this case there exists k
such that 2h + 1 = 6k + 1 or 2h + 1 = 6k + 3. Let Sx be an admissible
(2h+l) — copt. For each triple (α, 6, c)eS1 we choose a tricover for ({3α—2,
3α - 1, 3α}, {36 - 2, 36 - 1, 36}, {3c - 2, 3c - 1, 3c}). The union of all
such tricovers, together with the triples (1, 2, 3), (4, 5, 6), , (n—2, n—1, n)
is an w-copt S. The number of members of S is

9 . y^^rj-lU^L + (2h + 1) - (2λ -
6 o

If follows that S is admissible.

Subcase ii. h = 2 (mod 3). In this case there exists k such that
2h + 1 = 6k + 5. We choose an admissible (2h + l)-copt Sτ that con-
tains the triples (1, 2, 3), (1, 2, 4), (1, 2, 5), (3, 4, 5). If (α, 6, c) is any
other member of Si, we choose a tricover for ({3α — 2, 3α — 1, 3α},
{36 - 2, 36 - 1, 36}, {3c - 2, 3c - 1, 3c}). Let S2 be the 15-copt exhibited
at the beginning of our proof. We now define S to be the set whose
members are the members of S2, the members of the chosen tricovers,
and the triples (16, 17, 18), , (n — 2, n —1, n). S is an w-copt, and the
number of members of S is

3 5 + 9 V{2h+J.J[- (2& +JL) + 4 _ 4 Ί + n - 15 = n(n - 1)
L Ό J 3 6

Since S has (1, 2, 3), (4, 5, 6), , (n — 2, n — 1, n) as members, S is
admissible.

4. For this case, the construction is exactly the same as in
Case 2.

Case 5. We first observe that numbers of the form 6h + 5, h a
non-negative integer, form the same set as numbers of the form 3s — 4,
s an odd integer and s > 1. We have listed an admissible 5-copt, and
an admissible 11-copt. Thus, we may assume n — 6h + 5 = 3s — 4, s > 5.
We consider two subcases.

Subcase i. There exists k such that s = 6k + 1 or s — 6k + 3. In
this case, we let

Λ - { s - 1 , . . . , 2 s - 4 }

A3 = {2s - 3, , 3s - 6} .

There is a tricover K of (Ax, A2, A3) such that (1, s - 1, 2s - 3) e K. For
i = 1, 2, 3 we define
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Rt = A, U {3s - 5, 3s - 4} .

and let St be an admissible i?Γcopt such that (1, 3s — 5, 3s — 4) 6 Slf

(s - 1, 3s - 5, 3s - 4) e S2 and (2s - 3, 3s - 5, 3s - 4) e S3. We define
S = K U Si U Sλ U S3. It is easy to see that S is an n-copt, and that S
has

, o γ , , 3s(s - 1) _ 3s*2 - 9s + 8 _ ri2 - n + 4
( β - 2) + -

members. Since (1, 3 s-5 , 3s-4), ( s - 1 , 3 s-5 , 3s-4), (2s-3, 3s-5 , 3s-4),
(1, s — 1, 2s — 3) are members of S, S is admissible.

Subcase ii. There exists k such that s = 6k + 5. We define

A2 = {s - 1, « ,2s - 4}

A, = {2s - 3, - . . ,3s - 6}

and let Rt = A, U (3s - 5, 3s - 4} for i = 1, 2, 3. By the inductive hy-
pothesis, there exists an admissible iϋΓcopt St such that St contains the
set Biy where

Bλ = {1, 2, 3), (1, 3s - 5, 3s - 4), (2, 3s - 5, 3s - 4), (3, 3s - 5, 3s - 4)} ,

B.λ = {(s - 1, s, s + 1), (s - 1, 3s - 5, 3s - 4), (s, 3s - 5, 3s - 4),

(s + 1, 3s - 5, 3s - 4)} .

Bd = {(2s - 3, 2s - 2, 2s - 1), (2s - 3, 3s - 5, 3s - 4), (2s - 2, 3s - 5, 3s - 4),

(2s - 1, 3s - 5, 3s - 4)} .

Let G = {1, 2, 3, s - 1, s, s + 1, 2s - 3, 2s - 2, 2s - 1, 3s - 5, 3s - 4}.
G has 11 members, and hence there exists an admissible G-copt M.

We choose a tricover 2\ for ({1, 2, 3}, {s - 1, s, s + 1}, {2s - 3,
2s — 2, 2s — 1}) and extend T1 to a tricover T for (A1? A2, A3).

We now define

S=(S1- Bλ) U (Sa - # 2) U (S3 - 53) U M U (Γ - TO .

It is a routine matter to verify that S is an w-copt. The number of
members of £ is

= 3s2 - 9s + 8 = r? ~ n + 4
2 6

Since SZDM and ikf is admissible, it follows that S is admissible.

3* Properties of minimal w-coρts. Let S be a minimal w-copt. If
n ΞΞΞ r (mod 6), for r = 0, 2, 4, 5, then the covering is not exact and some



716 M. K. FORT, JR. AND G. A. HEDLUND

pairs must be contained in more than one member of S. However, it
is possible to state precisely the way in which this sort of '' multiple
covering" takes place. Our results are contained in the next three
theorems.

THEOREM 2, Let n = 6k, and let S be an n-copt for which C(S)— φ(n).
There exists a partition of {1, 2, •• ,n} into 3k pairs Pi, P2, , P^,
ewh of whivh is contained in exactly two 'members of S. Every other
pair (u, v), 1 ^ u < v ^ n, is contained in exactly one member of S.

Proof. For 1 ^ j ^ n, let f(j) be the number of members of S that
contain j . It is clear that f(j) is at least n\2, so that f(j) = n/2 + g(j),
Q{j) ̂  0. We obtain

Thus

We see that g(j) = 0 for j =^ 1, , n and /(i) = nj2. Since for each
fc Φ j there is at least one member of S which contains (j, k), there
must exist j * Φ j such that (j, j*) is contained in exactly two members
of S, and (j9k) is contained in exactly one member of SΐorjΦkΦj*.
Moreover, i** = j , and hence the pairs (j, j*) are the n\2 pairs
pτ,p2, . . . , p 8 ϊ .

THEOREM 3. Lβί w t= 6fc + 2 or w = 6λ; + 4, and let S be an n-copt
for which C(S) = ψ(n). There exist n\2 + 1 pairs Pu , Pw/2+i which
are contained in exactly two members of S. Every other pair is contained
in exactly one m&v&bθr &f S. There exists an integer m which is contained
in exactly three of the pairs Pu ••, Pn/a+i Every other integer is con-
tained in exactly one of the pairs Pu , Pn/a+i.

Proof Let f(j) be the number of members of S that contain the
integer j . Since /(j) ^ n\2y we can write

Then
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Σ / ω = ~ + ΣffO") = 3 φ(n) = 5-±A .
>i 2 j-i 2

Thus Σ?-ι0θ') = l There exists an integer m such that #(m) = 1 and
g(j) = 0 for i =£ ra.

Now suppose j Φ m. There must exist j * such that (?, i*) is con-
tained in exactly two members of S, and (j, h) is contained in exactly
one member of S for j Φ h φ j * .

Since there are n/2 + 1 members of S that contain m, and each pair
(m, j) is contained in at least one and not more than two members of
S, there exist a, 6, c, such that (m, α), (m, 6), (ra, c) are each contained
in exactly two members of S, and (m,j) is contained in exactly one
member of S if j Φ a, j Φ b, and j Φ c.

If j is a member of Γ = {1. , n} — {m, a, δ, c}, then j**=jm

Hence T is partitioned into pairs Px, P2, , P(w_4)/2, each of which is
contained in exactly two members of S. These pairs, together with
(m, α), (m, 6), (m, c) form the set Plf , Pn/a+i.

THEOREM 4. // ^ = 6k + 5 cmeZ S is a minimal n-copt for which
ψ{n) = (^2 — n + 4)/6, ί/̂ β̂  o^e pair is contained in three members of S
and every other pair is contained in exactly one member of S.

Proof. For 1 ^ j <̂  n, we define /(i) to be the number of members
of S that contain j . Clearly f(j) ^ (n - l)/2. We define ^(j) = f(j) -
(w - l)/2. Since Σ?-i/C?) = 3 ^ W = (n2 - n + 4)/2, we obtain

There exists JΊ such that g(jτ) > 0. Since there are more than (n — l)/2
triples of S that contain j l 9 there exists j2 such that the pair (j19j2) is
contained in at least two triples (j19j2,33), (Ji,J2,Jd The integer j2 must
be in triples with n — 4 integers other than ^Ί, j3, j±, and it requires at
least (n — 3)/2 triples to satisfy this condition. Thus/(j2) ^ (n + l)/2 and
0θ'a) > 0. We now see that g(jτ) =g(j2) = 1 and ^(i) = 0 if j1 Φ j Φ j 2 .

It now follows that if (u, v) is a pair for which g(u) — 0 or g(v) = 0,
then ( ,̂ v) is contained in exactly one member of S. Since 3ψ(n) —
n(n — l)/2 + 2, the pair (jl9 j2) must be contained in three members of S.

Our Theorem 1 is of a constructive nature, and indicates how
minimal w-copts can be constructed out of minimal m-copts for m < n.
There are other methods, however, of constructing minimal %-copts out
of minimal m-copts for m < n. We give a lemma and theorem due to
Reiss [2] which are useful in this connection. Our final theorem is
analogous to the Reiss Theorem.
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REISS LEMMA. Let n be a positive integer. Let

P= {(%, v) 11 ^ u < v ^ 2n} .

Then there exists a partition of P into sets S19 Si9 , S2n-l9 each contain-
ing n elements, such that for each i, i = 1, 2, , 2n — 1, the coordinates
of the n pairs in S% constitute the integers 1,2, , 2n.

Proof. Let j be an integer such that 1 ̂  j ^ 2n — 1. We define

Tj = {(α, 6) 11 £ a < b ̂  j + 1 and a + b = j + 2}

and

22j = {(α, 6) | i + 1 < a < b < 2n and α + δ = j + 2rc + 1} .

Let S2n_! = Γ2n-lβ For i even, 1 ̂  i ^ 2^ - 2, let

For j odd, 1 ̂  j ^ 2τz - 3, let

S} = T} U R, U

It may be verified that the sets Sj have the desired properties.

REISS THEOREM. Let m be odd and let S be an m-copt for which
C(S) = ψ(m). Then there exists a (2m + l)-copt T such that T Z) S and
C(T) = φ(2m + 1).

Proof. Let P = {(u, v)\m < u < v ^ 2m + 1}. We use the Reiss
lemma to partition P into sets Sl9 , Sm9 each containing (m + l)/2
elements, such that for each i9 i = 1, 2, , m, the coordinates of the
(m + l)/2 pairs in St constitute the integers m + 1, m + 2, , 2m + 1.
We now define

T = SU {(<,i, k)\l ^ i ^ m and (j, k) e S,} .

It is easily verified that T is a (2m + l)-copt. If m = 1 or m Ξ 3 (mod 6),

then

C(S) = m ( m ~ )̂ J- m ( m + 1 ) = 4m2 + 2m = (2m + l)(2m) _. ,g
V ^ 6 2 6 6

If m = 5 (mod 6), then

— m'2 ~ m + 1 i ^ ( ^ + 1) _ 4m2 + 2m + 4
~ " ""'~6 """""" 2" 6
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THEOREM 5. Let n be an even integer and let S be an n-copt for
which C(S) = φ{ri). Then there exists a 2n-copt T such that C(T) = φ(2n)
and S c T.

Proof. According to the Reiss Lemma there exists a partition of
the set

P = {(%, v)\n + 1 ^ u < v g 2n}

into n — 1 sets Alf A2, , An-L such that for each i, i — 1, 2, , n — 1,
the coordinates of the n\2 pairs in Â  constitute the integers
{n + 1, , 2^}. Let An = Aw_x, and let

Γ - S U {(i,j,fc)|i = l ,2 , . . . , w ; (i, fc) e AJ .

It is easy to prove that T satisfies the desired conditions.
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