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l Introduction* In [6] S. Kakutani showed that if one has equiva-
lent probability measures μi and vt on the σ-field <9f of subsets of a
set Ωίy i = 1, 2, , and if μ and v denote respectively the infinite pro-
duct measures ®Π.i;"ί and ®T=ιVι on the infinite product σ -ring generated
on the infinite product set Ω, then μ and v are either equivalent or
perpendicular, and he obtained necessary and sufficient conditions for
equivalence to occur. The theorem here shown may be regarded as a
generalization of a case of the Kakutani theorem.

Similar dichotomies have revealed themselves in the study of Gaus-
sian stochastic processes. C. Cameron and W. T. Martin proved in [2]
that if one considers the measures induced on path space by a Wiener
process on the unit interval, then if the variances of the processes are
different the measures are perpendicular. This sort of result was
generalized by U. Grenander, starting from the viewpoint of statistical
estimation, and utilizing a Karhunen representation for the processes
involved. A wider sufficient condition for perpendicularity of the meas-
ures induced on path space by continuous Gaussian processes on the
unit interval was obtained by G. Baxter in [1]. Cameron and Martin
also examined the effect on the induced measure of taking certain types
of affine transformations of a Wiener process (see [3], [4]). I. E. Segal
extended their results in [8], and made the situation more transparent
by use of his notion of "weak distributions ", and in a large class of
cases got conditions for equivalence.

In the present note it is shown that the equivalence-or-perpendicu-
larity dichotomy holds in general for pairs of measures induced by
Gaussian stochastic processes, and Segal's necesssary and sufficient
conditions for equivalence are extended to cover the case of nonzero
mean. It has been pointed out to the author by C. Stein that one
could also give a proof, in the case of zero mean, by use of the techni-
ques of statistical testing of hypotheses.

2Φ Several lemmas. All Hubert spaces mentioned will be over the
reals.

Definition 1. An operator T from Hubert space H to Hubert space
K will be called on equivalence operator if
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(1) T is one-to-one onto, bounded, and has a bounded inverse.
( 2 ) VT*T~ = I + H, where H is Hilbert-Schmidt.

LEMMA 1. If A is a self-adjoint bounded invertible operator on H
then the following statements are equivalent:

( a ) A—I is Hilbert-Schmidt
( b ) (A—If is Hilbert-Schmidt
( c ) A"1—/ is Hilbert-Schmidt.

If A, B satisfy (a), then so does ABA.

Proof. The first part is clear from consideration of the eigenvalues
of the operators. For the second part: write A — I + K, B = I + H.
Then ABA = (I + Kf + (I + K)H(I + K), and since the sum and product
of two Hilbert-Schmidt operators is Hilbert-Schmidt, ABA—/ is Hilbert-
Schmidt.

DEFINITION 1. An operator T from Hubert space H to Hubert space
K will be called an equivalence operator if

(1) T is one-to-one onto, bounded, and has a bounded inverse
( 2 ) VT^T — I i s Hilbert-Schmidt.

LEMMA 2. Products, conjugates, and inverses of equivalence operators
are again equivalence operators.

Proof. That they are one-to-one onto, and bounded, is clear (in
the case of the conjugate operator, use the fact that the nullspace of
T* is the orthogonal complement of the range of T).

Let T be an equivalence operator from H to K. Let Q—VT*T.
Then V = TQ-1 is an isometry from H onto K, and T = VQ. Thus
T-1 = Q-XF*, and (Γ' 1)*^" 1) = VQ~%V*. Since Q is the type of operator
occurring in Lemma 1, and (J7-1)*!7-1 is a unitary transform of Q~2,
we get the result. Similarly, (Γ*)*T* = 7T* = VφV*. Finally, let S
be an equivalence operator from K to L, and let P — Ί / S * S , U — SP"1.
Then

(ST)*(ST) = {VQUPY{VQUP) = PU*QV*VQUP = PU*QUP,

and again Lemma 1 tells us that V(ST)*(ST) is of the desired form.

DEFINITION 2. A function x on a measure space with measure μ of
total mass 1 is called Gaussian if either

(1) x is almost everywhere a constant, γ.
or

(2) there are numbers σ > 0 and γ (depending on x) such that
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μ{ω I X(ω) <£ λ} = - ^ P exp \\( l " ?Yi dt .

Case 1 may be thought of as Case 2 with σ = 0. Then in either case
we have

(the " mean " and " variance " of a;).

LEMMA 3. Let S%c ^f c δβ σ-fields of subsets of Ω, S^the smal-
lest σ-field containing their union. Let μ, v be probability measures in
Sf such that μi = μ \ Si is equivalent to vι = v \ Sζ. Let Λ, Aμi Av be
sets in S^ forming a Hahn decomposition of Ω that is, μ is equivalent
to v when both are cut down to subsets of A, and μ(Ay) = v(Aμ) = 0. Then
dμ^dvi converges almost everywhere with respect to μ + v to dμ\dv, if one
makes the convention dμjdv = 0 on J v and + °o on Aμ.

Proof. If At e Si, then

+ v) = μJίAt) - μ(A) ,

so that dμi\d(μ + v)« i s the conditional expectation of dμi\d(μ + v) with
respect to ^f and the measure μ + v. Of course ^ + v has total mass
2, but this is inessential one can always normalize things if so inclined.
The Martingale convergence theorem then tells us that

dμt __, dμ
d(μ + v)4 d(μ + v)

almost everywhere with respect to μ + v. Similarly

dvi dv

d(μ + v\ d(μ + v)

Now,

SO

dμt _
dv.

dut

dμt

~d{μ +

dμ
d(μ + v) 1

1 dv{

/ ~d(μ +

/ dv

' d(μ +

where we understand the right hand side to be + oo when the
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denominator but not the numerator is zero. Now dμ/d(μ + v) vanishes
precisely on Λμ, and dv\d{μ + v) vanishes precisely on AM all statements
being up to (μ + v) — measure 0. Whence the lemma.

The following fact is known, and we list it for reference :

LEMMA 4. // zt, z2, are measurable functions with independent
Gaussian distributions, mean 0, variance 1, then the product

a, exp j-1 Σ (1 - ά\)Z\
2

converges to zero almost everywhere if

and converges to a finite non-zero limit almost everywhere if

Σ 11 - a\ |2 < oo .

This can be proven, for example, by applying Kakutani's conditions
in [6] for equivalence of product measures.

LEMMA 5. Let R be a closed densely defined linear operator from
the Hiΐbert space H to the Hilbert space K. Then there is an equivalence
operator U from H onto H such that U*R*RU has pure point spectrum.

Proof. Let VWΆr =XλdF{λ). Let F.t = F{21) - F{2i-1)y i =
Jo

0, ± 1 , ± 2 , and let R, = VR*R I Hέ, where H* is the range of Ft.
By a theorem of von Neumann in [7] there is a self-adjoint Hilbert-
Schmidt operator Ht in H* whose Hilbert-Schmidt norm \\Ht ||2 ̂  2"2|*i-3,
and such that Rt + Ht has pure point spectrum. Now consider the
equation R^I + Kt) — Rt + Hίy that is RtKi = iϊέ. Since Rt is invertible
in Hέ, and, in fact, || J2, H"1 ̂  2"i+1, we get a solution i£έ = Rϊ1^ and

Let K be defined on H by setting K \ H4 = ̂ . Then

us = Σ lliUϊ^ Σ
~oo<i< + oo -oo<i<+o

so K is Hilbert-Schmidt, and Z7 = / + K is an equivalence. Further,
(/ + KiYR\(I + Ki) has a complete set of eigenvectors in H;. But this
operator is precisely the restriction of U*R*RU to H*. Therefore
U*R*RU has a complete set of eigenvectors in H.
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We shall be considering linear spaces of Gaussian functions. In
taking the closures of such linear spaces in the L2(A0 norm, the functions
obtained as limits will again be Gaussian, as is well known and easy
to show, the means and variances of a limit being in fact limits of the
means and variances of the approximating Gaussian functions. Further-
more, the topology of convergence in measure on Gaussian functions
agrees with L2(μ)-topology. This is shown in the mean zero case in
[8], and the general case can be reduced to this by showing the following :

LEMMA 6. Let xi be a net of μ-mβasurahlβ functions with Gaussian
distributions, converging in probability to zero. Then their means γt

converge to zero.

Proof. Suppose this does not occur. Then by cutting down to a
subnet if necessary, and occasionally using —x% instead of xt if necessary,
we can assume that there is some c > 0 such that r* ̂  c for all i.
Now,

μ{ω 1 xlω) - Ti > 0} = μ{ω \ Xι(ω) - Ti < 0} ,

so that

μ{ω i Xt{ω) > c} ^ μ{ω | x, (ω) > γt} = μ{ω \ X^ω) < r j

^ μ{ω I X^ω) < c] ^ μ{ω | | X^ω) \ < c} .

The sets on the two ends of the inequality are disjoint, and that on
the small end has measure converging to 1, which gives the desired
contradiction.

LEMMA 7. Let μ, v be nonperpendicular measures. Suppose xt is
Gaussian with respect to μ and v, xt -> 0 in μ-measurβ, and xt —> x in
^measure. Then x = 0 a.e.(v).

Proof. Since x is Gaussian under v, the assumption that it is not
zero a.e.(^) implies that it is invertible a.e.(^). Then x^x*1 -> 1 in v
measure^ whereas a?, -> 0 a,e,(^X which implies μ J_ ».

3. The theorem.

THEOREM Let L be a linear space of real-valued functions on a set
Q. Let 6^ be the smallest σ-field of subsets of Q with respect to which
all the functions in L are measurable. Let μ and v be probalήlity meas-
ures on <9\ Suppose all the functions of L are Gaussian via both meas-
ures. Then either μ ~ v or μ _L v. Necessary and sufficient for equivalence
is that if we let K be the linear space generated by L and the real-valued
constant functions, then the μ-equivalence cίusses of functions in K are
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the same as the v-equivalence classes, and the identity correspondence
between the two types of equivalence classes in K is induced by an equiva-
lence operator between the Tu2(μ)-closvre of the μ-equivalence classes and
the \i%(y)-closure of the v-equivalence classes.

Proof. First, assume μ not J_ v. Let J = {x — \xdμ \xe L}. For

any function χ9 let xμ (respectively xv) denote the equivalence class of
x modulo functions which are μ-null (respectively v-null), and, for a set
S of functions, let Sv, Sμ denote the corresponding set of equivalence
classes. Sμ will mean the L2(μ) closure of S.

All elements in K are Gaussian under μ and v, and the correspond-
ence x* <-> xy between Kμ and Kv is one-to-one and closable, by Lemma
5. So there is a one-to-one closed operator T from a dense subspace
DΓ of Kμ to a dense subspace RΓ of Kv such that Txμ = xv for all x in
K. Further, given any ξ in DΓ, there is some immeasurable x such
that ξ = x* and Tξ = x\ For choose xt in K such that xt -+ξ,xϊ~> Tξ.
By taking subsequences, the convergence can be made a.e.(μ) and a.e.(v)
respectively, so that ξ and Tξ must agree a.e.(/i Λ v).

Let S = T I Ότ n J μ . Then £ is closed, with dense domain in Jμ and
dense range in J v, by Lemma 6. Lemma 5 gives us an equivalence U
in J^ such that U*S*SU has pure point spectrum. Choose yl9 yi9

such that the 2/f are a complete orthonormal set of eigenvectors for
JJ-^U-1, with eigenvalues α|. Then the vectors U~:y^ are again orthog-
onal, and || U^ytW = aϊ1. Let £% be the sample space of 2/1, ••• , 2/̂ .
Put a new measure μr on ^ by letting yl9 y2, be Gaussian, independ-
ent, mean 0, variance 1/α?, l/αj, Then

which converges almost everywhere (/̂  + v) to a nonzero limit, so that
μr ^ μ.

Now we wish to show μ' ~ v. We have xv — Sfoμ for x e J, so xv=
(SUW-'x* = (SJ7)a^. Let Sr - Sϋ'. Then, taking a.e. limits on both
sides, one can for every ξ in D^ find some ^-measurable x such that
xμ' = ξ and #v = S'ξ. Now choose functions Zx, Z2, such that Zf' form
a complete orthonormal set of eigenvalues for S'*S'. The S'Zf = Zv are

also orthogonal and span J v . Define \ztdv = γt and j | Zi \2dv•= αf. Then

αέ is never zero, since S' is nonsingular, and \(Z? — ?Ό(^j — Γj)^ =

cc\dij — Tijj, where dυ is the Kronecker delta function. So the covariance

matrix of Zl9 ZN in v-measure is given by CN — AZ

N — γN (x) γN9 where

AN is the matrix
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Γ'
γN is the vector (γu - , γN), and the notation ~γN (x) γN represents a dyadic
operator. CN is, of course, nonnegative definite. Let δt — fi\au and

δjr = (dlf , δN) So ^ = A-/γNj and A^C^A^1 = / - 1N (x) 3^ is a non-
negative definite matrix. By conjugating with an orthogonal matrix,
this can be transformed into the equivalent matrix / — \\dN \fE, where

The determinant of this, and hence of I — δ^ (x) 3^, is / — || ^ ||2. Thus

I CNI = I A N |2 i 1 - ||~δN | |21 = a\ ^ ( 1 ~ Σ « ) .
ί - l

Observe that

δ = r* =

where ( , •) denotes the inner product in L2(v), so that, since

1 0 Λ, Σ ^2 < (1, 1) = 1- Thus I CN ( Φ 0, and C^ is nonsingular. The
inverse matrix to CN is

-> -> 4 ~ 2 r 6?) ^1 ~ 2 r
^N — V^i iV / JV VA/ IN) — Ή-N "T ^

111 4iy II2

TN 11

Now let ^N be the sample space of Zl9 , ZN and let ^ = μr

— v\&^N' Then dvN\dμN is precisely

^ > - <C~N\ZN - γN\ (ZN - £,)

where Z^ = (Zlf , Z^). A calculation shows that the exponent can
be written

Consider the convergence of dvNjdμN. At this stage one could already
conclude from the zero-one law that {ω \ dvN\dμN (ω) -> 0} has measure
0 or 1, since the set is independent of Zl9 , ZN for each N. However,
we wish to get precise conditions for when this occurs.
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( a ) Suppose

Σl ί - i r = c o

Consider the factor

V\ CA -1 exp j ^ [ | | ZN II' - II AγZs

= (1 - Σ m-H- -1-) exp \ Σ (l - ^)Zl.

Applying Lemma 3, this factor converges to zero almost everywhere
with respect to μ'. The other factor of dvN\dμN, namely

e x p

2 r
is clearly bounded above, so in this case dvN\dμN -> 0.

( b ) Suppose

i-^-
Then, again by Lemma 3, the factor

1
<xx aN 2 i-i V cc

converges almost everywhere // to a finite limit. The remaining factor
is, except for a constant,

If _ 1 ___ ($ δiZ,
21 i - Γi^ii

Since ΣΓ-i<5« < 1, everything in sight converges, because ΣΓ-i(^ί/^i)3 < °°.

So μf ~ v, and S' is an equivalence from Jμ to Jv. Then S is likewise,

and therefore T is an equivalence operator.

Conversely if L consists of Gaussian functions under μ and ι>, and

the correspondence #μ + c <-» #v + c, a? e L, is the restriction of an equiva-

lence operator T from Kμ to Kv, then again choosing a basis of eigen-

vectors for T 1 Jμ, we get convergence of the Radon-Nikodym derivatives

to a non-zero limit, because of Lemma 3, and therefore get equivalence

of the induced measures.

4. An example* Let T be a set, Ω the set of all real-valued functions
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on T. Let xt(ω) — ω(t), and let & be the smallest σ-algebra with
respect to which all the xt are measurable. Let μ, v be measures on
c$f by each of which xt becomes a Gaussian stochastic process. Let

m(t) = \xtdμ, ρ(s, t) = \x8xtdμ — m(s)m(t),

f Γ
n(t) = \a;tαv, σ(s, ί) = \α;sα;tdv — n(s)n(t) .

Let r be a measure on Γ such that p, σ, m, n, become measurable. De-
fine, for τ-measurable /

°(8, t) + m(s)m(t))f(s)f(t)dz(s)dτ(t) ,

σ(β, ί) + φ

and [/,/] - [/,/]μ + [/,/]v. Let Lo be those / for which [/,/] <

Then we get inner products [/, g\, etc. on Lo. Define \f(t)xtdτ(t) as

an L2(μ + ι>) valued integral, for / e Lo. This can be done, and in fact

[/, gl =

Let L = \x I there is some / in Lo for which x has as its μ + v equiva-
( f )

lence classl/(£)sc{cZr(£)k L is a linear set of functions, all Gaussian with

respect to either μ or v. Let μo = μ\Sζ and u0 = v | .5 .̂ We know from
our theorem that μ0 and v0 are either equivalent or perpendicular. Let
H and K be the Hubert spaces gotten by completing the /^-equivalence
classes of Lo in L2(/Ό and the ^-equivalence classes in L2(y). The inner
products then come from [/, g\ and [/, g]v. Necessary for equivalence
is that the identity map on Lo induce an equivalence operator from H
to K, and in order to get sufficiency we just have to be sure that if
Lo is enlarged to include multiples of the identity, the identity map
still induces an equivalence operator on the Hubert spaces. This amounts
to requiring that 1 be an L2(μ) limit of functions in La if and only if
it is also an L2(v) limit.
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