
ON THE RADICAL OF A GROUP ALGEBRA

W. E. DESKINS

A basic result in the study of group algebras and characters states
that the group algebra 3I(gp) of a finite group g" over the field g of
characteristic p Φ 0 has a nonzero radical 9ΐ if and only if p is a divisor
of o(gf), the order of g?. This suggests that 9i is related in some
manner to the Sylow ^-groups of g7 and that it may be possible to
define SR in terms of these subgroups. In [6] Jennings showed that if
o(g^) = pa, then 9ΐ is of dimension pa — 1 and has as a basis the set of
elements Pi — 1. As a generalization of this define 91' to be the inter-
section of all the left ideals of 2ί(S^) generated by the radicals of the
group algebras of the Sylow p-groups of &. Then 9t' is a nilpotent
ideal of §I(5f) (cf. [2]), and Lombardo-Radici has shown [8] that 9ΐ' =
9ΐ provided g^ has a unique Sylow p-group or o(g^) = pg where q is
also a prime. Also, in [9] he demonstrated that if g?7 is the simple
group of order 60 and if p = 2 or 3 then 9V is a proper subideal of 9Ϊ.
In this paper it will be shown that SR' = 3ΐ if one of the following
conditions is satisfied:

(A) 2^ is homomorphic with a Sylow p-group of g?.
(B) g" is a super-solvable group.
(C) gf is a solvable group with (o(gf), p2) = p.
In the last section of the paper an application to a related problem

is made. If gf contains an invariant p-group then SI(S )̂ is bound to
its radical 9ΐ (i.e., if a in 2ί(^) is an element such that α9ΐ = 9ΐα = 0,
then α is in 9ΐ). This raises the question : If Sϊ(gr) is bound to its
radical 9ΐ, does %? contain an invariant p-group ? This is equivalent to
the question: Does Sf contain an invariant p-group if 2^ possesses no
irreducible representation of highest kind ? (An irreducible representa-
tion of highest kind is one whose dimension is divisible by the highest
power of p which divides o(2^).) It is shown that if 2̂  is a group
such that 9ΐr = R and if the Sylow p-groups of gf are cyclic, then the
above question is answered affirmatively. Also an example is given
where the answer is negative.

1Φ Type A Let ^ be a group of order of order g — hpa, (h, p)
= 1, with a normal subgroup Sίfoi order h. And let g be an alge-
braically closed field of characteristic p. (The requirement that g be
algebraically closed is only a convenience since the dimension of 9V is
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unaffected by any extension of the ground field.)

THEOREM 1. The radical 31 of the group algebra U(^) of the group
3? over the field g equals ϊΐ', the intersection of all the left ideals of
2ί(^) generated by the radicals of the group algebras of the Sylow p-
groups of 5f'.

Let ^ be a Sylow p-group of g? : then 3?\3i? is isomorphic with
& and gf is an extension of Sίf by ^? Now Sί(^), the group algebra
of & over %, has the radical 5ft which is of dimension pa — 1 over %
and has as a basis the differences Pt — 1, all P̂  e P. Form 9JΪ, the left
ideal of 21(2?) generated by Sft. The ideal SDΐ is of dimension Λ(pα — 1)
over g, and we propose to show that 9Ϊ, the radical of 2ί(2^), is con-
tained in 2JΪ.

Now 2 ί ( ^ ) , the group algebra of Sίf over g, is expressible as
33X® ••• ®33W where 83* is a simple ideal of 2 t ( ^ ) . Let 33 be one of
these, and let &' be the subgroup of & consisting of elements Pt such
that P$ΆP? = S3, with o{^r) = r = pc, o ^ c ^ α. The elements i ϊ of

^g^ are represented by H in S3 and the i ί form a group if homomorphic
with 3ίZ Furthermore the elements of 33 can be expressed linearly in

terms of the elements of Sίf.
If P e &", then P corresponds to an automorphism of 33 since

P33P"1 = 33, and since 33 is central simple this automorphism is an inner

automorphism of 33. Thus P corresponds to a sum of elements of Sίf

and so leaves the conjugate classes of <§{f invariant since these classes

commute with the individual elements of ^ f Basically, therefore, we

are dealing with an extension 2? of Sίf by a p-group &' in which each

element of 3?' induces an automorphism A of ^f which leaves the

conjugate classes invariant. Since the order of S%f is prime to p it is

well-known [11, p. 123] that A is an inner automorphism of <%T Now

a result due to M. Hall [4, Theorem 6.1] implies that <& is a direct

product of 3^' and J£f and this leads to the conclusion that the elements

of &>' commute elementwise with S3. If £} = Σp^e^^Prδ, then the

radical £ιf of Π equals 33 times the radical of Sί(^ y), and therefore Q'

is contained in 3JΪ.
If t = pα~c is the index of ^' in ^f then there are t distinct ideals

33i in the decomposition of %{^f) which form a set of transitivity T
for ^ with 33X = 33. That is, P&jPϊ1 e T if 33, e T and Pte 3? and
furthermore, if 33t, 33j e T, then there is a Pfc e & such that 33̂  =
PJQjPfc1. Then the algebra £ = Σ Λ»j, all P, e ^ and 33j e T, is an
ideal of 2ί(Sf), and we assert that its radical is contained in 3ft. To
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see this consider the coset expansion of & relative to ^ ' , & — Σ ^ ^ '
= Σ ^'Si. Then clearly the algebra V = Σ L S&'Sj is a nilpotent ideal
of %, while the transitivity of T implies that £ — %' is a simple algebra.
Thus %' is the radical of % and obviously is contained in <ϋΰl.

As the choice of 33 was arbitrary in the decomposition of Sί(i^),
clearly the process above leads to the conclusion that 5R is contained in
9DΪ. Since the choice of & was arbitrary this enables us to conclude
that 3t' a 31. However 3T is known to be nilpotent (cf [2]), hence 9t'
= 3ft.

2. Type B* A group 2^ is defined to be super-solvable if it
possesses a sequence of subgroups 2^ = g?7 ID g?Ί D ID 2 Ŝ = 1 such
that gf4 is normal in 2^ and 2^/S^+i is cyclic. If in addition each g^/g^+i
is contained in the center of 2̂ 7 2^+1, then g^ is called a nilpotent
group. A basic result concerning nilpotent groups states that a nilpotent
group is a direct product of its Sylow groups. And a principal theorem
on super-solvable groups states that a super-solvable group is an exten-
sion of a nilpotent group by a nilpotent group. (For these results see
Kurosch [7, pp. 216 and 228])

THEOREM 2. The radical 9R of the group algebra Sί(S^) of a super-
solvable group & over the field % equals 91'.

By the theorems quoted above ^ contains a normal nilpotent sub-
group 2^ such that gf / 2^ is nilpotent while 5/i has a normal Sylow p-
group &{. Evidently ^ is normal in *&? since 2^ is a direct product
of its Sylow groups. Then the radical of 2I(^) generates a nilpotent
ideal Sϊt of 2ϊ(gf) and 21(5 )̂ — ?ftι is isomorphic with the group algebra
21(2^/^?) of 2 /̂̂ f. Now the group 2^/^? is a group of Type A which
was discussed in the preceding section. So if $ is a left ideal of §1(2 )̂
generated by the radical of the group algebra of ^ a Sylow p-group
of 2^, then §t(g?) — $ is a completely reducible left 2I(T£ )-module since

is a Sylow p-group of g^/^?. Hence 3ΐ = 3V.

3* Type C» Let ^ be a solvable group whose order is divisible
by p to the first power only. Then 2^ possesses a sequence of sub-
groups ^ 0 = ^ D g 7

1 D D 2^ = 1 such that 2̂ +i is normal in 2^ and
2̂ / g^+1 is a group of order q where q is a prime.

THEOREM 3. The radical 9ΐ of the group algebra SI(^) of the group
over ί/̂ β jίβM g equals 9Ϊ'.

The proof will be by induction on n, the length of the series defined
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above. If n — 1 the theorem is trivally true so assume the result to
be true for groups of length less than n. Now consider ^ , which is
of length n — 1. If Sf/g^ is of order p, then the order of g^ is prime
to p and the result follows by Theorem 1. So we shall restrict our
attention to the case where Sf/^ is of order q, (p, q) = 1.

Now by a theorem due to P. Hall [5] gf contains a group Sίf of
order t, where pt = g, the order of Ŝ \ If ^ is a Sylow p-group ^ of
form 3f, the left ideal of 2I(5f) generated by the radical of Sί(^). Then
Sί(S^) — Sf = G is a left &-module representable by %{3ί?) and is a
completely reducible ^(S^-module. For 9 ,̂ the radical of 2ϊ(S î), is such
that 3̂ 21(5̂ ) is contained in $ and so S^Q = 0. So let Ox be an
irreducible left 2^-submodule of Q. Then £} may be written O —
Qi + O2 where Q, is a left S^gf^-module and Ox Π O2 = 0. Therefore
a projection T of Q onto D2 exists such that T annihilates the elements
of Oχ and is the identity operator on Q2 and such that T commutes
with (the representations of) the elements of 2I(S î). Now form the
projection T = t'1 Σ HiTHϊ1, summed over the t elements of Stf. Then
I" commutes with all the elements of & and hence the submodule
Qί = Γ Ώ of Q is a left 2I(^)-module. Furthermore Q = £\ + Q( where
Oχ Π Q( = 0. Thus Q is a completely reducible left Sί(^)-module and
so $ contains the radical of 2ί(2^). This proves Theorem 3.

4. A related problem* An algebra having the property that only
elements of the radical can be both left and right annihilators of the
radical has been termed a bound algebra by M. Hall [3],

THEOREM 4. // the group & contains an invariant p-subgroup ^ ,
then the group algebra 2ί(S^) of & over a field of characteristic p is a
bound algebra.

If & is of order pά — x and of index y, then the radical of
generates a nilpotent ideal $ of Sί(^) of dimension y(x — 1). Now the
element Pτ + ••• + Px, where P4 is in ^ , annihilates $ and is also in
the center of SI(S^). Hence it generates an ideal J of order y which
is contained in $ and $ J = J $ = 0. Since Sί(^f) is a Frobenius algebra,
a result due to Nakayama [10] states that the set of all right anni-
hilators of $ in Sϊ(5f) forms an ideal of dimension ?/. Hence $ contains
all of the right annihilators of $. Since $ s 5R, $ contains the right
annihilators of 5R, and so Sί(S^) is bound to 3Ϊ.

This raises the question : If ?ί(5f) is bound to its radical 5R ̂  0,
does 5^ contain an invariant p-subgroup ? A partial answer is provided
by

THEOREM 5. If the Sylow p-groups of c& are cyclic and if the
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radical 9ΐ of SΙ(ί^) equals 3Ϊ' then 97 contains an invariant p-subgroup
if' 2t(SO is δowzd ίo 3ϊ.

Let ^ and . ^ be two Sylow p-groups of Z? and let ^ and $ 2 be
the two left ideals of 21(2?') generated by the radicals of 2 ί (^) and
2I(^) respectively. Denote by r(%) and r(%) the right ideals of 2t(gτ)
consisting of all elements which annihilate ^ and $2> respectively, on
the right. Then since 5R g ΠS* and since r(9t) £ 5ft it follows readily
that r(3>t) and r($2) are contained in 31 = 31'. In particular, the sum
ί? of the elements of ^f is contained in $2. Now the only elements of
$2 which involve 1, the identity of %7, also involve other elements of
^ , so that the belonging of £ to $ 3 implies that ^ (Ί ^ is a group
containing more than one element. Then, since the ^ are all cyclic,
it follows readily that the p-subgroup ^? (Ί ̂ f is normal in gf.

Now 2ΐ(2O is bound to 31 if and only if Sf possesses no representa-
tion of highest kind (see [1]). If & is Sδ, the symmetric group of
order 120 and if p = 2, then the table of ordinary characters readily
demonstrates that 2^ has no representation of highest kind. Yet S5 has
no invariant 2-subgroup. It may be noteworthy that this example is
related to the one given by Lombardo-Radici [9] to show that 3ΐ is not
always equal to 3ϊr.
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