SUBDIRECT SUMS AND INFINITE ABELIAN GROUPS

Elbert A. Walker

1. Definitions. Let G be a group, and suppose G is a subgroup of the direct sum $\sum_{a \in I} \oplus H_{a}$ of the collection of groups $\left\{H_{a}\right\}_{a \in_{I}}$. If the projection of G into H_{a} is onto H_{a} for each $a \in I$, then G is said to be a subdirect sum of the groups $\left\{H_{a}\right\}_{a \in I}$. (Only weak direct and subdirect sums are considered here.) If a group G is isomorphic to a subdirect sum of the groups $\left\{H_{a}\right\}_{a \in I}$, then G is said to be represented as a subdirect sum of the groups $\left\{H_{a}\right\}_{a \in I}$. A group is called a rational group if it is a subgroup of a $Z\left(p^{\infty}\right)$ group or a subgroup of the additive group of rational numbers.
2. Theorem. Every Abelian group can be represented as a subdirect sum of rational groups where the subdirect sum intersects each of the rational groups non-trivially.

Proof. G is isomorphic to a subgroup of some divisible group, and thus can be represented as a subdirect sum G^{\prime} of rational group $\left\{H_{a}\right\}_{a \in I}$. Let $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right)$ be an element of G^{\prime}. Let $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{1}=$ $\left(k_{1}, h_{2}, \cdots, h_{a}, \cdots\right)$, where $k_{1}=h_{1}$ if $G^{\prime} \cap H_{1} \neq 0$, and $k_{1}=0$ if $G^{\prime} \cap H_{1}=0$. Assume β_{c} has been defined for $c<b$. Define

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{b}=\left(k_{1}, k_{2}, \cdots, k_{b}, h_{b+1}, \cdots\right)
$$

where $k_{b}=h_{b}$ if $H_{b} \cap\left(\mathbf{U}_{c<b} G^{\prime} \beta_{c}\right) \neq 0$, and $k_{b}=0$ otherwise. Each β_{a} preserves addition because each is a projection. Let $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \neq$ $(0,0, \cdots, 0, \cdots)$ and let

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{a}=\left(k_{1}, k_{2}, \cdots, k_{a}, h_{a+1}, h_{a+2}, \cdots\right) .
$$

Only a finite number of the coordinates of $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right)$ are not 0 . Let them be $h_{a_{1}}, h_{a_{2}}, \cdots, h_{a_{n}}$, where $a_{1}<a_{2}<\cdots<a_{n}$. If $a<a_{n}$, then

$$
\begin{aligned}
& \left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{a} \\
& \quad=\left(k_{1}, k_{2}, \cdots, k_{a}, h_{a+1}, \cdots, h_{a_{n}}, h_{a_{n}+1}, \cdots\right) \neq(0,0, \cdots, 0, \cdots)
\end{aligned}
$$

since $h_{a_{n}} \neq 0$. Assume $a \geqq a_{n}$. If $n=1$ and $a_{1}=1$, then $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right)=$ $\left(h_{a_{1}}, 0,0, \cdots, 0, \cdots\right) \in G^{\prime}$ and $G^{\prime} \cap H_{1} \neq 0$ so that $\left(h_{a_{1}}, 0,0, \cdots{ }^{n} \quad{ }^{\circ}=\right.$ $\left(h_{a_{1}}, 0,0, \cdots, 0, \cdots\right)$. That is, $k_{a_{1}}=h_{a_{1}} \neq 0$, and hence $\left(h_{1}, h_{2}, \cdots\right.$. $(0,0, \cdots, 0, \cdots)$. If $n=1$ and $a_{n} \neq 1$, then $\left(0,0, \cdots, h_{a_{1}}, 0,0, \cdots\right) \in G^{\prime}$ and also in $G^{\prime} \beta_{c}$ for all $c<\alpha_{1}$. Thus $H_{a_{1}} \cap\left(\mathbf{U}_{c<a_{1}} G^{\prime} \beta_{c}\right) \neq 0$, and

[^0]\[

$$
\begin{aligned}
& \left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{a}=\left(0,0, \cdots, 0, h_{a_{1}}, 0,0, \cdots\right) \beta_{a} \\
& \quad=\left(0,0, \cdots, 0, h_{a_{1}}, 0,0, \cdots\right) \beta_{a_{1}}=\left(0,0, \cdots 0, h_{a_{1}}, 0,0, \cdots\right) \\
& \quad \neq(0,0, \cdots, 0, \cdots) .
\end{aligned}
$$
\]

Assume $n>1$. If $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{a}=(0,0, \cdots, 0, \cdots)$, then $k_{c}=0$ for $c \leqq a_{n}$, and

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{a_{n-1}}=\left(0,0, \cdots, 0, h_{a_{n}}, 0,0, \cdots\right) .
$$

Therefore $H_{a_{n}} \cap\left(G^{\prime} \beta_{a_{n-1}}\right) \neq 0$, and so $H_{a_{n}} \cap\left(\bigcup_{c<a} G^{\prime} \beta_{c}\right) \neq 0$. Hence $k_{a_{n}}=$ $h_{a_{n}} \neq 0$, and this contradicts $k_{c}=0$ for $c \leqq a_{n}$. Therefore

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{a} \neq(0,0, \cdots, 0, \cdots)
$$

and the kernel of β_{a} is 0 . Hence each β_{a} is an isomorphism. Now let $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta=\left(k_{1}, k_{2}, \cdots, k_{a}, \cdots\right)$. Clearly β is a homomorphism of G^{\prime} into $\sum_{a \in_{I}} \oplus H_{a}$. But the kernel of β is 0 because every element in G^{\prime} has only a finite number of non-zero coordinates. Let I^{\prime} be the set of indices such that $a \notin I^{\prime}$ implies that the image of the projection of $G^{\prime} \beta$ into H_{a} is $0 . G^{\prime} \beta$ is isomorphic to a subdirect sum of the groups $\left\{H_{a}\right\}_{a \in I^{\prime}}$. If $G^{\prime} \beta \cap H_{1}=0$, then for $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \in G^{\prime}$ we have $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{1}=\left(0, h_{2}, \cdots, h_{a}, \cdots\right)$, so that

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta=\left(0, k_{2}, k_{3}, \cdots, k_{a}, \cdots\right)
$$

Hence the image of the projection of $G^{\prime} \beta$ into H_{1} is 0 . Therefore $1 \notin I^{\prime}$. Let $\alpha>1$. Suppose $G^{\prime} \beta \cap H_{a}=0$ and $H_{a} \cap\left(\bigcup_{c<a} G^{\prime} \beta_{c}\right) \neq 0$. Then there exists $b<a$ such that $H_{a} \cap G^{\prime} \beta_{b} \neq 0$. Let $\left(0,0, \cdots, 0, k_{a}, 0,0, \cdots\right) \in H_{a} \cap G^{\prime} \beta_{b}$, where $k_{a} \neq 0$. Let $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{b}=\left(0,0, \cdots, 0, k_{a}, 0,0, \cdots\right)$. Then $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta=\left(0,0, \cdots, 0, k_{a}, 0,0, \cdots\right)$, and so $G^{\prime} \beta \cap H_{a} \neq 0$. Therefore if $G^{\prime} \beta \cap H_{a}=0$, then $H_{a} \cap\left(\bigcup_{c<a} G^{\prime} \beta_{c}\right)=0$. This implies for every $\left(h_{1}, h_{2}, \cdots h_{a}, \cdots\right) \in G^{\prime}$ that

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta_{a}=\left(k_{1}, k_{2}, \cdots, k_{a}, h_{a+1}, h_{a+2}, \cdots\right),
$$

where $k_{a}=0$, and hence that

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) \beta=\left(k_{1}, k_{2}, \cdots, 0, k_{a+1}, k_{a+2}, \cdots\right) .
$$

Thus the image of the projection of $G^{\prime} \beta$ into H_{a} is 0 so that $a \notin I^{\prime}$. Hence for $a \in I^{\prime}, G^{\prime} \beta \cap H_{a} \neq 0$. Since G is isomorphic to $G^{\prime} \beta$, the theorem follows.
3. Remarks. Theorem 9 in [1] is an immediate corollary of the preceding theorem, as are some other known theorems in Abelian group theory. In [2], Scott proves that every uncountable Abelian group G has, for every possible infinite index $\alpha, 2^{o(G)}$ subgroups of order equal to $o(G)$ and of index α, and that for each given infinite index, their intersection is 0 . The following theorem shows that if G is torsion free, one can say more.
4. Theorem. Every torsion free Abelian group G of infinite rank has, for every possible infinite index $\alpha, 2^{o(G)}$ pure subgroups of order equal to $o(G)$ and of index α. Furthermore, the intersection of these pure subgroups of index α is 0 .

Proof. Represent G as a subdirect sum G^{\prime} of rational groups $\left\{H_{a}\right\}_{a \in I}$ such that for each $a \in I, G^{\prime} \cap H_{a} \neq 0$. Let α be an infinite cardinal such that $\alpha \leqq o(G) . \quad o(I)=o(G)$ since G has infinite rank. Let $I=S_{1} \cup S_{2}$ where $o\left(S_{1}\right)=\alpha, o\left(S_{2}\right)=o(G)$, and $S_{1} \cap S_{2}=\phi$. Let T be a subset of S_{2} such that $o\left(S_{2}-T\right)=o(G)$. There are $2^{o(G)}$ such $T^{\prime} s$. Let $\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right)$ be in G^{\prime}, and let

$$
\left(h_{1}, h_{2}, \cdots, h_{a}, \cdots\right) t=\left(\sum_{j \in T} h_{j}, k_{1}, k_{2}, \cdots, k_{a}, \cdots\right),
$$

where $k_{i}=h_{i}$ if $i \in S_{1}$ and $k_{i}=0$ otherwise. The mapping t is a homomorphism and the order of its image is equal to $o\left(S_{1}\right)$. That is, the index of the kernel of t is α. The order of the kernel of t is equal to $o(G)$ since $o\left(S_{2}-T\right)=o(G)$, and $G^{\prime} \cap H_{a} \neq 0$ for all $a \in I$. Let $T, T^{\prime} \supseteqq S_{2}$, $T \neq T^{\prime \prime}$. Then there is a $j \in T$ such that $j \notin T^{\prime}$, say. Let $h_{j} \in G^{\prime}, h_{j} \neq 0$. Then

$$
\left(0,0, \cdots, h_{j}, 0,0, \cdots\right) t=\left(h_{j}, 0, \cdots\right)
$$

However, $\left(0,0, \cdots, h_{j}, 0,0, \cdots\right) t^{\prime}=(0,0,0, \cdots)$. Hence the kernel of t is not the same as the kernel of t^{\prime}. These kernels are pure in G^{\prime} since the quotient groups are torsion free. Thus G has $2^{o(G)}$ pure subgroups of index α, and of order equal to $o(G)$. Suppose ($h_{1}, h_{2}, \cdots, h_{a}, \cdots$) is in the intersection of all these pure subgroups of index α. Then if $b \in S_{1}, h_{b}=0$. Hence if $h_{c} \neq 0$, letting $T=\{c\}$, we have

$$
\left(h_{1}, h_{2}, \cdots, h_{c}, \cdots, h_{a}, \cdots\right) t=\left(h_{c}, 0,0, \cdots\right) \neq 0
$$

which is impossible. Therefore for each $a \in I, h_{a}=0$, and this shows that the intersection of these subgroups is 0 .
5. Remarks. Every torsion free divisible group D of rank α is a direct sum of α copies of the additive group of rational numbers, and D contains an isomorphic copy of every torsion free Abelian group of rank α. The following theorem says that if α is infinite, every torsion free Abelian group of rank α is represented in a special way in D.
6. Theorem. Every torsion free Abelian group G of infinite rank can be represented as a subdirect sum G^{\prime} of copies of the additive group of rational numbers, and in such a way that G^{\prime} intersects each subdirect summand non-trivially.

Proof. Represent G as a subdirect sum G^{\prime} of the rational groups
$\left\{H_{a}\right\}_{a \in I}$ such that for each $a \in I, G^{\prime} \cap H_{a} \neq 0$. Suppose first that G has countably infinite rank. That is, suppose I is the set of positive integers. Each H_{a} is a subgroup of the additive group of rational numbers, since G is torsion free. Let $k_{1}, k_{2}, k_{3}, \cdots$ be a sequence of non-zero rational numbers such that $k_{i} \in G^{\prime} \cap H_{i}$. Let $r_{1}, r_{2}, r_{3}, \cdots$ be the nonzero rational numbers arranged in a sequence. Let $s_{i}=r_{i} / k_{i}$. Let $\left(h_{1}, h_{2}, \cdots, h_{n}, \cdots\right)$ be an element of G^{\prime}. Let

$$
\left(h_{1}, h_{2}, \cdots, h_{n}, \cdots\right) \beta=\left(\sum_{i=1}^{\infty} s_{i} h_{i}, \sum_{i=2}^{\infty} s_{i} h_{i}, \cdots, \sum_{i=n}^{\infty} s_{i} h_{i}, \cdots\right) .
$$

Since only a finite number of the h_{i} 's are non-zero, for each $k, \sum_{i=k}^{\infty} s_{i} h_{i}$ is a rational number, and for only a finite number of k 's is $\sum_{i=k}^{\infty} s_{i} h_{i}$ nonzero.

$$
\begin{aligned}
& \left(\left(h_{1}, h_{2}, \cdots, h_{n}, \cdots\right)+\left(g_{1}, g_{2}, \cdots, g_{n}, \cdots\right)\right) \beta \\
& \quad=\left(h_{1}+g_{1}, h_{2}+g_{2}, \cdots, h_{n}+g_{n}, \cdots\right) \beta \\
& \quad=\left(\sum_{i=1}^{\infty} s_{i}\left(h_{i}+g_{i}\right), \cdots, \sum_{i=n}^{\infty} s_{i}\left(h_{i}+g_{i}\right), \cdots\right) \\
& \quad=\left(\sum_{i=1}^{\infty} s_{i} h_{i}+\sum_{i=1}^{\infty} s_{i} g_{i}, \cdots, \sum_{i=n}^{\infty} s_{i} h_{i}+\sum_{i=n}^{\infty} s_{i} g_{i}, \cdots\right) \\
& \quad=\left(h_{1}, h_{2}, \cdots, h_{n}, \cdots\right) \beta+\left(g_{1}, g_{2}, \cdots, g_{n}, \cdots\right) \beta .
\end{aligned}
$$

Hence β is a homomorphism of G^{\prime} into a direct sum of copies of the additive group R of rationals. Let R_{n} be the set of nth coordinates of elements of $G^{\prime} \beta . \quad R_{n}$ is a subgroup of R since it is the image of the projection of $G^{\prime} \beta$ onto its nth coordinates. Let $m \geqq n$.

$$
\left(0,0, \cdots, 0, k_{m}, 0,0, \cdots\right) \in G^{\prime}
$$

and

$$
\left(0,0, \cdots, 0, k_{m}, 0,0, \cdots\right) \beta=\left(r_{m}, r_{m}, \cdots, r_{m}, 0,0, \cdots\right),
$$

so that $r_{m} \in R_{n}$. Thus R_{n} contains all but at most a finite number of elements of R, and being a subgroup of R, must then be R. Therefore $G^{\prime} \beta$ is a subdirect sum of copies of R. Let $x \in G^{\prime}, x \neq 0$, and let h_{r} be the last non-zero coordinate of x. Then the r th coordinate of $x \beta$ is $s_{r} h_{r} \neq 0$. Hence the kernel of β is 0 and β is an isomorphism of G onto a subdirect sum of copies of R. Now consider the case where I is not countable. Let I be the union of the set of mutually disjoint countably infinite sets $\left\{I_{j}\right\}_{\mathcal{J}_{J}}$. Denote by S_{j} the image of the projection of G^{\prime} into $\quad \sum_{a \in I_{j}} \oplus H_{a}$. Then G^{\prime} is a subdirect sum of the set of groups $\left\{S_{j}\right\}_{j \in J}$, and each S_{j} is of countably infinite rank. Hence each S_{j} may be represented as a subdirect sum of copies of the additive group of rational numbers, and it follows that G may be so represented. In light of the proof of 2 , this representation may be assumed to intersect each subdirect summand non-trivially.

References

1. W. R. Scott, Groups, and cardinal numbers, Amer. J. Math. 74 (1952), 187-197.
2. W. R. Scott, The number of subgroups of given index in nondenumerable Abelian groups, Proc. Amer. Math. Soc. 5 (1954), 19-22.

University of Kansas and
New Mexico State University

[^0]: Received September 19, 1958, in revised form October 20, 1958.

