AN INTERPOLATION THEOREM IN THE
PREDICATE CALCULUS

RoGer C. LYNDON

1. Introduction. In studying the formal structure of sentences
whose validity is preserved under passage from an algebraic system to
a homomorphic image of the system, we have had occasion to use a
lemma from formal logic. A proof of this lemma, our Interpolation Theo-
rem, can be given within the theory of deductive inference, as formalized
by Gentzen. Gentzen’s theory is rather complicated and perhaps not
generally well known. Moreover, the use of any formalized system of
deductive logic seems to an extent alien to the primarily algebraic nature
of our intended application. Therefore we give here a proof of the Inter-
polation Theorem that lies entirely within the theory of models: our
arguments are as far as possible in the spirit of abstract algebra, and,
in particular, borrow nothing from formal logic beyond an understanding
of the intended meaning, herein precisely defined, of the conventional
symbolism.

The Interpolation Theorem deals with sentences of the Predicate
Calculus. Roughly, these are sentences that can be build up using the
usual logical connectives, symbols denoting operations (or functions),
symbols denoting relations (or predicates), and variables whose range is
individual elements of the systems under consideration, but no variables
ranging over operations, relations, or sets. The theorem takes the same
form whether or not we admit a predicate denoting identity, with suita-
ble axioms, to the predicate calculus. For technical reasons we admit
as sentential connectives only the signs for negation, conjunction and
disjunction (regarding ‘‘if ... then’’ as a defined concept), together with
signs 0 and 1 for truth and falsehood. For each occurrence of a relation
symbol in a sentence S, there is a unique maximal chain of well formed
formulas, all containing the given occurrence and each occurring as a
proper part of the next. The given occurrence of the relation symbol
will be called positive if the number of formulas in this chain that begin
with the negation sign is even, and negative if this number is odd. If
S is in prenex disjunctive form, this criterion takes the simpler form
that an occurrence is negative if and only if it is preceded by the nega-
tion sign.

INTERPOLATION THEOREM, Let S and T be sentences such that S im-
plies T. Then there cxists a sentence M such that S tmplies M and M
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wmplies T, and that a relation symbol has positive occurrences wn M only if
@t has positive occurrences in both S and T, and has negative occurrences
wn M only iof it has negative occurrences in both S and T.

This theorem is a generalization of a result of W. Craig [3, 4];
Craig’s lemma is obtained from it by suppressing the distinction between
positive and negative sentences. As indicated, our first proof of the
Interpolation Theorem used the Gentzen ecalculus ; it did not differ es-
sentially from Craig’s proof, at that time unpublished, of his lemma.

The leading idea of the present proof is to interpret S implies T to
mean that 7' holds in every model for which S holds; we express this
relation by writing S=7T. By Godel’s Completeness Theorem [6], this
semantic interpretation is equivalent to the interpretation S 7', that T
is a formal consequence of S in a deductive axiomatization of the pre-
dicate calculus. The crucial point in our argument is the Main Theorem,
which serves as a substitute, under this interpretation, for results in
the theory of proof due to Herbrand [8] and to Gentzen [5].

A theorem of the theory of proof may be taken, in general, as
saying that if there exists any derivation of one set 4 of formulas from
a set /7, then there exists a derivation with certain special. properties.
A semantic counterpart of such a theorem will take the form of an
‘interpolation theorem ’: if /'= 4, then there exists a chain " =17,
I?, <« I’ = 4 of sets of formulas, with certain special properties, such
that /=72 ... "= ['", Theorems of this sort will ordinarily require
the occurrence in the /™ of additional symbols (for the ‘ Skolem funec-
tions’) that do not appear in /" or 4, although this is not true of the
Interpolation Theorem. Our arguments abjure any formal use of the
concept of deductive derivablilty, hence of the Completeness Theorem.
In various special cases, where /" -4 would be immediate, that I" = 4
follows directly from our definitions. The more difficult half of the Com-
pleteness Theorem, that if /"= 4 then I" - 4, is implicit in the Main
Theorem, which guarantees the existence of achain I" =71, ..., [ = 4
such that at each step the relation I'* - I'**! is immediately evident.

I have profited much from discussions related to the present topic
with A. Tarski and L. Henkin’; in particular, Tarski has emphasized the
desirability of establishing the Interpolation Theorem by methods in-
dependent of the theory of proof. The idea of providing semantic proofs
of results from the theory of proof is not new : a proof by E. Beth [1,
2], in a quite different formalism, of Craig’s Lemma would certainly
serve as well to prove the Interpolation Theorem ; and A. Robinson has
likewise provided semantic proofs of closely related results [10]. Un-
published results similar to those presented here have recently been

2 In particular, while the author was visiting at the University of California, Berkeley.
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obtained by A. Grzegorczyk, A. Mostowski and C. Ryll-Nardzewski, and
by R. Vaught.

2. Basic concepts. A language L is determined by an ordered
quadruple, V, W, R, p, where V, W, R are disjoint sets, V infinite, and
p is a function from W U R to the natural numbers. The elements of
V will be called variables, those of W operation symbels, and those of R
relation symbols ; for w in W, » in R, p(w) is the rank of w and p(r) the
rank of r. The logical symbols are 0,1, ~, A V,V,3. The expressions
of L will be made up of these symbols together with parentheses and
commas. A term is, recursively, any variable, and any expression
w(ty, « -+, tycw) Where w is an operation symbol and ¢,, + - -, t,,» are terms.
An atomic formula is any expression »(t, .-, t,)) where r is a relation
symbol and ¢, ---, t,,, are terms. A formula is, recursively, any atomic
formula, and any expression 0, 1, ~ F, (F' A G), (F \/ G), yxF, 3xF where
I" and G are formulas and « is a variable. Formally, we define L to
be the set of its symbols, terms and formulas.

We introduce the abbreviations F > G for (~F V G), AF;, for
Fy A\ -+« A F, with the convention A F;=1, and VY [F, for F}, V «++ V F),
with VIF; = 0, and write ya, --- @, for ya, +++ y2,. A matric is a for-
mula that does not contain v or 3. A normal matriz is a matrix of the
form VL, A "» F,, where each I, is either 4;; or ~A4;,, for A, an
atomic formula. A prenex formula is one of the form Qu, --- QM
where each @, is v or 3, each z; is a variable, and M is a matrix; the
formula is normal if the matrix M is normal. An occurrence of a varia-
ble & in a formula F is free in the formula F' if it is not part of a
subformula of the forms yaG or 3aG. A sentence is a formula without
free occurrences of variables.

It is easily shown by induction that if G is any part of a formula
F', then there is a smallest part of F' that is a formula and contains G.
It follows that there is a unique maximal chains of formulas H,, ---, H,=F,
each a proper part of the next, and all containing G. The part G is
positive in F' if the number of H,,, = ~ H, is even, and negative if it is
odd. In what follows, G will always be an occurrence of a relation
symbol in F.

An interpretation of a language L is determined by a set 4 and a

function 2, defined on VU WUR, such that pwe A for e V, pwe A4
for w e W, and s e 2 for r ¢ R. We regard 2 as the two element
Boolean algebra with elements 0, 1 and operations ~, A, \/, so that g
is a function with values () (a,, + -+, ¢,¢,y) equal to 0 or 1; but in practice
we indulge in the harmless ambiguity of treating s as a subset of AP+



132 ROGER C. LYNDON

and pr of 4°™, and accordingly using such notation as pw = pw’, pr S pr'.
Putting aside the trivial case that L contains no relation symbols of
positive rank, ¢ unambiguously determines its domain A.

The function ¢ determines a unique extension mapping all terms of
L into A, by the recursive definition

/l[@U(t, M) tp(w))] = (/17,0) (:ut’ ccty #tp(w)) .

A further extension mapping all formulas of L into 2 is determined by
the conditions.

0 =0,p1 =1, ((~F)=~pF, pf(FN\G)=pFNpG,

(1)
WE N G)=pF Vv pG,
and
(2) p(yxF)=1 if and only if AF =1 for all A} such that

p(axF) =1 if and only if AF =1 for some 2
=ypz forall zin VU WU R — {«}. Formally, we define an inter-
pretation to be a function ¢ thus extended ; in practice we shall say that
¢ and 1 agree except on x when we mean that 2 and 1 agree for all
zin VUWUR-— {x}.

A model of L is the restriction U of an interpretation g to the
operation and relation symbols of L. The model A may be regarded as
a ‘relational system ’* consisting of a set A4, its domain, together with
a set of operations Aw indexed by the operation symbols w of L, and a
set of relations Ar indexed by the relation symbols » of L. If 2 is the
restriction of g, we call # an interpretation in the model A. If pF=1,
we say that F holds for the interpretation p. Evidently ¢/ depends only
on the domain A of p, the values of x# on the operation and relation
symbols that occur in F, and the values of # on the variables that occur
free in F. In particular, if S is a sentence, #S depends only on the
model 2 to which ¢ belongs, and if #S =1 we say that S holds in the
model 2.

If I" and 4 are sets of formulas of L, we say that [’ émplies 4 in
L if pd = {1} for all interpretations of L such that g/ = {1}. This
interpretation is evidently independent of L, provided only that I" and
4 belong to L; we say simply that I" implies 4, and write I"'= 4. We
write pI" =1 for plI' = {1}, and employ such notation as I, I",= F
with the obvious meaning. If "= 4 and 4= I', then /" and 4 are equi-
valent and we write I" &= 4. That 1= F expresses that F' is a theo-
rem. A set I' is called consistent if there exists an interpretation # such
that #f" = 1; thus /"= 0 expresses that the set I" is nconsistent.

4 See [11], [12].
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3. Preliminary propositions. The set @ = @(L) of all formulas of
L constitutes, in an obvious sense, an algebraic system with operations
0,1, ~, A,V ; in fact it is a ‘ word algebra’, a free algebra without
axioms. The relation F' ¢ G is a congruence on @, and the quotient
system @ is a Boolean algebra, the Lindenbaum algebra of L. If ¢ is
the canonical map of @ onto @, then every interpretation p of L, when
restricted to @, can be factored uniquely in the form ¢ = fir where z is
a homomorphism of @ onto 2.

The set @, of all matrices of L constitutes a subalgebra of @, and
its image @, = k@, is a subalgebra of @. Every homomorphism 6 of @,
onto 2 can be extended to a homomorphism 6’ of @ onto 2 such that 6’
is an interpretation. To prove this we construct the special interpreta-
tion g 4nduced by 6. For the domain A of ¢ we take the set of all
terms of L. For a variable x, define pxr = 2. For an operation symbol
w and terms t,, «--, t,cm), we define pw by assigning to (pw)(ty, « -+, tow))
as value the term w(t, «--, t,y). For a relation symbol » and terms
ty, -+, ty» we define pr by assigning to (ur)(ty, ---, t,») the value
Ok[r(ty, -+, tym)] in 2. By virtue of the last definition, p¢F' = 0xF for all
atomic formulas F. Since the images kF of the atomic formulas F
generate @,, and zkF = 0kF for atomic F, it follows that z =60 on @,
and 7 is an extension of 4.

ProrosiTION 1. If I 4s a set of matrices, and J the dual ideal in the
Boolean algebra @, generated by I, then I' =0 if and only if 0 € J.

Proof. Assume 0 € J. Then 0=kF,A--- AxF, for some F,,.-. F,
in I'. If pis an interpretation such that #/'=1, then each pxF;, =pF;,=1,
whence 1 =7k A F, =7 A £F, = 0 = 0, a contradiction. Assume 0 ¢ .J.
Then J # @, and J < K for some maximal dual ideal K in @, If @ is
the canonical map of @, onto 2 with kernel the maximal ideal @, — K
complementary to the dual ideal K, then 6xI" S 0J S 0k =1. If p is
the special interpretation of L induced by the homomorphism 6, then
pl’ = pkl” = 0kl” = 1, whence [" is consistent.

COROLLARY 1.1. If I is a set of matrices, then I' = 0 if and only if
I'y= 0 for some finite subset I'y of 1.

Every map o of the atomic formulas of L, as free generators of @,,
into @,, extends to an endomorphism of @, which in turn induces an
endomorphism p of @, It follows that if 7"=0 then o/'=0. Every
map o of the variables of L into terms of L extends in an obvious way
to a map of the terms of L into terms of L, hence of formulas of L
into formulas of L ; a transformation induced in this fashion will be
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called a substitution.

PROPOSITION 2. Let I' be set of sentences S of the form vz, -« x,M
where the M are matrices, and I the set of all formulas o M where o is a
substitution and M is the matriz of some sentence S in I'. Then I' =0 if
and only if " = 0.

Proof. Suppose that 77 is consistent. Then A/ = 2k/” = 1 for some
interpretation 1. Let p be the special interpretation induced by the
homomorphism 2 of @, onto 2. Let F =wyx,---2,M be in I', and v be
an interpretation that agrees with p except on =z, ---,x,. Since the
values vy for variables z are terms, we may define a substitution by
setting oo = 2. Since sz = x for all variables @, vM = peM=2cM=1.
This establishes that #F = 1. Suppose I'’ is inconsistent. Then for all
interpretations p there is some F' = yz, --- 2,M in /" and some substitu-
tion & such that oM = 0. Then setting Jx; = pox;, i =1, - -+, n defines
an interpretation 1 that agrees with x except on 2, - -+, x,, and such that
AM = 0. It follows that pF = 0.

COROLLARY 2.1. If I' is a sat of univsrsal sentences, of the form
F = vy, -+« x,M, where M is a matrix, then I'=0 if and only if [',=0
for some finite subset I’y of I'.

A prenex sentence S of the language L may be written in the form

S = V& o xlml Y, o V... xnmnaynM

where n, m,, ---, m, are natural numbers, the z,, and y, are variables,
and M is a matrix. The Skolem matriz of S is the result oM of sub-
stituting oy, = s(xy, *-+, ,,,) and oz = z for all other variables z; here
the s, ---, s, are new and distinet operation symbols which we may sup-
pose uniquely associated with the pair consisting of S and L. The Skolem
form of S is the sentence vw, -+« @, oM. The Skolem form belongs to
the language L’ obtained by adjoining the symbols s, -+, s, to L.

LEMMA 3. Let S bz a sentence of the form

S = V& = fb'nnlﬂyl cee Ty Yoo mnmnayFr

where the x,, and y,. are distinct variables and F is a formula in which
all occurrences of these variables are free. Let F' result from F by sub-
stituting for each vy, a term oy, that contains no variables othzsr than
Ty o0y Ty o Lt S’ be the sentence

Jr ___ ’
S’ = V& = Tip o1 *** xnsz .
7
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Then S' = S.

Proof®. We proceed by induction. For n = 0 the assertion is trivial.
For n = 1 it suffices to observe that if ¢ is an interpretation such that
sF’ =1, then defining an interpretation 1 to agree with ¢ except on y,
and setting Ay, = poy,, gives IF = pF’, hence 2F = 1. For n > 1, form
F" from F' by substituting oy, for y,, all y. except y,, and let S"” =
VT c e T FYF Then the case » =1 applies to give S’=8§", and
the case » — 1 to give S” = S.

PROPOSITION 4. Let " be a set of prenex sentences of a language L,
and 1", in an extended language L', the set of all Skolem forms of the
sentences tn I". Then I' holds in a model A of L if and only if I holds
wn some extension A’ of A to a model of L'.

Proof. By an induction it evidently suffices to establish the con-
clusion under the assumption that I results from I by replacing a
single sentence S by its Skolem form S’. If 77 holds in an extension
A" of A to L/, it follows by Lemma 3 that I" holds in 2, and, since I”
belongs to L, that 7" holds in 2. TFor the rest, by a second induection it
suffices to establish the conclusion for S=vya,, - -, 2,3yF, S'=vyx,- - - T, F,
F a formula, oz, = 2,¢1=1, ---, m, and oy = s(a, ---, T,), where s does
not belong to L and L’ is obtained by adjoining s to L.

Assume now that /' holds in %A. For any a,, ---, @, in the domain
A of 9, there exists an interpretation ¢ in 2 such that px, = a,, 1=1,-- -, m.
Since xS =1, it follows that p(3yF) =1, and there exists an interpre-
tation 2 that agrees with z~ except on y such that AF' = 1. By the axiom
of choice we may define a function f from A™ into A by choosing for
alla, ---, a, interpretations # and 2 as above and setting f(a,, ---, a,,) =1y.
Extend A to A by defining A’'s = f. If g is an interpretation in A’,
then 2 agrees with some ¢, 2 as above on the variables «, ---, @,.
Moreover, ploy = f(¢'xy, -+, ') = f(Qy, +++, a,) = Ay, wWhence pcF =
JF=1. It follows that ¢S’ 1 for all interpretations ¢ in ', whence
I’ holds in ',

COROLLARY 4.1. If I" 4s any set of prenex sentences, then I' =0 if
and only if I'y= 0 for some finite subset I', of I.

Every sentence is equivalent to a prenex sentence, and, indeed, a
normal sentence. This follows by induction from various immediate con-
sequences of the definitions, of which ~(F A G) & (~F VV ~G) and
ve(F' N\ G) & (yaF' A\ vy « G) are typical. In fact, it is easily seen that

5 C. C. Chang pointed out to me a gap in an earlier version of this proof.
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every sentence S is equivalent to a normal sentence S’ such that a re-
lation symbol occurs positively (negatively) in S’ only if it occurs posi-
tively (negatively) in S.

In view of this, Corollary 4.1 yields the Compactness Theorem.

ProprosITION 5. If I' is any set of sentences, then 1" = 0 if and only
of I'y= 0 for some finite subset I'y of I.

4. The main theorem. Let S be a prenex sentence, of the form

S = VZu...Vim, Y *** VEm ...mnmnaynM .

A second sentence S, will be said to arise from S by duplication if
(i) =y, ---,7 are substitutions such that all =, = &, 7y, = ¥,
where the «!, and y! are distinct variables ; and
(ii) S, results from =M A -+- A=, M by prefixing quantifiers vz,
and 3y in some order such that, for p < r, yal, precedes 3yi.

ProroSITION 6. If S, arises from S by duplication, then S = S,.

Proof. Let S have Skolem matrix oM, in the language L', where
Opy = Ty ANA oY, = §,(Ty, =+ Tpm ). By Proposition 4, if S holds in any
model %A, then its Skolem form S’ holds in some extension A’ of A to
L'. If p is an interpretation of L' in U, then every substitution in-
stance of oM holds in g ; in particular, all 7,0 M hold in p, whence
A moM holds in g, But A moM results from A 7n,M by substituting
s@h, +-+, @}, ) for each y;, whence, by Lemma 3, S, holds in %', and
therefore in .

For S as before, a second sentence S, will be said to arise from S
by specialization if

(ili) 6@ is a substitution such that 6y, = y,, while each 0x,, is a term
in certain new variables u, ---, u, together with the y, for » < p; and

(iv) S, results from 60M by prefixing quantifiers yu, and 3y, in
some order such that wu, precedes 3y, if u, oceurs in any 6x,, for
p < r, and 3y, precedes Jy, if y, occurs in any 6z, for p < r.

ProrosITION 7. If S, arises from S by specialization, then S = S,.

Proof. Let S have Skolem matrix ¢M in L' as before. Define a
substitution p by setting pz = z for all variables z other than the y,, and,
by recursion on the order of quantification of the ¢, in S, defining
oY, = ploy, = 8,(p0x,, - -+, p0,, ). Since all y, that occur in sy, occur
in some fx,, for p < r, all such y, precede y, in S;, and the recursion
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if legitimate. Since 0y, = y,, pOy, = py, = ploy, by the above definition,
while for all other variables z, ¢z = z and again pfz = ploz. Suppose
now that S holds in a model 9 of L, and hence, by Proposition 4, that
the Skolem form S’ of S holds in an extension ' of % to L'. Then, for
every interpretation g in U, all instances of M hold, and, in particular,
p0cM holds. Since plo = pb, p0eM = pOM. Now plM results from M
by the substitution p, and pu, = u,, while py, contains only those u,
that occur in the pfz,, for p < r; by induction, using (iii), these are
among the u, that occur in 0z,, for p < 1, and hence among the wu,
that precede y, in S,. Therefore Lemma 3 applies to establish that S,
holds in 9 and thus in 2.
Let S, S* be prenex sentences of the form, for 6 =1, 2,

5 S 3 5 5 5 5 A6
S = V& * s Lo FYr *** Yar ** xnmnaynM

with Skolem matrices «M?® in a language L/, where ozl, = b, oy} =
si(@h, +++ @y). Then S* and S* will be called propositionally inconsistent
if there exists a substitution 7 in L’ that is one-to-one on all atomic for-
mulas of each «M? such that yeM!, naM?* = 0.

PROPOSITION 8. If S', S* are propositionally inconsistent, then S* S*=0.

Proof. Suppose S!, S* were consistent, hence both held in some
model 2 of L. Using Proposition 4, all instances of ¢M*' and «M* would
hold for all interpretations in a certain extension 2’ of U to a model of
L'. Then »oM" and 7oM* would hold for all such ., and £0 =1, a con-
tradiction.

In propositions 6,7 and 8 we have attempted to isolate the chief
ideas that underly the Main theorem ; the proof of this theorem can
now be accomplished by easier and more natural stages, although at
the cost of a small amount of repetition.

MAIN THEOREM. Let S*and S* be prensx sentences such that S*, S*=0.
Then there exist prenszx sentences T, T? U* and U? such that (1) T" arises
from St, and T* from S*, by duplication ; (2) U* arises from T, and U*
Srom T?, by specialization ; and (3) U' and U? are propositionally incon-
sistent.

Proof. Let S', S*, M', M*, v and L, L' be as above. (There is clearly
no loss of generality in taking common values of % and the m,, and a
common substitution o, for S*' and S*.) By Proposition 4, S, S* = 0 im-
plies that their Skolem forms are inconsistent. By Proposition 2, the
set of all instances of +M"' and o«M?* is consistent. By Corollary 1.1
some finite set of these instances is inconsistent. Therefore there exist
substitutions 7, ---, 7, in the language L’ such that
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7710-M1’ Tty 77a0-M1) 7]10'M27 ey vaGMZ:;\’O .

Define substitutions =, - -+, 7, such that all =2}, = 2} and =y2=9%,
where the 2%, and %% are new and distinct variables. Define ¢’ such that
o'ad, = b and o'y = (), .-, a:f.inr ; thus o'n,M° = =, M?® for all =,.
Define 7 such that 72, = 72}, ; then 7o'z, M?® = gm0 M® = 7,0M?®. Define
M = A =M ; then 70’ M5 = A\ moM?®, and yo' M}, 7o' M2 => 0.

Let S¢ be the sentence obtained from M} by prefixing quantifiers
val, and 3y¥ in an order such that, if z and 2’ are two of these varia-
bles and the term 7o'z is shorter than the term 7s'2’, then the quanti-
fication of z precedes that of z’. If » <, the term 70’2}, = 7adl is a
proper part of the term 7o'yl = si(yaf, - - -, mﬁjnr), whence ya, precedes
395 in S5, Thus S§ arises from S® by duplication.

Let S} have Skolem matrix oM, where oad, = a), and oy, =
si(ee-, a8, --+), the arguments ranging, in order of occurrence in S},
over all 2 that precede y, in Si. One has 7' = 7owd, but
9o’y = 82(yad, « -+, 72}, ) while the term 7oy’ = 82 (- -, 7a}), -+ +) begins
with a different operation symbol and contains additional arguments.
To bring these into agreement, define a transformation y on terms as
follows :

(1) yz==2 for a variable z;

(2) apo'y = oy ;

(3) for any term t =w(t, -+, t,w) not of the form 7'y,
Xt = 'w(Xtu M ti(w)) .

The clause (2) if legitimate, by an induction on length of %s'y,. For
ot = ¥ (-, yyadl, -+ +) contains y7o'yt* only for those y7o'y’* that
occur in some yyad) for p < r, and it follows by an induction that for
all of these s < ». Let L, be the language obtained from L by adjoin-
ing the symbols s¥. Although neither y nor y7 is in general a substi-
tution, when applied to terms of L,, which do not contain symbols s,
the clause (2) is never invoked ; consequently the restriction 7, of y7 to
L, is a substitution.

Since 7o'M;, 70'Mi=>0, and y induces a transformation on terms, it
follows that y7o'Mi, yyo'Mi=0. Now yyc'y? = yyowt® by definition,
while o'2)l = a2} = o}, implies that yyo'a)i = yyowli; it follows that
yn0' MY = ypooMl = po M3, the last since o, Mj belongs to L, Hence,
700 M 5, oo M5 = ().

Dropping the subscripts on S}, we now have the situation at the
beginning of the proof, but with ¢ = 1, that is with a single substitu-
tion 7 such that 7eM?, 7oM*= 0. From the set of all terms that occur
in 7cM?® obtain a set B® by deleting successively any term that is ex-
pressible, by means of the operation symbols of L, in terms of the rest.
Since each 7oyd = $2(pad,, - - -, m?,mr) where 82 does not belong to L, we
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can suppose that all the 7oy belong to B®. Let b}, ---, b} be the re-
maining elements of B°. Then for each a, (that occurs in M?) 7ad, is
expressible in terms of the 7oy} and b}. More precisely, if i, ---, u} are
new and distinet variables, and r a substitution such that 8 = 7oy,
tu}, = b),. then there exists in L a term 6}, in the variables y; and b}
such that <0x), = 7x;,. We extend ¢ to a substitution by setting 6z ==z
for all z other than the x, x,.

Let S% be the sentence obtained from 6M° by prefixing the quanti-
fiers wu) and 3y in an order such that if z and 2’ are two of these
variables, and zz is shorter than rz’, then z precedes ' in S§. To verify
that S?% arises from S°® by specialization, we observe that, for (iii), if 2?2
occurs in 0z,, then ry’ = 7oy is a proper part of 0z}, = 75, whence
r < p; and, for (iv), if z is any % or «} and z occurs in 0z, for p=r,
then rz is a part of zz’, which is in turn a proper part of 7oy} = 792,
whence z precedes 9% in S3.

Let S} have Skolem matrix o0M°, where o2,, =z for all variables
2z other than the ¢ and oy’ = s§,(---, u}, ---), the arguments ranging
in order over all «} that precede ¢’ in S. From 7oM', yoM*= 0 it re-
mains to construct 7, one-to-one on the atomic formulas of «,0M*, o,0M>,
such that 2 0M*, 9,0 M*=0. For this define a transformation y on
terms as follows :

(1) xz =2z for a variable z;

(2) A0coy = yrow) ;

(3) for any term ¢t = w(t, -+, t,,, not of the form rfoy’,

7t =w(ty, -, ti(w)) .

As in an earlier situation, this definition is legitimate, and the restriction
7, of yr to the language L, obtained from L by adjoining the symbols
s). 1s a substitution. As before we conclude from 7sM?, 70M*=>0 that
yr0acM', vl M* = 0,

Now

1t0oy; = yroy, = yroby; = noby;
and
xeloxh, = yz0ah, = yrlo@), = yro b2, = 7,0,02, .
It follows that yr0oM?® = 7,0,0M°, whence
oM, po 0M* =0 .

It remains to show that 70, = yvo, is one-to-one on the terms of
each O0M®. We show first that 0o is one-to-one on such terms. These
terms are terms in the variables «} and ¥}, containing only the operation
symbols of L. Note that cfou) = r0u) = wu}, = b; and coy? = yoy’.
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From the construction of B, it follows that, for two such terms ¢ and
U, 0ot = r0st’ cannot hold for one of ¢, ¢’ a variable unless ¢ = t'. Sup-
pose now that ¢ = w(t, -+, t,,») and t' = w'(¢}, --+, t),,). Comparing
the first symbols we conclude from rfot = t0st' that w = w', and the
arguments agree :

lot, = tlct] i=1, -, plw)=pw') .

By induction on the length of the shorter of ¢, ¢’ we conclude that each
t, = t}, whence t = t'.

Finally, yrow) = yr0sy? by definition, and yrou} = yrul = yrloul.
Hence yro, = yz0c on terms of M?°. But y is evidently one-to-one on
terms that do not contain the symbols s§,. Hence, for terms ¢ and ¢’ of
OM?, otogt = yro t' implies yrot = yrlst’, hence r0st = w0st', and, by the
property of t0o established above, ¢t = . This completes the proof of
the Main Theorem.

5. The Interpolation theorem. Let S and T be sentences of o lan-
guage L such that S=T. Then there exists a sentence S° of the language
L such that S=S8°,S°= T, and that a relation symbol occurs positively
in S° only #f it occurs positively in both S and T, and occurs mnegatively
wn S° only if 1t occurs negatively in both S and T.

Proof. S is equivalent to a prenex sentence S' such that a relation
symbol occurs positively (negatively) in S* only if it occurs positively
(negatively) in S. And ~T is equivalent to a prenex sentence S* such
that a relation symbol occurs positively (negatively) in S* only if it oc-
curs negatively (positively) in 7. Since S?, S*=>0, by the Main Theorem
there exist prenex sentencs U' and U?® such that S'= U?, S* = U?, that
U' contains the same kinds of occurrences of relation symbols as S* and
U? as S?, and that yeM?*, 7o M*=>0 where e M*, o M* are the Skolem matri-
ces of U, U? and 7 is a substitution that is one-to-one on the atomie
formulas of each of oM?, «M? All this is not altered if we modify U?,
U? by reducing M?®, M* to normal form.

It will suffice to find S° such that U'= S and S° U*=0, and a
relation symbol occurs positively (negatively) in S° only if it occurs posi-
tively (negatively) in U' and negatively (positively) in U?. Write M®=
V M3, each M$ = AM},, and each M3, either A3, or ~A2, where A4}, is
an atomic formula. Define M°= VY M{ where M} =0 if M;=0, and
otherwise M results from M} by deleting all M;; such that ~7sM}; is not
equivalent to some neMi:,. Let S° be the sentence obtained from U* by
replacing its matrix M' by the matrix M°. It is immediate that the oc-
curences of relation symbols in S° are related to those in U' and U* in
the required manner. Moreover. since M*'= M° is immediate, it follows
eagily that U'= S".
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It remains to show that S°, U*= 0, and for this it will suffice to
to show that 7oM°, 7o M?*=>0. Since 7o M' A 7oM* =0, then for all ¢, 2,
poM; N\ yoM3 = 0. We want to conclude that for all ¢, &, 70 M) A7noeM ;=0.
Since o is clearly one-to-one on the terms of M!, so is 7o, and 7o M;i=0
implies M!=0, whence by definition M} = 0, hence oM} = 0 and the
conclusion follows. If 7oM?% =>0 the conclusion is immediate. In the re-
maining case there exist j and & such that ~yocM};& 7o M3,.. But then,
by definition, M? still contains the conjunct M};, and again 7o M2 A7eM ;=0.
Since 7oeM} A peM?: =0 for all 4,h, it follows that 7oM°AzneM*=0,
completing the proof.

It was stated in the introduction that the Interpolation Theorem
remains true for the predicate calculus with identity. Precisely, we
restrict the definition of a language to apply only to those that contain
a fixed relation symbol ¢ of rank two, and the definition of interpreta-
tion to admit only those z for which pe is the identity relation on the
domain of . The relation S= T then acquires a stronger meaning.
Nonetheless, the Interpolation Theorem as stated remains true in this
new sense. (It may be well to note that e is included among the re-
lation symbols mentioned in the conclusion of the theorem.) In fact, all
statements in this paper remain true in the new sense, apart from two
modifications. First, Proposition 1 must be modified by enlarging J to
contain (the coset of) each formula (¢, t),t a term, and to contain any
formula F obtainable from a formula F'in J by replacing an occurrence
of a term ¢t by a new term ¢, provided that e(¢,?’) is in J. Second, in
the proof of the Interpolation Theorem, the M? as described above must
be similarly enlarged by adjoining to each the finite set of all M%, of
the form A or ~A, A atomic, such that M}= M3, in the present sense.

The Interpolation Theorem can be refined in other ways. Condi-
tions can be imposed on the internal structure of the atomic formulas
7(ty, » -+, ty»n) containing the relation symbol . For example, define
an [-occurrence of 7 in S to be one in which each ¢;, for te I< {1, --p(r)} ,
is a variable universally quantified in S. Then it can be required that
1 have I-occurrences is S° only if it has I’-occurrences in S and I”-oc-
currences in 7T, where I” < [ < I'. Alternatively, stronger conditions
can be imposed on the external context in which a relation symbol occurs.
For example, suppose all positive occurrences in S of a relation symbol
1 are in formulas 4’ D A where A and A’ are atomic formulas, and that
none of the relation symbols appearing in the parts A’ of these formulas
have positive occurrences in S, except possibly in parts A; then S° can
be required to contain no positive occurrences of ». Such refinements of
the Interpolation Theorem have proved useful in the study of homomor-
phisms and subdirect products of models, but because of their special
nature it does not seem worthwhile to give separately formal statements
and proofs of these results.
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