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1. Introduction. We shall determine the radius of univalence pu of
the function

(1.1) E(z) = A
Jo

rt2dt .

We shall write E(z) — iv — u{x, y) + iv(x, y). On the imaginary axis we
have u ~ 0 and v, regarded as a function of y, has a single maximum
at the solution y — p of

2yv(0,y) = 1 .

The value of p to eight decimal places has been determined by Lash
Miller and Gordon [1] and is

(1.2) p = 0.92413887 .

It is evident that pu ^ p. We shall prove the following theorem.

THEOREM. The number p is the radius of univalence of E(z).
Recently, the radius of univalence of the error function

erf(z) = I e~
Jo

t2dt

was determined [2]. It is interesting to note that when proceeding from
βrf(z) to E(z) we meet an entirely different situation. In the case of
orf(z)9 points zi9 zz closest to the origin and such that erf(zL)=erf(z2) are
conjugate complex and lie far apart from each other. In the case of
E(z) points of that nature can be found in an arbitrarily small neigbor-
hood of the point z = ip.

The actual situation is made clear by the diagram and tables given
below. In Fig. 1 we show the curves R = | E \ = constant and γ =
arg E = constant in the square 0^a;^1.5,0gί/^1.5 of the z- plane. The
table shows the values of Έ for z on the curve C (defined below). The
values given were obtained by summing an adequate number of terms
of the power series on the Datatron 205 at the California Institute of
Technology some were checked by comparison with the tables of Karpov
[4, 5] from which values of E(z) can be obtained.
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2. Idea of proof. Since

(2.1) E(z) =
+ 1)

0 05 10

Fig. 1. Curves R = \ E \ = const, and 7 =

15
X

1= const, in the z-plane.
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we have E(z) = E{z) and E{—z) — — E{z) and may restrict our considera-
tion to the first quadrant x ^ 0, y ^ 0 in the z-plane.
In the subsequent section we shall prove the following lemma.

LEMMA.

(2.2) E{zx) Φ E(z2)

for any two points on the boundary C of the open sector S of the circular disk

[ z I < o in the first quadrant.



ON THE RADIUS OF UNIVALENCE OF THE FUNCTION 125

From this it follows, since E(z) is entire and thus regular in S u C
that E(z) maps S conformally and one-to-one onto the interior of the
simple closed curve C* corresponding to C in the w-plane [3, p. 121].
This establishes our theorem.

3, Proof of the lemma. Let z = reίφ. The curve C consists of

the segment S1: y — 0 , 0 < x < p ,

the circular arc K: \z\ = p , 0 < φ < π/2 ,

the segment S z: x = 0 , 0 < y < p .

and the three common end points of these three arcs.

(A) On S19 E(z) is real and increases steadily with x.
(B) On S29 E(z) is imaginary, and v increases steadily with y.
(C) v Φ 0 on If.
(D) On iί, I E(z) I decreases steadily with increasing φ.

(A) is obvious from (2.1), and (B) follows from the definition of p.
Proof of (C). Integrating along segments parallel to the coordinate

axes we have

S y 2

eΎ cos 2xrdτ
o

f 2ΪX 2 Γ y 2 )Ί

+ sin2xy βxΊ e'1 dt + I eτ sm2xτdτϊ .

In {x > 0, y > 0} n {\ z \ <: p} we have cos 2xy > 0, sin 2xy > 0. There-
fore v > 0 on K.

Proof of (D). Integrating along a radius φ = constant from 0 to p
we have

Jo

where

Λ(r, φ) = α(r, φ) + i6(r, φ) ,

α(r, φ) = (JO2 - r2) cos 2φ, b(r, φ) = (p2 - r2) sin 2Φ .

Therefore

\E\*= [\hdr[9ehdr .
Jo Jo

Differentiating with respect to φ and setting

h* = α* + «*, α* = α(r*, φ), 6* = 6(r*, φ),

/ = cos (&* - 6) - i sin(6* - b)

we obtain
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E I % = Γ ehhφdr [ e*dr* [ [
Jo Jo Jo Jo

+ΓhΦ}drdr* .
Jo Jo

Now

αφ = -2(iθ2 - r 2) sin 2φ, δφ = 2(pz - r2) cos 2φ

and therefore

fhφ +WΦ = 2Mfhφ = 2 [cos (6* - b)aφ + sin (6* - 6)6Φ]

where

a(φ) = 2φ + 6 - 6* = (r*2 - r2) sin 2φ + 2φ .

This yields

(3.1) (I # |% = - 4 ( P [ V + α V - r2) sin (a(φ))drdr* .
Jojo

Since from (1.2) we have | r*2 — r21 < 1, we obtain

a'(φ) = 2 + 2(r*2 - r2) cos2φ > 0 .

Hence a(φ), 0 ^ φ ^ π /2, has its maximum at φ = τ/2. Therefore
0 ^ α(φ) < 7r when 0 ^ φ < τr/2 and sin(α(φ)) > 0 when 0 < φ < τr/2. This
means that the integrand in (3.1) is positive in the region 0 ^ r ^ p,
0 ^ r* ^ p for all φ in the interval 0 < φ < τr/2. Thus (1 J& |% < 0 when
0 < φ < π/2. This proves (D).

We note that (D) remains true if K is replaced by quadrants of circles
of radii somewhat larger than p this, however, is of no interest here.

For zλ e if, 3a e S3, or ^ e JK", 33 e iΓ, equation (2.2) holds, as follows
from (D). For zγ e K,zz e Sx the same is true because of (C). In the
other cases, zι e Slyz.z e S19 etc., the validity of (2.2) is obvious. This
proves the lemma.
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