
CONJUGATE SERIES IN SEVERAL VARIABLES

HENRY HELSON

l Introduction* For any trigonometric series

2_i ctne

the conjugate series is defined to be

Σ —iansgneίnx ,

with the convention that sgO = 0. A series in two variables

(1) Σ α»«e l c—"Λ

m,n= -oo

can be conjugated with respect to x, with respect to y, or with respect
to both variables at once. The last possibility gives the series

(2) Σ —amnsg(mn)eί(:mx+nv^,

and this has been called [3, 5] the conjugate of (1).
For series in one variable, there are several theorems which state

that a trigonometric series belonging to some function class always has
conjugate in the same, or perhaps in a different function class. These
theorems lead to similar results for series in several variables conjugated
with respect to one of the variables. For example, one proves very
easily that

(3) ψ*\dσ ^ A^\f\hg+\f\dσ + B ,

where fx is the function conjugate to / with respect to x, dσ = dσ(x, y)
is invariant measure on the torus, and A, B are absolute constants.

In conjugation with respect to x, the coefficients amn of (1) are
multiplied by — i in the right half-plane and by i in the left half-plane.
Conjugation in y involves the upper and lower half-planes in the same
way. Any half-plane bounded by a line of rational slope can be trans-
formed by a linear change of variables into, say, the upper half-plane,
and so there is a whole family of notions of conjugacy with correspond-
ing theorems. If, however, we divide the plane by a line of irrational
slope, it is not so clear how to prove the same theorems, although the
definition of conjugacy with respect to any line is at hand. It is even
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possible that there are new difficulties, because a line of irrational slope
has lattice points close to it on opposite sides.

Sections 2 and 3 are devoted to the extension of several classical
theorems about conjugate functions (all contained in [6, Chapter 7]) to
several or infinitely many variables, where conjugacy is defined with
respect to any given half-space. Like Bochner, who gave the first
such extension [1], we use the method of analytic functions. In another
paper [2], we used this method to obtain one result of this kind, but it
seems worthwhile to present other extensions in detail as well.

In (3), one can replace fx by fxy = /, the full conjugate of / defined
by (2), if the right side is increased a little [3]:

(4) \\f\dσ tZ AJl/l (log* \f\fdσ + B .

This is proved by applying one-dimensional theorems twice, and obviously
this method must introduce a logarithmic factor twice. It has not been
settled whether the logarithm in (4) really needs to be squared. Section
4 contains a proof that (log+)2 cannot be replaced in (4) by (log+)2~ε for
any e > 0.

Throughout the paper we use the properties of Orlicz spaces, as
presented in [4, Chapter 5] or in [6] with different notation.

2 Half-spaces and measures. It is natural to consider these prob-
lems on a discrete abelian group G, whose elements are M, N, , and
the compact dual group K with elements X, Y, . The value of a
character X at a point N will be written eίNtX.

DEFINITION. A subset S of G is called a half-space if
(a) M + N belongs to S with M and N
(b) For any N in G, exactly one of these alternatives holds:

Ne S, or -Ne S, or N= 0.
If S is a half-space in G, we can define a linear order in G com-

patible with the group operation by defining positive elements to be those
belonging to S. Conversely, the set of positive elements in an ordered
group is a half-space. Not all discrete groups contain non-trivial half-
spaces, but they exist in profusion in the group of integral lattice points
of a Euclidean space, and this is the case which interests us most. For
example, if alf , ak are linearly independent real numbers, then the
set of points N = (nlf , nk) satisfying

nxax + . . . + nkak > 0

is a half-space in ,the lattice group of k dimensions.
Let S be a fixed half-space in G. The continuous functions ψ on

K having Fourier series of the form
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( 5 ) φ(X) ~ a

constitute a Banach algebra Cs in the uniform topology. Among the
complex homomorphisms of Cs is a distinguished one defined by1

( 6 ) φ(M0) = \φdσ = a .

Besides, every point X of K determines a homomorphism

(7)

If i*7 is a function analytic on a domain of the complex plane which
contains the spectrum of φ, there is an element ψ of Cs such that

( 8 ) F(Φ) = ψ .

We can write simply F(ψ) — ψ, because ψ is uniquely determined by
its values ψ(M). If we apply (8) to the particular homomorphisms given
by (6) and (7) we obtain respectively

(9)

(10)

[F(φ)dσ

F(φ(X)) = ψ(X) (all Xe K) .

Determine a measure μ on the complex plane, depending on ψ, in
the following way. For every Borel set E set

(11) μ(E) = σ(Ψ-\E)) .

Then μ is obviously a measure with the properties

(μ(E)^O

(12)

(all Borel sets

(F analytic on the
spectrum of φ) .

(The last property is the same as (9) above, by virtue of (11). To be
analytic on the spectrum of φ, it is enough that F be analytic on a
simply connected domain containing the support of μ.) A measure μ
satisfying (12) will be said to represent the point a.)

A measure representing a given point cannot have its mass distributed
over the plane in an arbitrary way. In the next section we derive
several inequalities which μ must satisfy. These inequalities will be
translated into statements about the relative size of the real and im-
aginary parts of φ, which is to say into theorems about conjugacy.

1 da = da(X) is normalized Haar measure on K.
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Not all theorems about conjugate functions are related to the properties
of measures in this way, but those which are can be generalized easily
to the class of groups we are considering.

3. The main theorems•

THEOREM 1. Suppose μ represents the point 0 and has support in
the strip

(13) - i L + ε ^ x ^ Ξ. - ε (ε > 0) .

Then

Proof. From last formula of (12) with F(z) — eiz we have

1 = \eizdμ(z) — le^eos x + i sin x) dμ(z)

= \e'vcos x dμ(x) ^cosΓ— — ε )\e'ydμ(z) .
J \ Lt ' J

The same calculations, with F(z) = e^*, give

Adding these inequalities gives the desired result.

COROLLARY. Let φ belong to Cs and have mean value zero. Write

φ — u + iv, where u and v are real functions. If \u\ <̂  -^ — ε for

some positive ε, then

(15) jβ 'd* £ — 2 m

Indeed, from the definition of μ we have

[elv(x)ldσ(X) = [elv]dμ(z) .

The hypothesis on u implies that the support of μ lies in the strip (13),
and (15) follows then from (14).

Actually the corollary is true for bounded functions φ with Fourier
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series (5) and mean value zero; for φ can be approximated boundedly
by trigonometric polynomials satisfying all the hypotheses of the corol-
lary.

If u is a real function, we shall denote by v = Tu that real function
having mean value zero such that u + iv has Fourier series (5). Tu is
obviously defined if u is a trigonometric polynomial, but in other cases
its existence has to be shown.

COROLLARY. Let u be a real function such that u log+ \u\ is sum-
mable on K. Then v = Tu exists as a summable function and

(16) [\v\dσ £ A + B\\u\\og+ \u\dσ

where A and B are absolute constants.

This corollary is the dual, in an appropriate pair of Orlicz spaces,
of the first corollary. For t ^ 0 define the complementary functions

Φ(t) = e* - t - 1

ψ(t) = (ί + 1) log (ί + 1) - t .

Denote by LΦ and LΨ the corresponding Orlicz spaces of real functions
on K. These spaces are paired by the functional

(/, 9) = \fgdσ (f e LΦ} ge LΨ) ,

which exhibits each as a subset of the dual space of the other. It can
be proved that LΦ is exactly the dual of LΨ; and LΨ is a closed subspace
of the dual of Lφ.

Let us consider T as an operator carrying real trigonometric poly-
nomials in the uniform norm into Lφ. Suppose that u has mean value
zero, and | |^ |U^τr/4. Using the first corollary and an elementary
property of the norm in Lφ, we have for v — Tu

IMIΦ < [elυ]dσ + 1 < 2 sec — + 1 .
~ J ~~ 4

Therefore T is a bounded operator, on this subset of the continuous
functions. The restriction on the mean value of u is immaterial, and so
T can be extended to a bounded operator mapping real continuous func-
tions in the uniform norm into LΦ.

The operator T* adjoint to T carries linear functional on LΦ to
signed measures on K. Let uλ and u2 be real trigonometric polynomials
with mean values a and b respectively. Set vx = Tulf v2 = Tu2. Then
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ab = l(%i + iv^)(u2 + ίv2)dσ = \(uLu2 — v{02)dσ

c
+ i I (u2v1 + u1v2)dσ .

J

Since α and b are real, the last term vanishes and

\{Tu^)u2dσ — Va^—Tu^dσ .

It follows, by the definition of the adjoint operation, that

T*u2 = -Tu2dσ .

The statement that T* is bounded as an operator from LΨ to the space
of measures is thus

[\Tu\dσ ^ K\\u\\Ψ .

From the general inequality

(16) follows at once, at least for trigonometric polynomials. The full
statement of the corollary is derived by a conventional limiting process.

It is curious that the duality argument required that S be a half-
space, and not merely a cone, which would have sufficed in proving
Theorem 1. However, (16) holds a fortiori for the real and imaginary
parts of a double power series, for example. This result follows also
from the corresponding theorem in one variable.

The second corollary is a limiting case of the theorem of Bochner
already referred to. The inequality

(\\v\pdσJlP ^ Ap[\u\dσ (0 < p < 1) ,

which is another limiting case, was established in [2].

THEOREM 2. Let u be a non-negative trigonometric polynomial
with mean value α, and set v — Tu. Then

(17) \u log+ udσ g (a + 1) log (a + 1) + ~[\v \dσ .

Proof. Let φ — u + iv, so that φ belongs to Cs. It was proved
in [2] that the spectrum of φ lies in the right half-plane. Therefore
(z + 1) log (z + 1) is analytic on the spectrum of φ, and from (9) we
have
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\(u + 1 + iv) log (u + l + iv)dσ = (a + 1) log (α + 1) .

The right side is real. Taking the real part of the left side gives

\(u + ϊ)log\u + 1 + ίv\ — v arctan v/(u + ϊ)dσ

= (α + 1) log (a + 1) .

Using the inequality

0 ίg y arctan y/x <Ξ — \y\ (x > 0)

we find (17) directly.
Of course (17) leads by a limiting argument to the fact that if u is

a real non-negative function which is summable together with Tu, then
(17) continues to hold.

Finally we remark that Theorem 2 could, like Theorem 1, be ex-
pressed in terms of a measure representing a given point.2

4. THEOREM 3. Given e > 0, there is a function f with Fourier
series (1) and satisfying

(18)

such that (2) is not a Fourier series.
The proof depends on a number of fairly independent observations,
(a) If / is a function of one variable with Fourier series

then according to a well-known theorem of Hardy and Littlewood

(19)

Bochner has remarked that (19) leads to a similar inequality for func-
tions to two variables:

implies
2 Theorem 2 ceases to be true if £ is the subset of the two-dimensional lattice group

consisting of all (m, n) with m ^ 0. The reason is that the functional assigning to ψ in
Cs its mean value is not multiplicative. For the corollaries of Theorem 1 the proofs
indeed require that S be a half-space, but the results are still essentially true if S is the
set just defined.
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Σ Iα-»l/(m + l)(w + 1) S κ\\f(x, y)\dσ(x, y) .

(b) Suppose, contrary to the statement of the theorem, that (2) is

a Fourier series whenever (18) holds, for a certain positive ε which is

fixed from now on. We may take ε < 1. Then the functions, f,fx,f\

and fzy are all summable, and the same must be true for the linear

combination

Ψ ~ fxy) Σ

The last sum is a Fourier series, merely because / is summable, and
we conclude easily that

is a Fourier series. It follows from (a) that

(20) Σ \amn\l(m + l)(n + 1 ) < oo

whenever (1) is the Fourier series of a function f satisfying (18).

(c) For non-negative t define

ψλ(t) = (ί + 1) log2- (ί + 1).

Since ε < 1, Ψx is a convex function vanishing together with its derivative
at the origin. Denote by Φλ its complementary function. A simple com-
putation shows that for large t

(21) φx(t) > ektβ

where k is an appropriately chosen positive number, and β — 1/(2 — ε).

(d) The relation (20), valid for every function of the space LΨl,
implies that

(22) 2 λ(m)λ(^)e i τ m^β ί ( m x + w y )

(where the τmn are arbitrary real numbers, and X(n) = H(n + 1) for
n ^ 0) is the Fourier series of a function belonging to the dual space
of LΨ i. Since Ψx{2t) ̂  MΨx{t) for a fixed number M, the dual of LΨ l is
exactly LΦχ [4, p. 138], so that (22) belongs to LΦχ for every choice of
the τmn. Choose constants τmn in the particular form τm + τn, where
{rn}0°° is a simple sequence of real numbers. Then (22) is formally the
product of
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(23) F(x) ~ Σ \{n)eiτnein*
0

and the same series in y. Since (22) represents a function of two vari-
ables which is square-summable, the coefficients in (23) are square-sum-
mable and F is in L2 as a function of one variable. Moreover the
function represented by (22) really is F(x)F(y), as one can see in an
elementary way.

(e). LEMMA. Let a be a given positive number, and g a non-
negative function on some finite measure space with measure dμ, nor-
malized to have unit total mass. A necessary and sufficient condition
to have

\e'°"dμ < co for some s > 0

is that g belong to Lq for every finite q and satisfy

In particular, g belongs to LΦ (where Φ(t) = eι — t — 1 as heretofore)
just if \\g\\q = O(q).

To prove the lemma, let s be positive and consider

(24) \e«*dμ = 1 + ±*L\frdμ = 1 + Σ -ζ-llffll!S
J i n\ J i n\

The series converges for some s > 0 if and only if

lim supΓ-ί-HflfllsT7" = lim sup— \\g\\*, < co .
Lnl J n

Because \\g\\q is monotone in q, this means the same as

lim sup q-llΛ\\qg\\< co

which was to be proved.
Now we can finish the proof of the theorem. Assuming the theo-

rem was false for a certain positive ε, we deduced in (d) that G(x, y) =
F(x)F(y) belongs to LΦjL, where Φx satisfies (21) and F is defined by (23).
The lemma in (e) implies then

But | |G | | β = [1|F||J2, and therefore

(25)
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This is the crucial point of the proof. Since β > 1/2, ||jP||β grows less
rapidly than q, and we can show that this is false.

Indeed, from (25) and the lemma it follows that

\es^βdxl2π < oo

for some positive s. Set Φ2(t) — et2β — 1 for non-negative ί, and let Ψ2

be the complementary function. For large t we have

Ψ2(t) < t logll2Π .

We are interested now in the spaces Lφ2 and Lψ2, formed with functions
defined on the circle and measure dx\2π. If / and g belong to LΦ.2 and
Lψ2 respectively, and have Fourier coefficients {an} and {bn}, then
Σ-oo anbn is (C, l)-summable at least [6, p. 88]. In particular, taking F
for/,

Σ n + 1

is (C, l)-summable to a finite value, no matter how the τk are chosen.
Therefore

whenever the bn are the Fourier coefficients of a function g in Lψ2. This
inequality can be sharpened by the uniform boundedness principle to

(26) Σ - ^ V

Choose for g the function equal to 1/2S on (—δ, δ) and zero elsewhere
on ( — r, π). For % M w e have δw = sin nδβπnδ. For small values of
δ, the left side of (26) exceeds a constant multiple of log 1/δ; but the
right side is only a constant times log1/23l/δ. Since 2β > 1 this is im-
possible, and the contradiction establishes the theorem.

A modification of the same proof will show that no function of order
smaller than t log21 and having sufficiently regular growth can serve in
the hypothesis of the theorem on conjugate functions.
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