A BOUND FOR THE ORDERS OF THE COMPONENTS OF A SYSTEM OF ALGEBRAIC DIFFERENCE EQUATIONS

Bernard Greenspan

1. The object of this paper is to obtain a bound for the orders of the components of a system of algebraic difference equations, each component of which is of dimension zero. In the analytic case, this roughly amounts to determining the maximum number of arbitrary functions of period unity which each corresponding manifold can possess.
2. We deal with difference polynomials in n indeterminates y_{1}, \cdots, y_{n} having coefficients in an inversive difference field, \mathscr{F}, of characteristic zero. Transforms are denoted by means of a second subscript appended to Latin letters having a single subscript. Thus, for example, $A_{3,4}^{(2)}$ denotes the fourth transform of $A_{3}^{(2)}$. The symbol $\mathscr{F}\left\{y_{1}, \cdots, y_{n}\right\}$ denotes the ring of difference polynomials in the indeterminates y_{1}, \cdots, y_{n}. The perfect difference ideal generated by a system Φ of difference polynomials is designated $\{\Phi\}$. Unless there is a possibility for confusion, the term "ideal" is used for the longer "reflexive difference ideal". It is well known that every perfect ideal is the intersection of a finite number of prime ideals, none of which contain any other, [4]. As in ordinary or in differential algebra, these prime ideals are termed components of the decomposition of the perfect ideal.

If Λ is a prime ideal in $\mathscr{F}\left\{u_{1}, \cdots, u_{q} ; y_{1}, \cdots, y_{p}\right\}$, then the u_{i} are said to constitute a parametric set of indeterminates, or briefly parameters, of Λ if
(1) Λ contains no nonzero difference polynomial in the u_{i} alone;
(2) for each $k, 1 \leqq k \leqq p$, there exists in Λ a nonzero difference polynomial in y_{k} and u_{1}, \cdots, u_{q}.

It is shown in [1, p. 141] that all parametric sets of a given reflexive prime difference ideal Λ contain the same number of parameters. This number is known as the dimension of Λ, and is briefly denoted dim. If the prime ideal has no parameters, we say its dimension is zero.

By the order of a prime ideal Λ in $\mathscr{F}\left\{y_{1}, \cdots, y_{n}\right\}$, we mean the algebraic dimension of Λ, that is $\partial^{0} \mathscr{F}\left(\eta_{1}, \cdots, \eta_{n} ; \gamma_{11}, \cdots, \eta_{n 1} ; \eta_{12}, \cdots, \gamma_{n 2}\right.$; $\cdots) / \mathscr{F}$ or $\partial^{0} \mathscr{F}<\eta_{1}, \cdots, \gamma_{n}>\mid \mathscr{F}$, where $\gamma_{1}, \cdots, \eta_{n}$ is a generic zero of Λ.

A system of difference (differential) polynomials in $\mathscr{F}\left\{y_{1}, \cdots, y_{n}\right\}$ is said to be of type $\left(r_{1}, \cdots, r_{n}\right)$ if r_{1}, \cdots, r_{n} are the maximum orders of the transforms (derivatives) of y_{1}, \cdots, y_{n} respectively that appear in the system.

[^0]3. Ritt proved the following theorem in [2].

If Φ is a system of nonzero differential polynomials in $\mathscr{F}\left\{y_{1}\right.$, $\left.\cdots, y_{n}\right\}$ of type $\left(r_{1}, \cdots, r_{n}\right)$ and Σ is a component of $\{\Phi\}$ of dimension zero, then the order of Σ does not exceed $r_{1}+\cdots+r_{n}$.

We shall prove the following analogous, but weaker theorem for a system of difference polynomials.

Theorem. Let \mathscr{F} be an inversive difference field of characteristic zero. If Φ is a system of nonzero difference polynomials in $\mathscr{F}\left\{y_{1}\right.$, $\left.\cdots, y_{n}\right\}$ of type $\left(r_{1}, \cdots, r_{n}\right)$ and every component of $\{\Phi\}$ is of dimension zero, then the order of each component is at most $r_{1}+\cdots+r_{n}$.
4. Lemma. Let A_{1}, \cdots, A_{p} be a chain in $\mathscr{F}\left[u_{1}, \cdots, u_{q} ; y_{1}, \cdots, y_{p}\right]$, A_{i} being of class $q+i$. Suppose A_{1}, \cdots, A_{p-1} is a characteristic set of a prime ideal. Then there exist nonzero polynomials G_{1}, \cdots, G_{r} with the following properties
(i) For each $j, 1 \leqq j \leqq r$, the set

$$
A_{1}, \cdots, A_{p-1} ; G_{j}
$$

is a characteristic set of a prime ideal.
(ii) There exists a polynomial G in u_{1}, \cdots, u_{q} and a product I of powers of initials of A_{1}, \cdots, A_{p-1} such that $I\left(G A_{p}-G_{1} \cdots G_{r}\right)$ is a linear combination of A_{1}, \cdots, A_{p-1}.
(iii) The G_{j} are of positive degree in y_{p} and the sum of these degrees is the degree of A_{p} in y_{p}.

Proof. ${ }^{1}$ Let $(\gamma)=\left(\tau_{1}, \cdots, \tau_{q} ; \eta_{1}, \cdots, \eta_{p-1}\right)$ be a generic zero of the prime ideal. Let C_{1}, \cdots, C_{r} be the irreducible factors of $A_{p}\left(\gamma ; y_{p}\right)$ in $\mathscr{F}(\gamma)\left[y_{p}\right]$. We note that when the coefficients of the C_{j} are written in the form φ / ψ, each ψ may be chosen to be a polynomial in the τ_{i} only, and each ρ may be chosen of degree in y_{i} less than that of A_{i} in y_{i}, $(1 \leqq i \leqq p-1)$. Now there exist $G_{j} \in \mathscr{F}\left[u_{1}, \cdots, u_{q} ; y_{1}, \cdots, y_{p}\right]$, $(1 \leqq j \leqq r)$, and $B \in \mathscr{F}\left[u_{1}, \cdots, u_{q} ; y_{1}, \cdots, y_{p-1}\right]$ with $B(\gamma) \neq 0, C_{j}=G_{j}\left(\gamma ; y_{p}\right) / B(\gamma)$, $d e g_{y_{p}} G_{j}=d e g_{y_{p}} C_{j}$. In particular, (iii) holds.

Let $G=B^{r}$. Then $G A_{p}-G_{1} \cdots G_{r}$ vanishes when $\left(u_{1}, \cdots, u_{q}\right.$; y_{1}, \cdots, y_{p-1}) is replaced by (γ). For some I as described in the lemma

$$
I\left(G A_{p}-G_{1} \cdots G_{r}\right) \equiv C, \quad\left[A_{1}, \cdots, A_{p-1}\right]
$$

where $C \in \mathscr{F}\left[u_{1}, \cdots, u_{q} ; y_{1}, \cdots, y_{p}\right], \operatorname{deg}_{y_{p}} C<\operatorname{deg}_{y_{p}} A_{i},(1 \leqq i \leqq p-1)$.

[^1]Since $C\left(\gamma ; y_{p}\right)=0$, it follows that $C=0$, so that (ii) holds.
Letting ζ_{j} be a root of C_{j}, we see that $A_{1}, \cdots, A_{p-1}, G_{j}$ form a characteristic set of the prime ideal with generic zero $\left(\gamma ; \zeta_{j}\right)$. This proves (i).
5.. We now prove the theorem. Let Σ be a component of $\{\Phi\}$, If we treat the transforms of y_{1}, \cdots, y_{n} as indeterminates in the algebraic sense, then difference polynomials of Σ can be thought of as ordinary polynomials. Let $\Sigma_{u_{1}, \cdots, u_{n}}$ denote the set of difference polynomials of Σ considered as algebraic polynomials in the ring $\mathscr{F}\left[y_{1}, \cdots, y_{1 u_{1}}\right.$; $\left.\cdots ; y_{n}, \cdots, y_{n u_{n}}\right]$. It is readily seen that $\Sigma_{u_{1}, \cdots, u_{n}}$ is an algebraic ideal, and as Σ is prime, it is a prime ideal.

Denote $\Sigma_{r_{1}, \cdots, r_{n}}$ by $\bar{\Sigma}$. Then $\bar{\Sigma} \supseteqq \Phi$. Assume $r_{1} \geqq r_{2} \geqq \cdots \geqq r_{n}$. Let $r_{i}-r_{i+1}=k_{i},(i=1, \cdots, n-1)$, and $m_{i}=\sum_{j=i}^{n-1} k_{j}$. Consider the following array.

$$
\begin{array}{r}
y_{1}, \cdots, y_{1 k_{1}}, \cdots, y_{1, k_{1}+k_{2}}, \cdots, y_{1 m_{1}}, \cdots, y_{1 r_{1}} \\
y_{2}, \cdots, y_{2 k_{2}}, \\
y_{3}, \quad \cdots, y_{2 m_{2}}, \cdots, y_{2 r_{2}} \tag{1}\\
\\
\\
\cdots, y_{3 m_{3}}, \cdots, y_{3 r_{3}} \\
y_{n}, \cdots, y_{n r_{n}} .
\end{array}
$$

For the purpose of constructing a characteristic set of Σ, let the indeterminates be ordered by reading the foregoing array columnwise. Thus, we have the ordering

$$
\begin{array}{r}
y_{1}, \cdots, y_{1 k_{1}}, y_{2}, \cdots, y_{1, k_{1}+k_{2}}, y_{2 k_{2}}, y_{3}, \cdots, \\
y_{1 m_{1}}, y_{2 m_{2}}, y_{3 m_{3}}, \cdots, y_{n}, \cdots \tag{2}\\
y_{1 r_{1}}, y_{2 r_{2},}, y_{3 r_{3}}, \cdots, y_{n r_{n}} .
\end{array}
$$

Let \mathfrak{N} denote the characteristic set of $\bar{\Sigma}$ which we are going to construct with respect to the ordering (2). Denote the polynomial of \mathfrak{A} which introduces $y_{i j}$ by $A_{i}^{(j)}$. We shall show
$(\alpha 1)$ If $y_{i n}, 0 \leqq h<r_{i}$, is introduced by a polynomial in \mathfrak{A}, then $y_{i, h+1}$ is introduced by a polynomial in $\mathfrak{N} ;{ }^{2}$
($\alpha 2$) $y_{i r_{i}},(i=1, \cdots, n)$, is introduced by a polynomial of \mathfrak{A}.
Let A_{j} denote the j th polynomial of \mathfrak{N}. Take A_{1} as irreducible. Assume $h \neq r_{i}$ and $A_{i}^{(h)}=A_{a}$. In the construction of \mathfrak{A}, suppose all letters of (2) up to but not including $y_{i, h+1}$ have been considered. Thus, if

$$
\begin{equation*}
A_{1}, \cdots, A_{b} \tag{3}
\end{equation*}
$$

[^2]is the beginning of the characteristic set of $\bar{\Sigma}$ so far constructed, then $1 \leqq a \leqq b$. Consider the difference polynomials of Σ as ordinary algebraic polynomials and let $\Omega_{j},(j=1, \cdots, b)$, denote the set of all polynomials of Σ of class not more than the class of A_{j} relative to the ordering (2). Ω_{j} will then be a prime algebraic ideal having A_{1}, \cdots, A_{j} as its characteristic set.

Let R be the algebraic remainder of $A_{a 1}$ with respect to (3). Then there is a relation

$$
R=B A_{a 1}+K_{1} A_{1}+\cdots+K_{b} A_{b}
$$

where B is a product of powers of the algebraic initials of A_{1}, \cdots, A_{b}, and K_{1}, \cdots, K_{b} are polynomials. Since $A_{a} \in \Sigma, A_{a 1} \in \Sigma$; and as $h<r_{i}$, $A_{a 1} \in \bar{\Sigma}$. Therefore, $R \in \bar{\Sigma}$. Let γ be the highest power of $y_{i, h+1}$ that appears in $A_{a 1}$ and let \bar{R} be the coefficient of $y_{i, k+1}^{\gamma}$ in R. Then

$$
\bar{R}=B \bar{A}_{a 1}+\bar{K}_{1} A_{1}+\cdots+\bar{K}_{b} A_{b}
$$

where $\bar{A}_{a 1}$ is the transform of the algebraic initial of A_{a} and $\bar{K}_{1}, \cdots, \bar{K}_{b}$ are the coefficients of $y_{i, n+1}^{\gamma}$ in K_{1}, \cdots, K_{b} respectively. Now as B $\notin \bar{\Sigma}$, we see that $B, A_{a 1} \notin \Sigma$. Thus, as each of A_{1}, \cdots, A_{b} belongs to Σ, it follows that $\bar{R} \notin \Sigma$, whence a fortiori is not zero. Therefore, R effectively involves $y_{i, k+1}$, and \bar{R} is its algebraic initial.

Now

$$
\begin{equation*}
A_{1}, \cdots, A_{\nu} ; R \tag{4}
\end{equation*}
$$

may be a characteristic set of some prime algebraic ideal. If not, then by the lemma of $\S 4$, there is a polynomial G such that

$$
\left.C\left(G R-G_{1} \cdots G_{r}\right) \equiv 0, \quad \mid A_{1}, \cdots, A_{b}\right]
$$

where C is a product of nonnegative integral powers of the initials of A_{1}, \cdots, A_{b} and the G_{j} are nonzero polynomials such that the sum of the degrees in $y_{i ; h+1}$ is the degree of R in $y_{i, l+1}$. Moreover, for each j, $1 \leqq j \leqq r$,

$$
A_{1}, \cdots, A_{b} ; G_{j}
$$

is a characteristic set of a prime ideal. Since A_{1}, \cdots, A_{b}, R belong to $\bar{\Sigma}$, while C does not, at least one of G_{1}, \cdots, G_{r} is in $\bar{\Sigma}$, say G_{1}.

If (4) is a characteristic set of a prime algebraic ideal, designate this ideal by Ω_{b+1} and rename R, A_{b+1}. If not, let G_{1} be A_{b+1} and Ω_{b+1} be the prime algebraic ideal of which $A_{1}, \cdots, A_{b}, G_{1}$ is the characteristic set, Thus, a polynomial A_{b+1} in $\bar{\Sigma}$ has been obtained such that

$$
\begin{equation*}
A_{1}, \cdots, A_{b}, A_{b+1} \tag{5}
\end{equation*}
$$

is a characteristic set of some prime algebraic ideal, Ω_{v+1} in $\mathscr{F}\left[y_{1}\right.$, $\left.\cdots, y_{i, h+1}\right] .^{3}$ The initial, \bar{A}_{b+1}, of A_{b+1} is reduced with respect to A_{1}, \cdots, A_{b} and is lower than A_{b+1}, whence is not contained in $\bar{\Sigma}$. Let the set of all polynomials (considered algebraically) of Σ of class not exceeding that of A_{b+1} be designated Σ^{\prime}. Then

$$
\begin{equation*}
\Omega_{b+1} \cong \Sigma^{\prime} \tag{6}
\end{equation*}
$$

since the polynomials (5) are in Σ^{\prime}, while their initials are not.
In the characteristic set, (5), of Ω_{b+1}, let A_{b}, A_{b+1} respectively introduce the c th and d th letters of the ordering (2). Now, as is well known, the dimension of an ideal equals the number of indeterminates diminished by the length of a characteristic set. Consequently,

$$
\begin{equation*}
\operatorname{dim} \Omega_{b+1}=d-(b+1) \tag{7}
\end{equation*}
$$

Since A_{1}, \cdots, A_{b} are polynomials at the beginning of a characteristic set of $\bar{\Sigma}$,

$$
\begin{equation*}
\operatorname{dim} \Sigma^{\prime} \geqq c-b \tag{8}
\end{equation*}
$$

Combining (7), (6), and (8), we secure

$$
d-b-1=\operatorname{dim} \Omega_{b+1} \geqq \operatorname{dim} \Sigma^{\prime} \geqq c-b
$$

If $d-c=1$, then $\operatorname{dim} \Omega_{b+1}=c-b=\operatorname{dim} \Sigma^{\prime}$. Now suppose $d-c>1$. No characteristic set of $\bar{\Sigma}$ contains a polynomial introducing the $d-c-1$ letters between the c th and d th letters of the ordering (2). Therefore, it follows that the length of any characteristic set of Σ^{\prime} cannot exceed $b+1$. Consequently, it cannot be that $\operatorname{dim} \Sigma^{\prime}=c-b+j,(j=0,1, \cdots$, $d-c-2$), for then every characteristic set of Σ^{\prime} would have length greater than $b+1$. Hence,

$$
\operatorname{dim} \Sigma^{\prime}=\operatorname{dim} \Omega_{b+1}
$$

This, together with (6) imply

$$
\begin{equation*}
\Omega_{b+1}=\Sigma^{\prime} . \tag{9}
\end{equation*}
$$

Thus, (5) is the beginning of a characteristic set of $\bar{\Sigma}$. A_{b+1} effectively involves $y_{i ; h+1}$ since R does. Therefore, A_{b+1} introduces $y_{i, h+1}$ and may be considered as $A_{i}^{(h+1)}$. Consequently, our assertion ($\alpha 1$) is established.

We now turn to proving ($\alpha 2$). By way of contradiction, suppose

$$
\begin{equation*}
A_{1}, \cdots, A_{e} \tag{10}
\end{equation*}
$$

is a characteristic set of $\bar{\Sigma}$ and that $y_{i, r_{i}}$ is introduced for f values of

[^3]i, where $f<n$. Let these values be designated $\sigma_{1}, \cdots, \sigma_{f}$ and suppose $\sigma_{1}<\sigma_{2}<\cdots<\sigma_{f}$. Extend the rows of (1) to include all transforms of y_{1}, \cdots, y_{n}. Then reading this columnwise, we get an infinite extension of the ordering (2). For convenience we make the following definitions. A polynomial in the ring $\mathscr{F}\left[y_{1}, \cdots, y_{i j}\right]$, where the dots represent the letters between y_{1} and $y_{i j}$ in the extension of the ordering (2), ${ }^{4}$ will be said to be of type (i, j); and if y_{i}, effectively appears in the polynomial, it will be said to be of effective type (i, j). Let the set of all polynomials (considered algebraically) of Σ of class not exceeding that of A_{i} be denoted $\Sigma_{i},(i=1, \cdots, e)$. We have previously obtained a prime algebraic ideal $\Omega_{i}=\Sigma_{i},(i=1, \cdots, e)$ having A_{1}, \cdots, A_{i} as its characteristic set. However, although the method used for getting Ω_{i} cannot be continued beyond $i=e$, the process will be modified slightly so that an infinite set of prime algebraic ideals $\Omega_{e+j},(j=1,2,3, \cdots)$ will be determined.

Before proceeding, let us make a few observations. Let $A_{\sigma_{1}}^{\left(\sigma_{\sigma_{1}}\right)}=A_{g}$. Suppose $g \neq 1$. Now if $U_{1} \in \Omega_{j}$, where $j<g, A_{j}$ and A_{k} are respectively of effective types (u, v) and $(u, v+1)$, then $U_{11} \in \Omega_{k}$. This follows at once since $U_{11} \in \Sigma_{k}$. On the other hand, if $U_{1} \notin \Omega_{j}$, where $j<g$, and is of class not exceeding A_{j}, then $U_{11} \notin \Omega_{k}$, since otherwise U_{11} would belong to Σ_{k} and U_{1} would be in $\Sigma_{j}=\Omega_{j}$.

First we determine Ω_{e+1}; the other $\Omega_{e_{+j}}$ will be obtained inductively. Let A_{g} and A_{e} respectively introduce $y_{u_{1}, v_{1}-1}$ and $y_{u_{2}, v_{2}}$. In the extension of the ordering (2), let $y_{u_{3} v_{3}}$ be the letter that immediately follows $y_{u_{2} v_{2}}$, and $y_{u_{4} p_{4}}$ the one that immediately precedes $y_{u_{1} v_{1}}$. If R_{g} is the algebraic remainder of $A_{g_{1}}$ with respect to (10), then there is a relation

$$
\begin{equation*}
I_{e} A_{g 1}-R_{g} \equiv 0, \quad\left[A_{1}, \cdots, A_{e}\right] \tag{11}
\end{equation*}
$$

where I_{e} is a product of nonnegative integral powers of the initials of A_{1}, \cdots, A_{e}. Therefore,

$$
I_{e} \bar{A}_{g 1}-\bar{R}_{q} \equiv 0, \quad\left[A_{1}, \cdots, A_{e}\right]
$$

where $\bar{A}_{g 1}$ and \bar{R}_{g} denote the coefficients in $A_{g 1}$ and R_{g} respectively of the highest power of $y_{u_{1} v_{1}}$ in $A_{g_{1}}$.

Let Ω_{e}^{\prime} be the prime ideal in $\mathscr{F}\left[y_{1}, \cdots, y_{u_{1} v_{1}}\right]$ generated by Ω_{e}. The polynomials of Ω_{e}^{\prime} are those polynomials in $y_{u_{3} v_{3}}, \cdots, y_{u_{1} v_{1}}$ having coefficients in Ω_{e}. It may, of course, happen that u_{3}, v_{3} are respectively equal to u_{1}, v_{1}, in which case " $y_{u_{3} v_{3}}, \cdots, y_{u_{1} v_{1}}$ " is to be regarded as simply " $y_{u_{1} v_{1}}$ ". At any rate, we have

$$
\begin{equation*}
I_{e} \bar{A}_{g_{1}}-\bar{R}_{g} \in \Omega_{e}^{\prime} \tag{12}
\end{equation*}
$$

[^4]Now, as I_{e} is free of $y_{u_{3^{v_{3}}}}, \cdots, y_{u_{1} v_{1}}$ and $\notin \Omega_{e}$, it follows that $I_{e} \notin \Omega_{e}^{\prime}$. We claim that $\bar{A}_{g 1} \notin \Omega_{c}^{\prime}$. To prove this, we write $\bar{A}_{g 1}$ as a polynomial in the letters $y_{u_{3} v_{3}}, \cdots, y_{u_{1} v_{1}}$. Its coefficients are of type (u_{2}, v_{2}). Regarding \bar{A}_{g} as a polynomial in $y_{u_{3}, v_{3}-1}, \cdots, y_{u_{1}, v_{1}-1}$, its coefficients are of type ($u_{2}, v_{2}-1$) unless $v_{2}=0$. If $v_{2}=0$, then the coefficients are of type (u_{5}, v_{5}), where in the array (1), $y_{u_{5} v_{5}}$ is the last letter which appears in the column headed by $y_{1, r_{1}-1}$. In any case, since these coefficients are reduced with respect to A_{1}, \cdots, A_{g-1}, they do not belong to Ω_{g-1}. Therefore, their transforms are not in Ω_{e}. (If $g=1$, we still see that the transforms of the coefficients of $\overline{A_{g}}$ are not in Ω_{e}. For, if they were in Ω_{e}, then they would belong to Σ, whence $\overline{A_{1}}$ would belong to Σ, a contradiction.) Consequently, $\bar{A}_{g 1} \notin \Omega_{e}^{\prime}$, as was asserted. It now follows from (12) that $\bar{R}_{g} \notin \Omega_{e}^{\prime}$. This means $\bar{R}_{g} \neq 0$, and so that R_{g} effectively involves $y_{u_{1} v_{1}}$, that is $y_{\sigma_{1}, r \sigma_{1}+1}$. Hence, \bar{R}_{g} is the algebraic initial of R_{g}. From (11) we see $R_{g} \in \Sigma$.

If

$$
\begin{equation*}
A_{1}, \cdots, A_{e} ; R_{g} \tag{13}
\end{equation*}
$$

is a characteristic set of a prime algebraic ideal, we denote this ideal by Ω_{e+1} and R_{g} by A_{e+1}. If (13) is not a characteristic set of any prime algebraic ideal, then by the lemma of $\S 4$, there is a polynomial H such that

$$
\begin{equation*}
J_{e}\left(H R_{g}-H_{1} \cdots H_{q}\right) \equiv 0, \quad\left[A_{1}, \cdots, A_{e}\right], \tag{14}
\end{equation*}
$$

where J_{e} is a product of powers of the initials of A_{1}, \cdots, A_{e} and the H_{3} are polynomials of positive degree in $y_{u_{1} v_{1}}$ such that the sum of these degrees is the degree of R_{g} in $y_{u_{1} v_{1}}$. Moreover, for each $j, 1 \leqq j \leqq q$,

$$
A_{1}, \cdots, A_{e} ; H_{j}
$$

is a characteristic set of a prime ideal. From (14) it is seen that some H_{j}, say H_{1}, belongs to Σ. Let H_{1} be A_{e+1} and Ω_{e+1} be the prime algebraic ideal of which $A_{1}, \cdots, A_{e}, H_{1}$ is the characteristic set. Thus, a polynomial A_{e+1} in Σ has been obtained such that

$$
\begin{equation*}
A_{1}, \cdots, A_{e+1} \tag{15}
\end{equation*}
$$

is a characteristic set of some prime algebraic ideal Ω_{e+1} in $\mathscr{F}\left[y_{1}\right.$, $\cdots, y_{u_{1} v_{1}}$.

Now let us assume as inductive hypotheses:
($\beta 1$) If $U_{1} \in \Omega_{h}, h=g-2+j$, and A_{h} and A_{k} are respectively of effective types (u, v) and ($u, v+1$), then $U_{11} \in \Omega_{k}$.
($\beta 2$) If $U_{1} \notin \Omega_{h}, h=g-2+j, U_{1}$ is of type (u, v), A_{h} and A_{k} are of effective type (u, v) and $(u, v+1)$, respectively, then $U_{11} \notin \Omega_{k}$.
($\beta 3$) $\Omega_{e+1}, \cdots, \Omega_{e+j}$ have been constructed by a process similar to the one described on the preceding pages. That is, if

$$
\begin{equation*}
A_{1}, \cdots, A_{e+j-1} \tag{16}
\end{equation*}
$$

is a characteristic set of Ω_{e+j-1}, the characteristic set of Ω_{e+j} will be

$$
A_{1}, \cdots, A_{e+j-1}, A_{e+j}
$$

where A_{e+j} is either the algebraic remainder, R_{g+j-1}, of $A_{g+j-1,1}$ with respect to (16) or else is one of the F_{i} obtained from a factorization equation of the type

$$
\begin{equation*}
J_{e+j-1}\left(F R_{g+j-1}-F_{1} \cdots F_{r}\right) \equiv 0, \quad\left[A_{1}, \cdots, A_{e+j-1}\right] \tag{17}
\end{equation*}
$$

where J_{e+j-1} is a product of nonnegative integral powers of the initials of A_{1}, \cdots, A_{e+j-1} and the F_{i} and F are polynomials having properties analogous to those of the G_{i} and G, respectively, of the lemma of $\S 4$.

Our hypotheses have been shown to hold when $j=1$ if $g>1$; and, in fact, it has been proven that $(\beta 3)$ is true even if $g=1$. We now verify ($\beta 1$) and ($\beta 2$) for $h=1, g=1$; that is, for $j=2, g=1$. Thus, we must prove:
($\mathcal{P} 1$) If $g=1$ and $U_{1} \in \Omega_{1}$, then $U_{11} \in \Omega_{e+1}$.
($\varnothing 2$) If $g=1$ and $U_{1} \notin \Omega_{1}$, where U_{1} is of type ($\sigma_{1}, r_{\sigma_{1}}$), then $U_{11} \notin \Omega_{e+1}$. If $U_{1} \in \Omega_{1}$, then for a suitable power N_{1}, of the initial \bar{A}_{1} of A_{1}, we have

$$
\begin{equation*}
N_{1} U_{1} \equiv 0 \tag{1}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
N_{11} U_{11} \equiv 0 \tag{11}
\end{equation*}
$$

If $N_{11} \in \Omega_{e+1}$, it would then follow that $N_{1} \in \Sigma$, which is false. Therefore, $N_{11} \notin \Omega_{e+1}$. Now either A_{e+1} equals the algebraic remainder, R_{1}, of A_{11} with respect to (10), or else A_{e+1} is an H_{i} resulting from a factorization equation of the type (14). In either case, we see that $R_{1} \in \Omega_{e+1}$, whence, from (11), $A_{11} \in \Omega_{e+1}$. Thus, $U_{11} \in \Omega_{e+1}$ and ($\varphi 1$) is proven.

On the other hand, if U_{1} is of type $\left(\sigma_{1}, r_{\sigma_{1}}\right)$ and $\notin \Omega_{1}$, then $U_{1} \notin \Sigma$, whence $U_{11} \notin \Sigma$. Therefore, $U_{11} \notin \Omega_{e+1}$ and ($\varphi 2$) is proven.

We are now ready for our induction. We shall prove $(\gamma 1),(\gamma 2),(\gamma 3)$, where these respectively are like $(\beta 1)$, $(\beta 2),(\beta 3)$ with $j+1$ replacing j,

Let $U_{1} \in \Omega_{h+1}$ and A_{h+1} be of effective type (u, v). Since $h=g-2+j$ and $e=g-1+f$, it follows that $h+1+f=e+j$. Therefore, by hypothesis ($\beta 3$), Ω_{n+1+f} and A_{h+1+f} have been determined. Obviously, A_{h+1+f} is of effective type $(u, v+1)$. Now for a suitable product of powers, M_{1}, of the initials of A_{1}, \cdots, A_{h+1}, we have

$$
M_{1} U_{1} \equiv 0, \quad\left[A_{1}, \cdots, A_{l+1}\right]
$$

Consequently,

$$
\begin{equation*}
M_{11} U_{11} \equiv 0, \quad\left[A_{11}, \cdots, A_{l+1,1}\right] \tag{18}
\end{equation*}
$$

By inductive hypothesis ($\beta 1$), $A_{11}, \cdots, A_{h 1} \in \Omega_{h+f} \subset \Omega_{h+1+f}$. Let Ω_{h+f}^{\prime} be the prime algebraic ideal in $\mathscr{F}\left[y_{1}, \cdots, y_{u, v+1}\right]$ generated by Ω_{n+f}. We know that A_{h} introduces some indeterminate, say the letter immediately preceding $y_{\bar{u} \overline{-}}^{-}$in the extension of the ordering (2). Also, we know that A_{l+1} introduces $y_{u v}$. We assert that $M_{11} \notin \Omega_{l_{+1+f}}$. To prove this, suppose otherwise. Then M_{11} has zero remainder with respect to A_{1}, \cdots, A_{b+1+f}, and since M_{11} is free of $y_{u, v+1}$, it has in fact zero remainder with respect to A_{1}, \cdots, A_{k+f}. Thus, $M_{11} \in \Omega_{n+f}^{\prime}$. Hence, if we consider M_{11} as a polynomial in $y_{\bar{u}, \bar{v}+1}, \cdots, y_{u, v+1}$, its coefficients belong to $\Omega_{l_{+}+f}$. By the induction hypothesis ($\beta 2$), therefore, the coefficients of M_{1}, considered as a polynomial in $y_{\bar{u} \bar{v}}, \cdots, y_{u v}$, are contained in $\Omega_{n} \subset \Omega_{h+1}$. But then $M_{1} \in \Omega_{n+1}$, a contradiction. Hence, our assertion that $M_{11} \notin \Omega_{n+1+f}$ is proved.

If we show that $A_{h+1,1} \in \Omega_{n+1+f}$, then by (18) we shall have $U_{11} \in \Omega_{n+1+f}$ and so ($\gamma 1$). Now A_{h+1+f} either equals the algebraic remainder, R_{n+1}, of $A_{h+1.1}$ with respect to $A_{1}, \cdots, A_{h^{+},}$or else is some polynomial F_{i} resulting from a factorization equation of the type (17). That is, we have either

$$
\begin{equation*}
I_{h+f} A_{h+1,1}-A_{h+1+f} \equiv 0, \tag{19}
\end{equation*}
$$

$$
\left[A_{1}, \cdots, A_{h+f}\right]
$$

or taking A_{h+1+f} to be F_{1},

$$
\begin{equation*}
J_{h+f}\left(F R_{h+1}-A_{h+1+j} \cdot F_{2} \cdots F_{s}\right) \equiv 0, \quad\left[A_{1}, \cdots, A_{h+j}\right] \tag{20}
\end{equation*}
$$

where I_{h+f} and J_{+f} are each products of powers of the initials of $A_{1}, \cdots, A_{z_{+f}}$ and F is a polynomial having properties analogous to G of the lemma of $\S 4$.

If (19) is the case, it is immediate that $A_{h+1,1} \in \Omega_{h+1+j}$. On the other hand, if we have (20), then $R_{t+1} \in \Omega_{h+1+f}$, in which case once again we have $A_{h+1,1} \in \Omega_{n+1+f}$. The proof of ($\gamma 1$) is therefore complete.

We turn now to ($\gamma 2$). Let $U_{1} \notin \Omega_{l_{+1}}, U_{1}$ be of type (u, v), and A_{h+1} be of effective type (u, v). Then $A_{b^{+1+f}}$ is of effective type $(u, v+1)$. Since every component of the ideal [U_{1}, Ω_{l+1}] is of lower dimension than $\operatorname{dim} \Omega_{n+1}$, a polynomial, V_{1}, in the parameters of Ω_{n+1} can be found such that

$$
\begin{equation*}
V_{1}=W_{1} U_{1}+X_{1}, \tag{21}
\end{equation*}
$$

where $X_{1} \in \Omega_{h+1}$ and W_{1} is of type (u, v). From (21) we secure

$$
V_{11}=W_{11} U_{11}+X_{11} .
$$

Since we just proved ($\gamma 1$), we see that $X_{11} \in \Omega_{k+1+f}$. If we prove that $V_{11} \notin \Omega_{k+1+\rho}$, we would have $W_{11} U_{11} \notin \Omega_{n+1+\rho}$. Then $U_{11} \notin \Omega_{k+1+\rho}$ and ($\gamma 2$) would immediately follow.

By way of contradiction, suppose $V_{11} \in \Omega_{n+1+f}$. Then V_{11} has zero remainder with respect to A_{1}, \cdots, A_{k+1+f}. Let $A_{\pi_{1}}, \cdots, A_{\pi_{f}}$ be those A 's of the characteristic set, (10), of $\bar{\Sigma}$ which respectively introduce the least transforms of $y_{\sigma_{1}}, \cdots, y_{\sigma_{f}}$. Suppose $A_{\sigma_{i}}=A_{\left.\sigma_{i}, t_{i}\right)},(i=1, \cdots, f)$. Note that it is not necessarily the case that $\pi_{1}<\pi_{2}<\cdots<\pi_{f}$. Let $\lambda_{1}, \cdots, \lambda_{f}$ be π_{1}, \cdots, π_{f} arranged in order of increasing magnitude. Then $\lambda_{1}=1$. Now the class of V_{11} in each of the letters $y_{\sigma_{1}}, \cdots, y_{\sigma_{f}}$ does not exceed the class of $A_{\pi_{1}}, \cdots, A_{\pi_{f}}$ in each of these letters respectively. Thus, V_{11} has zero remainder with respect to $A_{1}, \cdots, A_{\lambda_{f}}$. Suppose no transform of $y_{i},\left(i=\rho_{1}, \cdots, \rho_{n-f}\right)$, is introduced by any of the polynomials of (10). Write V_{11} as a polynomial in the $y_{i s}$ following $y_{\sigma_{f} t_{f}}$ in the extension of the ordering (2). These $y_{i j}$ will all be transforms of $y_{\rho_{1}}, \cdots, y_{\rho_{n-f}}$, hence parameters of Ω_{n+1+f}. Therefore, the coefficients will have zero remainder with respect to $A_{1}, \cdots, A_{\lambda_{f}}$, and so belong to $\bar{\Sigma}$. But the inverse transforms are of order less than t_{i} in $y_{\sigma_{i}},(i=$ $1, \cdots, f)$. As $\bar{\Sigma}$ contains no polynomials of this sort, a contradiction has been obtained. Consequently, $V_{11} \notin \Omega_{n+1+f}$. This proves ($\gamma 2$).

To establish ($\gamma 3$), that is to construct Ω_{e+j+1}, one need only to proceed in a manner analogous to the way in which Ω_{e+1} was determined, except for the specification " $H_{1} \in \Sigma$ ".

Thus, we have demonstrated for all i :
(83) There exist prime algebraic ideals $\Omega_{1}, \Omega_{2}, \Omega_{3}, \cdots$ having the properties
(i) $\Omega_{1} \subset \Omega_{2} \subset \Omega_{3} \subset \cdots$;
(ii) a characteristic set of Ω_{i} is A_{1}, \cdots, A_{i};
(iii) $\Omega_{j}=\Sigma_{j},(j=1, \cdots, e)$;
(iv) if Ω_{g-1+i} is an ideal in $\mathscr{F}\left[y_{1}, \cdots, y_{u 0}\right]$, then $\Omega_{g-1+i+f}$ is an ideal in $\mathscr{F}\left[y_{1}, \cdots, y_{u v+1}\right]$.
($\delta 1$) If $U_{1} \in \Omega_{i}$ and A_{i} and A_{k} are respectively of effective types (u, v) and ($u, v+1$), then $U_{11} \in \Omega_{k}$.
(82) If $U_{1} \notin \Omega_{i}, U_{1}$ is of type (u, v), A_{i} and A_{k} are of effiective types (u, v) and ($u, v+1$) respectively, then $U_{11} \notin \Omega_{k}$.

Let Ω be the union of the Ω_{i} of ($\delta 3$). Ω is obviously a prime algebraic ideal, and indeed, as we shall see, a reflexive prime difference ideal. If $U_{1} \in \Omega$, then there is some i such that $U_{1} \in \Omega_{i}$, whence by ($\delta 1$), for a suitable $k, U_{11} \in \Omega_{k} \subset \Omega$. Conversely, now suppose $U_{11} \in \Omega$. Then there are positive integers k, i, u, v such that A_{i} and A_{k} are of effective types (u, v) and ($u, v+1$) respectively, and $U_{11} \in \Omega_{k}$. Therefore, by ($\delta 2$), $U_{1} \in \Omega_{i} \subset \Omega$. This proves our assertion that Ω is reflexive.

Since the indeterminates $y_{\rho_{1}}, \cdots, y_{\rho_{n-f}}$ are the parameters of Ω, it follows that $\operatorname{dim} \Omega=n-f$. Now Ω is a divisor of a component of $\{\Phi\}$, say Λ, Therefore, $\operatorname{dim} \Lambda \geqq \operatorname{dim} \Omega=n-f \neq 0$. Hence we have a contradiction of the hypothesis of the theorem that every component of $\{\Phi\}$ is of dimension zero.

Our assertion, ($\alpha 2$), thus has been established.
Let

$$
\begin{equation*}
A_{1}, \cdots, A_{t} \tag{22}
\end{equation*}
$$

be a characteristic set of $\bar{\Sigma}$. Before proceeding, several consequences of $(\alpha 1)$ and $(\alpha 2)$ should be noted.
$(\varepsilon 1)$. When we reach the point in the construction of (22) where transforms of each of the letters y_{1}, \cdots, y_{n} have been introduced, all succeeding polynomials of (22) introduce $y_{1}^{\prime} s, \cdots, y_{n}^{\prime} s$ in order, no further transforms from then on being omitted.
(ع2). $y_{1 r_{2}}, \cdots, y_{n r_{n}}$ respectively are introduced by the last n polynomials in (22).
($\varepsilon 3$). In forming (22), certain letters are not introduced by any polynomial of (22). The indeterminates represented by these letters constitute a parametric set of $\bar{\Sigma}$.

If we continue the construction which yielded (22), new polynomials, $A_{i}^{(j)},{ }^{5}$ can be formed such that for any positive integer m

$$
A_{1}, \cdots, A_{t} ; A_{1}^{\left(r_{1}+1\right)}, \cdots, A_{n}^{\left(r_{n}+1\right)} ; \cdots ; A_{1}^{\left(r_{1}+m\right)}, \cdots, A_{n}^{\left(r_{n}+m\right)}
$$

is a characteristic set of the prime algebraic ideal $\Sigma r_{1+m, \cdots, r_{n}+m}$ consisting of all polynomials of Σ of type ($r_{n}, r_{n}+m$) with respect to the extension of the ordering (2). Let this ideal be denoted $\Sigma^{(m)}$. By ($\varepsilon 2$), ($\varepsilon 3$), ($\varepsilon 1$), it follows that the maximum number of parameters in $\Sigma^{(m)}$ for any nonnegative integer m is $r_{1}+\cdots+r_{n}$. Consequently,

$$
\begin{equation*}
\operatorname{dim} \Sigma^{(m)} \leqq r_{1}+\cdots+r_{n} \tag{23}
\end{equation*}
$$

We prove by way of contradiction that the order of Σ is at most $r_{1}+\cdots+r_{n}$. Suppose the order of Σ is more than $r_{1}+\cdots+r_{n}$. Then for all sufficiently large a_{1}, \cdots, a_{n}, the dimension of $\Sigma_{a_{1}, \cdots, a_{n}}$ is greater than $r_{1}+\cdots+r_{n}$, since by definition the order of Σ is the algebraic dimension of Σ. However, this is a contradiction of (23). Hence, the theorem.
6. The bound

$$
\begin{equation*}
r_{1}+\cdots+r_{n} \tag{24}
\end{equation*}
$$

[^5]which was obtained in the previous section will be denoted. \mathscr{B} and called the Ritt bound. Let
\[

$$
\begin{equation*}
A_{1}^{\left(s_{1}\right)}, \cdots, A_{n}^{\left(s_{n}\right)} \tag{25}
\end{equation*}
$$

\]

be those polynomials of the characteristic set, \mathfrak{U}, of $\bar{\Sigma}$ which respectively introduce the least transforms of y_{1}, \cdots, y_{n}. Then $s_{i} \leqq r_{i},(i=$ $1, \cdots, n)$. Then by ($\varepsilon 3$) it is clear that the order of Σ will be given by

$$
\mathscr{S}=s_{1}+\cdots+s_{n} .
$$

In the case of differential equations, Jacobi investigated the problem of determining the number of arbitrary constants in the solution of a system of n equations in the variable x and n dependent variables y_{1}, \cdots, y_{n}. If these equations are denoted

$$
\begin{equation*}
B_{i}=0, \quad(i=1, \cdots, n), \tag{26}
\end{equation*}
$$

and $\alpha_{i j}$ stands for the greatest order of the derivatives of y_{i} in B_{j}, then Jacobi asserted, [5] that the number of arbitrary constants in the solution of (26) is no greater than

$$
\begin{equation*}
\max \left(\alpha_{1 j_{1}}+\cdots+\alpha_{n j_{n}}\right) \tag{27}
\end{equation*}
$$

where j_{1}, \cdots, j_{n} is a permutation of $1, \cdots, n$. However, Jacobi's work was largely heuristic and lacked logical rigor.

Ritt in [2, p. 136] has shown that in the case of two algebraic differential equations in two unknowns, Jacobi is essentially correct. That is, Ritt proved:

If Σ, of dimension zero, is a component of the system B_{1}, B_{2}, then the order of Σ is at most $\max \left(\alpha_{11}+\alpha_{22}, \alpha_{12}+\alpha_{21}\right)$.

We shall be interested, in the case of n difference equations in n indeterminates, in obtaining an improvement on the Ritt Bound, and in seeing how it compares with the Jacobi number, (27), where that number now applies to difference polynomials. The number, (27), will be denoted \mathscr{J}.
7. Let F_{1}, \cdots, F_{n} be a system of n nonzero difference polynomials of type $\left(r_{1}, \cdots, r_{n}\right)$ in the n indeterminates y_{1}, \cdots, y_{n}, where every component of $\left\{F_{1}, \cdots, F_{n}\right\}$ is of dimension zero. Suppose among the F_{i}, there is at least one, say F_{k}, which does not effectively involve any $y_{j r^{\prime}}$, for $j=1, \cdots, n$. If F_{k} is of effective type (θ, φ), then the characteristic set of $\left\{F_{1}, \cdots, F_{n}\right\}$ certainly must contain a polynomial A of the ring $\mathscr{F}\left[y_{1}, \cdots, y_{\theta \varphi}\right]$. Suppose A is of effective type (σ, τ). By ($\varepsilon 3$) and $(\alpha 1)$, we are sure, therefore, that $y_{\sigma \tau}, \cdots, y_{\sigma r_{\sigma}}$ are not parameters of $\bar{\Sigma}$, that is of $\Sigma_{r_{1}, \cdots, r_{n}}$. Since $\tau<r_{\sigma}$, we have an improvement on the Ritt bound; r_{σ} in (24) is to be replaced by τ. However, we have no simple
way of determining σ and τ. But since $r_{\sigma}-\tau \geqq r_{\theta}-\mathscr{P}>0$, if we replace r_{θ} in (24) by φ, we shall still have a bound which is an improvement on \mathscr{R}. As θ and φ are given, the new bound is easily found. Should it happen that several of the F_{i} are devoid of the $y_{j r_{j}}$, then possibly (although not necessarily) we may get a further refinement.

If a transform ${ }^{6}$ of y_{j} appears in F_{i}, let $\alpha_{i j}$ stand for the greatest order of the transforms of y_{j} in $F_{i},(i, j=1, \cdots, n)$. For a fixed i, consider the set of numbers

$$
\begin{equation*}
r_{k}-\alpha_{i k}, \quad(k=1, \cdots, n) \tag{28}
\end{equation*}
$$

(If some $\alpha_{i k}$ are undefined, then (28) will consist of fewer than n numbers). Let \mathfrak{S}_{i} be the set of values of k among $1, \cdots, n$ which will yield the minimum of the numbers (28). If b_{i} denotes the greatest member of \mathfrak{S}_{i}, then it will follow that F_{i} is of effective type $\left(b_{i}, \alpha_{i b_{i}}\right)$. Hence, if we replace $r_{b_{i}}$ in (24) by $\alpha_{i b_{i}}$, the result will be an improvement on \mathscr{R} if F_{i} does not effectively involve any $y_{i_{j}}$.

Let $w=\max \left(r_{b_{i}}-\alpha_{i b_{i}}\right), \quad(i=1, \cdots, n)$, and $S=C / T$. Then $\mathscr{G} \leqq \mathscr{R}$, and we have the following

Theorem. Let \mathscr{F} be an inversive difference field of characteristic zero. If F_{1}, \cdots, F_{n} is a system of n nonzero difference polynomials in $\mathscr{F}\left\{y_{1}, \cdots, y_{n}\right\}$ of type $\left(r_{1}, \cdots, r_{n}\right)$ and every component of $\left\{F_{1}, \cdots, F_{n}\right\}$ is of dimension zero, then the order of each component is at most \mathscr{S}.
8. Although \mathscr{G} is an improvement on \mathscr{R}, still in many situations it is larger than \mathscr{F}, and of course, under no circumstances ${ }^{7}$ is it less than \mathscr{F}^{*}. However, we shall show in the case of two nonzero difference polynomials F_{1}, F_{2} in y_{1}, y_{2}, that $\mathscr{Y}=$, whence in such a situation Jacobi's number is a bound. ${ }^{8}$

To prove that $\mathscr{G}=\mathscr{G}$ in the case of two difference polynomials F_{1}, F_{2} in y_{1}, y_{2}, first note that we may assume without loss of generality that $\alpha_{11}=\max \left(\alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}\right)$. Then $r_{1}=\alpha_{11}$ and $r_{2}=\max \left(\alpha_{12} \alpha_{22}\right)$. It is easily seen that $\mathscr{f}<\mathscr{R}$ if and only if

$$
\begin{equation*}
\alpha_{11}>\alpha_{21} \text { and } \alpha_{12}>\alpha_{22} \tag{29}
\end{equation*}
$$

Now, since $\mathscr{J} \leqq \mathscr{G} \leqq \mathscr{R}$, it follows that if (29) is not satisfied that $\mathscr{F}=\mathscr{G}=\mathscr{R}$. Therefore, suppose the condition (29) holds. In such

[^6]an event, $r_{1}-\alpha_{11}=0, r_{2}-\alpha_{12}=0, r_{1}-\alpha_{21}>0, r_{2}-\alpha_{22}>0$. Hence, $w=\min \left(r_{1}-\alpha_{21}, r_{2}-\alpha_{22}\right)$ and $\mathscr{G}=r_{1}+r_{2}-\min \left(r_{1}-\alpha_{21}, r_{2}-\alpha_{22}\right)=$ $\max \left(r_{1}+\alpha_{22}, r_{2}+\alpha_{21}\right)=\mathscr{F}$.

References

1. R. M. Cohn, Manifolds of difference polynomials, Trans. Math. Soc. 64 (1948), 133-172.
2. J. F. Ritt, Differential algebra, Colloq. Publi. Amer. Math. Soc., vol. XXXIII.
3. J. F. Ritt, and J. L. Doob, Systems of algebraic difference equations, Amer. J. Math. 55 (1933), 505-514.
4. J. F. Ritt and H. W. Raudenbush, Ideal theory and algebraic difference equations, Trans, Amer. Math. Soc. 46 (1939), 445-452.
5. J. F. Ritt, Jacobi's problem on the order of a system of differential equations, Ann Math. 26 (1935), 305-312.

Drew University

[^0]: Received September 4, 1958. The author wishes to thank Professor R. M. Cohn for help in preparing this paper.

[^1]: 1 We are indebted to the referee for this proof, which is somewhat shorter than ours which consisted of a modification of an old proof of J. F. Ritt's.

[^2]: ${ }^{2} A_{i}^{(0)}$ will denote the polynomial of \mathfrak{A} which introduces y_{i}. The symbol " $y_{i 0}$ " sometimes will be used to designate y_{i}.

[^3]: ${ }^{3}$ The dots in " $\mathcal{F}^{\prime}\left[y_{1}, \cdots, y_{i, h+1}\right]$ " represent the letters between y_{1} and $y_{i, h+1}$ in the ordering (2).

[^4]: ${ }^{4}$ Here and elsewhere, where no confusion can result, the dots represent the letters of the extension of the ordering (2) between the given letters.

[^5]: ${ }^{5}$ We are extending the meaning of $A_{i}^{(j)}$, which previously was defined as a polynomial of \mathfrak{l}, that is of (22).

[^6]: ${ }^{6}$ Recall y_{j} itself is considered as the zero-th transform of y_{j}.
 ${ }^{7}$ The Jacobi number, \mathcal{E}, has been defined only in the case where no y_{j} is missing from each F_{i}. If a polynomial does not involve one of the indeterminates, we shall define its order in that letter to be -1 , in which case \mathscr{E} would always have a meaning. In such a situation, \mathscr{G} may be less than \mathscr{L}.
 ${ }^{8}$ If one of y_{1}, y_{2} is missing from one of F_{1}, F_{2}, and \mathscr{J} is defined as in footnote 7), then \mathscr{G} is a better bound than \mathscr{E}, since in this case $\mathscr{G} \leqq \mathscr{J}$.

