EXTENSIONS OF A THEOREM OF LOEWNER
ON INTEGRAL OPERATORS*

DonaLp C. BENSON

1. Introduction. The purpose of this paper is to extend the result
of Loewner in [6]. In that paper the following question is considered
A function k(t) which is L-integrable on [0, 1] is given. He considers
the operator

(1) y(t) = ‘SZ’“(T)”“ — )de

applied to continuous functions of period 1. Then ¥(¢) is continuous and
also of period 1, and one may consider the closed oriented curve in the
xy-plane whose parametric representation is © = x(t), ¥y = y(t). A closed
curve is said to have non-negative circulation if the order (index)
of the curve with respect to any point not on the curve is non-negative.
Now the question is asked: Which kernel functions k(t) generate only
curves of non-negative circulation? The answer is given by the following
theorem of Loewner: An L-integrable function k(t) generates only curves
of non-negative circulation if and only if, after a possible change on a
set of measure zero, k(t) is analytic in the open interval 0 < ¢t < 1 and
its derivative can there be represented by a Laplace-Stieltjes integral

(2) K(t) = | e

with a non-decreasing function g(s).

The following extensions of this result are of interest:

(i) Consider a function k(t), Lebesgue integrable on the half-line
[0, ). Apply the operator

(3) y(t) = —S:k(r)x(t — e

to functions x(t) which are continuous in (— o, ) and such that

(4) lim 2(t) = 0.

t—too

Then it is easy to show that lim y(¢) = 0, and therefore x = x(t), ¥y = y(?)

t—oo

may be considered as a representation of closed curve. Again we con-
sider the curve z = %(t), ¥ = %(t) and we ask which functions k() gen-
erate only curves of non-negative circulation.
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(ii) Consider the original problem when all of the integrations are
taken in the sense of Cauchy principle value. In particular, we suppose

5 k(t) = _ ¢
(5) O = o 2
where ¢(t) is L-integrable on the interval [0,1] and 0 <a < 1. We
apply the integral operator

y(t) = —PS:k(T)x(t — 7)dr

to a class of functions x(¢) which satisfy a suitable Holder condition (to
insure the existence and continuity of y(t)). The symbol ‘P’ denotes
that the integration is taken in the sense of Cauchy principal value,
i.e.,
Pglk(z')x(t — 7)dr = lim Sl—sk(‘r)x(t — e .

° >0 V"
Then we may again consider the question: What functions k(t) generate
only curves of non-negative circulation?

This problem is particularly interesting for the following reason:
Let us suppose that a function is analytic in the interior of the unit
circle and continuous on the boundary. Then, on the boundary, the real
and imaginary parts of this function are connected by just such an in-

tegral relation, where the integral must be taken in the sense of Cauchy
principal value. In fact, one has the formula

(6) o(s) = Pglu(t)ctgn(s — byt

where wu(t) and v(t) denote the boundary values of the real and imagina-
ry part respectively, and ¢ denotes the angular displacement from some
fixed point on the circle. It is an easy consequence of the argument
principle that these curves are of non-negative circulation. It is an in-
dication of what one may expect in general when one considers the
formula

d a1 test

(7) ——_ctgms = eseiwr = — dt (see [10], p. 260) .
dt Tl-=1—e"

Since is everywhere positive it is clear that the above may be

1—et
written as a Laplace-Stieltjes integral with non-decreasing determining
function.

(iii) We replace the operator y(t) = —Slk(r)x(t — 7)dt by a general
0
Stieltjes integral



EXTENSIONS OF A THEOREM OF LOEWNER ON INTEGRAL OPERATORS 367

(8) u(t) = | ot — D)k(e)

where now k(7) is assumed to be a function of bounded variation. This
operator is applied to continuous functions «(f) of period 1. We ask
again what functions of bounded variation k(r) have the property of
always generating curves of non-negative circulation.

The extensions (i), (ii) and (iii) are obtained by methods similar to
those of Loewner, and only the results will be stated here. The full
details are contained in [1].

In (i) and (ii) Loewner’s condition on %(t) is the desired necessary
and sufficient condition. In (iii) one must replace (2) by

(2%) k() = Sle'“dﬂ(s) .

Of course in (i) we must require that the representation (2) is valid in
the interval [0, =), and, in fact, the integrability of k(f) implies that
1(s) is constant for negative s, so that (2) can in this case be replaced by

@) Kt = | Terdp).

(iv) One may consider curves generated by applying the convolution
type integral operation to almost periodic funections. It is necessary
first to generalize the notion of non-negative circulation to curves given
parametrically in terms of almost periodic funections. Then, as before,
we ask what kernel functions k(¢), L-integrable on [0, o) have the prop-
erty that the operator

y(t) = ——S:k(z')x(t — D)z

always generates curves having this generalized non-negative circulation.
Henceforth we shall be concerned only with (iv).

2. Extension at almost periodic functions. Let us consider curves
of the type x = %(t), y = y(t) where the functions «(t) and %(t) are almost
periodic functions. Of course, in general, such a curve is not closed.
In generalizing Loewner’s result, the first problem is to find a suitable
generalization of the notion of order or of non-negative ecirculation.
Suppose that P is a point not on the curve. Let 6(t) denote the argu-
ment of the vector from P to the point (x(t), ¥(t)) which is taken so
that it is a continuous function of ¢. It is then determined mod 2.
We may try to define the order of the curve with respect to P as the
expression
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(9) c= limM
s=Y—ro0 S — v

The trouble is that this limit may not exist. Historically, this constant,
when it exists, has been called the mean motion or the secular constant.

In the special case that P is not a limit point of points on the curve,
the situation is quite simple. In this case, the limit (9) exists. In fact,
Bohr [3] has shown that we may even write

(10) 0(t) = ot + $(t)

where ¢(t) is an almost periodic function.
In the special case that one considers a motion in the complex plane
of the form

11) 2(t) = 3 Asexp (in.t)

with real \,, the question is completely settled, but by no means simply.
In this case the mean motion always exists. This problem was first
considered by Lagrange in connection with astronomical questions, who
saw the solution to the problem only in the trivial case

(12) 45> S 1A

Later Bohl [4] discovered the existence of a mean motion in the case
N =3. H. Weyl [7] extended these results to N =4 in 1914 (Enseigne-
ment Mathématique, vol. 16). In two papers of 1938-39, H. Weyl [8, 9]
solved the problem for general N.

The problem has been considered for analytic functions of a complex
variable which are almost periodic in a vertical strip. Many results in
this direction are contained in a paper by Jessen and Tornehave [5].
They discuss the mean motions of such functions along a vertical line.
They show, among other things, that this type of mean motion does not
always exist, even along a vertical line on which the function does not
vanish.

In view of the foregoing difficulties I shall avoid the question of
existence of mean motions, and shall give an analogue of non-negative
circulation which does not use the notion of order with respect to a
point.

DEFINITION A. Let «(¢), y(t) be defined and continuous for all ¢.
Let 0,(t) denote the argument of the vector from P, a point not on the
curve x = x(t), ¥y = y(t), to the point (x(t), y(t)). We define 6,(f) so that
it is a continuous function of t. We say that the curve x = z(t), ¥y = y(t)
is of positive sense if there exists a constant K < 0 such that for every
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point P not on the curve and for all real numbers v, 8(v < 9),

(13) 0:(8) — 0.(7) = K .

DEFINITION B. The curve z = x(t), ¥y = y(t) is said to be of weakly
positive sense if the above holds for points P not lying on the closure
of the curve. The constant K may, in this case, depend on the point P.

In the case of continuous periodic functions x(t), y(tf) Definitions A
and B are both equivalent to non-negative circulation. Note that Defini-
tion B is a stronger condition than

(14) lim inf ﬁ%;"ﬂ >0

§—=Y—rc0 — 9
for all points P not belonging to the closure of the curve.

FExamples. Let z =« + 1y. Then the function z = exp (¢|t|"*sin t)
satisfies (14) but does not satisfy Definitions A or B. The function
z = (1 4 t*)'exp (¢t sin t) satisfies Definition B but does not satisfy Defini-
tion A. The function z = exp (¢t + < sin ¢*) satisfies Definition A.

I shall prove the following:

THEOREM 1. Let k(t) be integrable on the interval [0, ). Consider
the curves generated by applying the operator

(15) y(t) = —S:k(r)ac(t — 7)dT

to almost periodic functions. The function y(t) is also almost periodic.
A mnecessary and sufficient condition that the curves generated im this
way are of weakly positive senmse is that k(t), after a possible change
on a set of measure zero, 18 analytic in [0, «), and that k'(t) has a
representation as a Laplace-Stieltjes integral with mnon-decreasing de-
termining function, i.e.,

@) K(t) = | e dpts)

where (1(s) is non-decreasing.
First we prove a lemma similar to Loewner’s Lemma 2 [6].

LEMMA 1. Let x,(t), y(t), 2.(t), y.(t) be continuously differentiable
Sunctions in (—oo, ). Constder the mapping of the strip 0 <s <1,
—oo <t < oo

© = (1 — s)w(t) + sw(t)

(16) ¥ = (1 — s)y,(t) + sy.(?) .
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o(x, y)
(s, t)
x = x(t), y = Y(t) as I'y and x = x,(t),y = y,(t) by I',. Then if Iy s
of positive sense, them so is I,

We suppose that the Jacobian 18 non-negative. Denote the curve

Proof. Just as in Loewner’s proof, we may assume that P is the
image only of points in the st-plane with non-vanishing Jacobian.
Indeed, the set of points in the xy-plane which are images of points
in the st-plane with vanishing Jacobian is of measure zero. In any
neighborhood of such a point P exist points @ which are images only
of points with positive Jacobian. For such points we shall show the
relation (13) for I, for all v and &, v < & with fixed K. By the contin-
uity of 6, with respect to the point P, (13) will hold also for P. A
similar consideration shows that it is sufficient to prove that (13) holds
when no point on the boundary of the rectangle R: 0 <s <1, vy <t <38
is mapped into the point P. The point P is the image of only finitely
many points in R, say P, P, ---,P,. We make a triangulation of R
satisfying the following conditions:

(i) None of the triangles contains a point P, on its boundary.

(ii) The triangles containing the points P, are mapped into the
xy-plane in a one-to-one manner, and the Jacobian is there positive.

(iii) The triangles not containing a P, are so small that their im-
ages can be included in circles not containing P.

Say there are n such triangles. Let us call the images of the
boundary curves of triangles, provided with a counter-clockwise orienta-
tion, o, g,, ---, 0,. Let us denote further the order of a curve I" with
respect to a point P by wx(I"), and let

Agp, A 61:, AePy AGP
s=0  s=1 =Y =38
denote the respective increments of the argument in the counter-clockwise

sense of the vector from P to (x(s,t), y(s,t)) along each of the four
edges of B. Then

amn 20p(0) = A0, + A0+ Ay + A
i=1 s=1 =0 t="Y t=

Now the images of the segments t =7, 0<s<landt=36, 0<s<1
are straight lines. Hence, we have

(18) < |AG,

=3

<T.

Afy
y=t

The quantities wp(o;) are non-negative. Since I, is of positive sense
we have a constant K (independent of P or v, &) such that A 6, = K.
s=0
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(19) A0, =A0, — A0, — A0, =K — 21,
t=5

s=1 5=0 t=7

which shows that I°, is of positive sense, since K does not depend on
v, 6, or P.

In order to show that Theorem 1 makes sense, it is necessary to
show that

y(t) = —S:k(‘r)x(t — )T

represents a continuous functions whenever x(t) is an almost periodic
function. I shall show, in fact, that y(¢) is an almost periodic function.
The continuity of y(¢) can be shown as follows. We have for any t and ¢’

(20) ®) = v®)] = [ k@) llatt — 7) — s — )ldz

< sup |a(t — 1) — a(t’ — f)}rm(r) ldz

—oo <7< 00

and since x(t) is uniformly continuous in (— oo, =), we see that y(t) is
continuous. To show that y(¢) is almost periodic we must further show
that there exists a relatively dense set of translation numbers 7(¢) for
arbitrary ¢ > 0, i.e., there exists a real number [ = [ (¢) such that every
interval o« <t < @ + 1 contains at least one number z(¢) such that for
all ¢ we have

(21) lyt +7(e)) —y()| = e .
Let 7 be a translation number for x(¢) such that
(22) |e(t + 7) — x(t)lrllc(a) do < ¢.

Then from (20) we see that this 7 satisfies (21). Further, there exists
a relatively dense set of translation numbers 7 satisfying (22). Hence
y(t) is almost periodic.

LEMMA 2. An n-times differentiable function f(t) such that
fOOv=0,---,m)

are almost periodic can be approximated uniformly up to the nth order
by analytic almost periodic functions.

Proof. This follows from the fact that an almost periodic function
f () whose Fourier series is

(23) F) ~ 3 A, exp (in1)
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can be uniformly approximated by a sequence of functions of the form
LACY .

(24) S,t) = 3 e, A exp (int), g =1,2, -+« .
v=1

where the coefficients ¢,, and N(q) depend on the sequence of Fourier
exponents A (v = 1,2, ---), but not on the numbers A (v=1,2,38, ---),
(see Bohr [2], pp. 86-87). If f(t) has almost periodic derivatives, then
they have the Fourier series:

(25) FOE) ~ S MA, exp ()t =1, -++, ) .
v=1
Thus it appears that the sequences

(26) SUt) = 'Sh o, A, exp (in1)
y=1
(Au: 0,1, °-°,?’L)(q= 1,2, "') .

converge uniformly to the derivatives f(t). This concludes the proof
of Lemma 2.

Now we shall state a lemma which asserts that certain differential
operators give rise to curves of positive sense.

Suppose the polynomials

A(r) =ayr™ + -+« +a, and B(r) = br" ™ + -+ 4 b,
satisfy the conditions:
27 a,>0,5>0.
(28) The roots of A{r) =0 and B(r) = 0 are all real and simple.
(29) The roots of the above equations are mutually separated; i.e.,

if the roots are called a,(¢ = 1,2, ---,n) and B2 =1, ---,n — 1) respec-
tively and if both systems are numbered in ascending order of magnitude,
one has

(30) OG< BBy e < Uy < By <
Now consider a pair of differential operators

AF(B) = auf D(0) + -+ + a,f (D)

B(f () = b f " 0(t) + + - + b,-if (1)

where the polynomials satisfy the conditions (27), (28), and (29). For
f(@) in (31) we put almost periodic functions which possess almost periodic
derivatives up to the nth order.

LEMMA 8. Under our conditions on f(t), every curve
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(32) © = A(f(@t), v = B(f(1))

18 of positive sense.

The proof of Lemma 3 is similar to Theorem 1 in Loewner [6] and
will be omitted.

The next step is to eliminate the function f(¢) from the relations
(32). Let x(t) be an almost periodic function. There exists an n-param-
eter family of functions f(¢) satisfying the differential equation

(33) w(t) = A1) -

The restriction that f(¢) be almost periodic eliminates the indeterminacy.
Let a,---,a, be the roots of the equation A(r) =0. We assume
a;, +# 0. Let n’ be an integer such that

(34) a, <0 fori=1,2,---, 0
a,>0fort=n"+1,---,71.
The most general solution of (83) is given as before in the form
7 n! 13
(35) f(@t) = ; ¢; exp (a;t) + ; 7), eXp (ait)g_wexp (—aD)x(t)dT
— 3 peexp (@t)] "exp (—ama(e)r

where the ¢, are arbitrary constants and the 7, are fixed constants de-
pending on the differential equation. Now it is easy to show that the
expressions of the form

t

(36) exp(ait)g exp (—a,7)x(t)dr
are almost periodic functions. Similarly the expressions of the form
exp (ait)smexp (—aD)x(t)dr, a, > 0,
13

are almost periodic. Since the other terms of (35) are not even bounded,
we see that our requirement that f(¢) be an almost periodic function
implies that the constants ¢, are all equal to zero. Substitution of this
f(t) into the relation y = B(f(t)) gives a unique correspondence between
2(t) and y(t). The transformation formula is given as follows. We
resolve B(r)/A(r) into partial fractions

37) Blr) _ o
Alr) iir—q

From the assumptions (27), (28), and (29) on the polynomials it follows
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that the numbers w, are positive, (t =1, ---, ). The relation between
2(t) and y(t) is of the form

(38) y(t) = i ; exp (a.t) {Sb_wexp (—a)e(r)dr + ki}

— i W, exp (ait){rexp (—a0)x(t)dr + lc}

i=nr+1

where the constants k, =0, 7=1,---,n. We will make use only of
the special case that the «; are all negative. In this case we have only
terms of the form

w,; exp (ait)St_wexp (—a7)x(T)dT

and these terms may be expressed in the form

wiS:exp (a;n)x(t — 7)d7 ,

The kernel function k*(t) = —}E w, exp (a;t) has a derivative with the
form
(39) () = — % a0, exp (@) ,

i.e. it is representable as a Laplace-Stieltjes integral with a non-decreas-
ing determining function. In fact, the determining function is here
a step function with a finite number of jumps. It is an easily veri-
fiable algebraic fact that given any polynomial A(r) with simple real
roots and a positive highest coefficient, a polynomial B(r) can be found
such that A(r) and B(r) satisfy the conditions (27), (28), (29) and the
w, have any preassigned positive values. This means that suitable A(r)
and B(r) can be found so that the relation between x(t) and y(¢) implied
by (32) can be expressed in the form

y(t) = —S:k(f)x(t — e, K(t) = S:e‘”dy(s)

where (s) is an arbitrarily preassigned non-decreasing step function
with finitely many jumps. Such a kernel k(t) will be called a degenerate
kernel. These results may be formulated in the following theorem.

THEOREM 2. If the kernel k(t) is degenerate, then Fk(t) generates
only curves of positive sense.

(Notice that in Theorem 2 an assertion is made concerning curves
of positive sense, whereas Theorem 1 is concerned with curves of weakly
positive sense.)
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In order to prove the sufficiency part of Theorem 1 we may carry
out a limiting process. Let us assume now that k(t) is an arbitrary L-
integrable kernel whose derivative has the representation (21). (Of
course, since k(¢) is integrable on [0, =), £(s) is continuous at s = 0.)

In order to show that k(t) generates only curves of non-negative
circulation, it is sufficient to show that it can, in the L,-mean, be
arbitrarily approximated by a degenerate kernel. Indeed, if

(40) S”lk(t) — kX O)ldt < ¢,
then the functions

(41) y(t) = —S“k(r)x(t e
(42) yH(t) = —S”k*(r)x(t — )dr

corresponding to the same continuous function deviate by
(43) 0 — )] = | k() — £ lla(t — 7)ldz
< Mrlk(r) — k*(c)|de < Me

where M denotes the maximum of |#(¢)|. Consider a point P which
does not belong to the curve x = x(t), ¥ = y(¢) or its closure. The above
inequality shows that we can approximate x = x(¢), ¥ = y*(t) belonging
to a degenerate kernel so closely that

10p(2(t), y(t)) — 0p(x(t), y*(t))| < const .

Now, since since (t), y*(t) satisfies Definition A, it follows that z = «(¢),
y = y(t) is of weakly positive sense. Note that the above argument
does mot show that x = x(t), y = y(t) satisfies Definition A. It is an
open question whether or not in Theorem 1 weakly positive sense can
be replaced by positive sense.

The proof that the approximation (40) is possible, is similar to that
in Loewner [6, pp. 323-324]. In the present case, certain complication
arise because we are considering a infinite interval. The details may
be found in [1].

Proof of Theorem 1 (necessity). Suppose that a kernel is L-integrable
on [0, ) and for every almost periodic function x(¢), the operator

(44) y(t) = —g:k(f)x(t — 2)dr
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generates only curves of weakly positive sense. This implies that for
continuous periodic functions of period 1, the operator (44) generates
only curves of non-negative circulation. If x(¢) is such a periodic func-
tion, we have

(45) y(t) = ~S:k(r)x(t — e = -5 S‘;“m)x(t — 7)de
= —S:[g k(t + v):|oc(t — 7)Yt

where the interchange of summation and integration is justified by the
L-integrability of k(t). In fact, one has

(46) S:lk(r) dr = i S:Hlk(f) e = SO S5 (e + »)lds .

Now, using the theorem of Loewner [6], we have for all ¢ in the interval
0 <t <1 except on a set measure zero,

47) LSkt + ) = |~ evdpts)

with non-decreasing y(s). Replacing ¢ by ¢ + 1 we have

(48) Ezd?i (t + v) = S“’ e u(s) |

Observing that the difference of two functions differentiable except on
a set of measure zero, is differentiable except on a set of measure
zero, we have

(49) %-k(t) - Sle-s&n — oldpu(s) = Sle’”dk(s)

where A(s) is non-decreasing for s > 0 and non-increasing for s > 0.
But the integrability of k(t) implies that \(s) must be constant for
negative values of s. Hence we have the required result

(50) J(t) = re‘“dx(s) ,

with \(s) non-decreasing. The above formula is now known to be valid
only for ¢ in the interval 0 <t < 1. Application of Loewner’s result
for arbitrary intervals of the form (0, #) shows that k'(t) is analytic on
the interval (0, ). By analytic continuation, (50) is valid for all non-
negative values of t.



EXTENSIONS OF A THEOREM OF LOEWNER ON INTEGRAL OPERATORS 377

REFERENCES

1. D. C. Benson, FEuwtensions of a theorem of Loewner on integral opcrators, Technical
Note No. 1, Contract AF 18 (600) 680, Stanford University (1954).

2. H. Bohr, Almost periodic functions, (1947), New York.

3. —— Uter fastperiodische cbeme Bewegungen, Comment. Math, Helv. 4 (1934),
51-64.

4. P. Bohl, Uber ein in der Theorie der sikuliren Storungen vorkommendes Problem,
Crelle’s Journal 135 (1909), 189-283.

5. B. Jessen aud H. Tornehave, Mean motions and zeros of almost periodic funclions,
Acta Math. 77 (1945), 137-279.

6. C. Loewner, A topological characterization of «a class of integral operators, Ann. of
Math. 49 (1948), 316-332.

7. H. Weyl, Sur une application de la théorie des nombres a la méchanique statistique,
Enseignement Mathématique 16 (1914), 455-467.

8. ———, Mean motion, Amer. J. of Math. 60 (1938), 889-896.

9. ——, Mean motion 11, Amer. J. of Math. 61 (1939), 143-148.

10. D. V. Widder, The Laplace transform, (1941), Princeton.

UNIVERSITY OF CALIFORNIA AT DAVIS








