ON THE BREADTH AND CO-DIMENSION OF A TOPOLOGICAL LATTICE

Lee W. Anderson

Consider the following two conjectures:
Conjecture 1. (E. Dyer and A. Shields [7]) If L is a compact, connected, metrizible, distributive topological lattice then $\operatorname{dim}(L)=$ breadth of L.

Conjecture 2. (A. D. Wallace [10]) If L is a compact, connected topological lattice and if $\operatorname{dim}(L)=n$ then the center of L contains at most $2^{n}-2$ elements.

The purpose of this note is to prove the following results:
(1) If L is a locally compact distributive topological lattice and if each pair of comparable points is contained in a closed connected chain then the breadth of $L \leqq \operatorname{codim}(L)$.
(2) If L is a compact, connected, distributive topological lattice and if codim $(L) \leqq n$ then the center of L contains at most $2^{n}-2$ elements.

1. Notation. The terminology and notation used in this paper is the same as in [1] [2] and [3]. If L is a lattice, then the breadth of L [4], hereafter denoted by $\operatorname{Br}(L)$, is the smallest integer n such that any finite subset, F, of L has a subset F^{\prime} of at most n elements such that $\inf (F)=\inf \left(F^{\prime}\right)$.

If A is a subset of a lattice, let $\wedge A^{n}$ denote the set of all elements of the form $x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}$ where $x_{i} \in A$.
2. $\operatorname{Br}(L) \leqq c d(L)$. The proof of the following lemma is quite straight forward and will be omitted.

Lemma 1. If L is a lattice then the following are equivalent:
(i) $\operatorname{Br}(L) \leqq n$
(ii) If A is an $n+1$-element subset of L then A contains an
n-element subset B, such that $\inf (A)=\inf (B)$.
(iii) If A is a subset of L and if $m, p \geqq n$ then $\wedge A^{m}=\wedge A^{p}$.

If L is a topological lattice, then L is chain-wise connected if for each pair of elements, x and y, in L with $x \leqq y$ there is a closed connected chain from x to y. Clearly a compact connected topological lattice is chainwise connected.

Received November 3, 1958.

Problem. Is a locally compact (or locally connected), connected topological lattice chain-wise connected?

Theorem 1. If L is a distributive (chain-wise connected) topological lattice then $B r(L) \leqq n$ if, and only if, L does not contain a sublattice topologically isomorphic with a Cartesian product of $n+1$ nondegenerate (closed and connected) chains.

Proof. If $\operatorname{Br}(L) \not \leq n$ then L contains an $n+1$ element subset, A, such that if B is any proper subset of A then $\inf (A) \neq \inf (B)$. Let x_{1}, \cdots, x_{n+1} be an enumeration of A. Let $b_{i}=\inf \left(A \backslash x_{i}\right), i=1,2, \cdots, n+1$ and let $a=\inf (A)$. Then $b_{i} \neq a, i=1,2, \cdots, n+1$ and $b_{i} \neq b_{j}$ if $i \neq j$. Let $C_{i}, i=1,2, \cdots, n+1$ be a chain from a to b_{i}. If L is chain-wise connected we can choose C_{i} closed and connected. Let $C=C_{1} \times C_{2} \times \cdots \times C_{n+1}$ and define $f: C \rightarrow L$ by $f\left(x_{1}, x_{2}, \cdots, x_{n+1}\right)=$ $x_{1} \vee x_{2} \vee \cdots \vee x_{n+1}$. It is shown in [3] that f is a topological isomorphism, hence the result follows.

If L contains a sublattice, L^{\prime}, isomorphic with a product of $n+1$ nondegenerate chains then $\operatorname{Br}(L) \not \leq n$ since $\operatorname{Br}(L) \geqq \operatorname{Br}\left(L^{\prime}\right) \geqq n+1$.

Corollary 1. If L is a locally compact, chain-wise connected, distributive topological lattice then $\operatorname{Br}(L) \leqq c d(L)$.

Proof. Suppose $c d(L) \leqq n$ and $B r(L) \not \leq n$. Since L is locally compact and connected it follows that L is also locally convex [1]. Since L is locally convex, the chains C_{1}, \cdots, C_{n+1} chosen in the proof of Theorem 1 can be taken to be compact [2], hence L contains a sublattice topologically isomorphic with a Cartesian product of $n+1$ nondegenerate compact connected chains. It follows from a result of Cohen [6] that the Cartesian product of $n+1$ nondegenerate compact connected chains has codimension $n+1$. Thus it follows that $c d(L) \geqq n+1$ which is a contradiction.

If X is a compact metric space, we denote by 2^{x} the set of all closed nonvoid subsets of X with the usual Hausdorff metric.

Lemma 2. If L is a compact, connected, metrizable topological lattice and if $f: 2^{L} \rightarrow L$ defined by $f(A)=\inf (A)$ is continuous then L is an absolute retract.

Proof. If L is a compact topological lattice and if A is a nonvoid subset of L then $\inf (A)$ exists, hence $f(A)$ is defined. If we embed L in 2^{L} in the usual way and if f is continuous then L is a retract of 2^{L}. Since L is compact, connected and metrizable, it follows that L is a

Peano continuum [2]. Therefore 2^{L} is an absolute retract [9] and so L is also an absolute retract.

Corollary 2. (Dyer and Shields [7]) If L is a compact, metrizable, distributive topological lattice and if $c d(L)$ is finite then L is an absolute retract.

Proof. If $c d(L)=n$ then $B r(L) \leqq n$ and so $\wedge A^{n}=\wedge A^{n+1}=\cdots$ for all $A \subset L$. Let \mathscr{A} denote the set of $A \in 2^{L}$ such that $\inf (A) \in A$. It is known [5] that $f: \mathscr{A} \rightarrow L$ defined by $f(A)=\inf (A)$ is continuous. Define g: $2^{L} \rightarrow \mathscr{A}$ by $g(A)=\wedge A^{n}$ then clearly g is continuous and so $F: 2^{L} \rightarrow L$ defined by $F(A)=f(g(A))=\inf (A)$ is continuous. Thus it follows from Lemma 2 that L is an absolute retract.

Problem. Is $A \rightarrow \inf (A)$ continuous if L is not distributive and not finite dimensional?
3. On the set $\mathscr{B}(x)$. If L is a lattice and $a \in L$, let $\mathscr{M}(a)$ denote the set of all subsets, M, of L that satisfy
(i) $M_{\wedge} M \subset M$
(ii) $a \notin M$
(iii) M is maximal with respect to (i) and (ii).

Let $\mathscr{B}(a)$ denote the set of all complements of elements in $\mathscr{M}(a)$.
Lemma 3. If L is a lattice and $a \in L$ then $\cap\{B: B \in \mathscr{B}(a)\}=\{a\}$.

Proof. If $x \in \cap\{B: B \in \mathscr{B}(a)\}$ and if $x \neq a$ then by the Hausdorff Maximality Principle, there is a maximal \wedge-closed set, M, containing x but not containing a. But then $M \in \mathscr{M}(a)$ and so $x \notin L \backslash M \in \mathscr{B}(a)$. It is clear that $a \in \cap\{B: B \in \mathscr{B}(a)\}$, hence the result is established.

Lemma 4. If L is a lattice and if $a \in L, B \in \mathscr{B}(a)$ then $a \vee L \subset B$ $i f$, and only if, $a=1$.

Proof. If $a \vee L \subset B$ then $a \vee L \subset \cap\{B: B \in \mathscr{B}(a)\}=\{a\}$ and so $a=1$. If $a=1$ then $a \vee L=\{1\}=B$.

Lemma 5. If L is a lattice and if $a \in L, a \neq L, B \in \mathscr{B}(a), M=$ $L \backslash B \in \mathscr{M}(a)$ then $x \in B$ if, and only if, $a \in x \wedge M$.

Proof. If $a \in x \wedge M$ and if $x \notin B$ then $x \in M$ and so $a \in x \wedge M \subset M$ which is a contradiction. If $x \in B$ and $x=a$ then, since $a \neq 1$, by

Lemma 4 we have $M \cap(a \vee L) \neq \varnothing$ and hence $a \in a \wedge M$. If $x \in B$ and if $x \neq a$ and if $a \notin x \wedge M$ then, since

$$
(\{x\} \cup(x \wedge M)) \wedge(\{x\} \cup(x \wedge M)) \subset\{x\} \cup(x \wedge M),
$$

we have $\{x\} \cup(x \wedge M) \subset M$. This, however, is a contradiction since $x \in B=L \backslash M$.

Lemma 6. If L is a lattice and if $a \in L, b \in B \in \mathscr{B}(a)$ and if $y \geqq a$ then $y \wedge b \in B$.

Proof. If $b \in B \in B \mathscr{B}(a)$, there is an $x \in M=L \backslash B$ such that $b \wedge x=$ a. Now $x \wedge(b \wedge y)=(x \wedge b) \wedge y=a \wedge y=a$ and so, by Lemma $5, b \wedge y \in B$.

Lemma 7. If L is a lattice and if $a \in L, b \in B_{0}, b \neq a$ and $b \notin \cup\left\{B: B \in \mathscr{B}(a), B \neq B_{0}\right\}$ then

$$
\{y \in L: y \wedge b=a, y \neq a\} \subset \cap\left\{B: B \in \mathscr{B}(a), B \neq B_{0}\right\} \cap M_{0}
$$

where $M_{0}=L \backslash B_{0} . \quad$ Moreover if $y \wedge b=a$ and $y \neq a$ then

$$
B_{0}=\{x \in L: x \wedge y=a\} .
$$

Proof. Let $y \in L$ such that $y \wedge b=a$ and let $B \in \mathscr{B}(a)$ be distinct from B_{0}. Now if $y \notin B$ then $y, b \notin B$ and so $y, b \in L \backslash B \in \mathscr{M}(a)$. But $y \wedge b=a$ which is a contradiction and so $y \in \cap\left\{B: B \in \mathscr{B}(a), B \neq B_{0}\right\}$. Now $y \neq a$ and $y \wedge y=y$, thus there is an $M \in \mathscr{M}(a)$ with $y \in M$. However $y \in \cap\left\{B: B \in \mathscr{B}(a), B \neq B_{0}\right\}$ and therefore $M=M_{0}$. Now if $y \wedge b=a$ and $x \in B_{0}$ then $y \wedge x \in \cap\{B: B \in B(a)\}=\{a\}$ and so $y \wedge x=a$. Also if $y \wedge b=a$ and $y \neq a$ then $y \in M_{0}$, and so if $y \wedge x=a$ then $x \in B_{0}$.

Lemma 8. If L is a distributive lattice and if $\operatorname{Br}(L)=n$ then $\sup \{\operatorname{card}(\mathscr{B}(x)): x \in L\}=n$.

Proof. Suppose that for some $a \in L$, card $(\mathscr{B}(\alpha)) \geqq n+1$. Pick $n+1$ distinct members of $\mathscr{B}(a)$, say B_{1}, \cdots, B_{n+1}. Since L is distributive, we can pick, for each $i=1,2, \cdots, n+1$, an $x_{i} \in B_{i}$ such that $x_{i} \notin B_{i}$ if $i \neq j$. Thus it follows that

$$
\inf \left\{x_{i}: i=1,2, \cdots n+1\right\} \in B_{1} \cap B_{2} \cap \cdots \cap B_{n+1}
$$

but $\inf \left\{x_{i}: \quad i \neq j\right.$ and $\left.i=1,2, \cdots, n+1\right\} \notin B_{j}$ and so $\operatorname{Br}(L) \geqq n+1$. Therefore card $(B(x)) \leqq n$ for all $x \in L$.

Now $\operatorname{Br}(L)=n$ and so there is an n-element set, say A, such that
$\inf (A) \neq \inf \left(A^{\prime}\right)$ for all proper subsets A^{\prime} of A. Thus for each $a \in A$ we can find $a B \in \mathscr{B}(\inf (A))$ such that $a \in B$ and $A \backslash\{a\} \subset L \backslash B$ and so $\operatorname{card}(\mathscr{B}(\inf (A)) \geqq n$.

Lemma 9. If L is a distributive topological lattice and if $a \in L$ and if $\operatorname{card}(\operatorname{SO}(a))$ is finite then each $B \in \mathscr{S}(a)$ is a closed sublattice of L.

Proof. Let $B_{1}, B_{2}, \cdots, B_{n}$ be an enumeration of $\mathscr{\mathscr { S }}(\alpha)$. We will show that B_{1} is a closed sublattice of L. Since L is distributive, we can pick $b \in B_{1}$ so that $b \notin B_{i}$ if $i \neq 1$. Thus there is a $y \in B_{2} \cap \cdots \cap B_{n}$ such that $y \neq a$ and $y \wedge b=a$. By Lemma $7, B_{1}=\{x \in L: x \wedge y=a\}$ and so B_{1} is closed. Since L is distributive, B_{1} is clearly a sublattice of L.

Problem. If L is a topological lattice and if $a \in L$, and $B \in \mathscr{B}(a)$ is B closed?

Theorem 2. If L is a compact, connected, distributive topological lattice and if $c d(L) \leqq n$ and if $a \in L$ and $B \in \mathscr{B}(\alpha)$ then $c d(B) \leqq n-1$.

Proof. We first prove the theorem for the case $n>1$. By way of a contradiction let us assume that $c d(L) \leqq n$ and $c d(B)>n-1$. Then for some closed set $A \subset B$ we have $H^{n}(B, A) \neq 0$. Since B is a closed sublattice of L we have, letting $b=\sup (B), b \in B$. To simplify our notation, we let $C=\{x \in L: x \wedge b=a\}, c=\sup (C), D=c \vee L, E=C \vee A$ and $F=B \cup E \cup D$. It follows that $B \cap C=\{a\}$ and $B \cap(E \cup D)=A$, and that C, D, E, and F are closed. We will now show that if $p>0, H^{p}(E \cup D)=0$. Define $f:(E \cup D) \times C \rightarrow E \cup D$ by $f(x, y)=x \vee y$. Clearly f is defined and continuous. For each $y \in C$ define $F_{y}: E \cup D \rightarrow E \cup D$ by $F_{y}(x)=$ $f(x, y)$ then, since $E \cup D$ is compact and C is connected, it follows from the Generalized Homotopy lemma that $F_{a}^{*}=F_{c}^{*}$.

Now F_{c} retracts $E \cup D$ onto D and, since $H^{n}(D)=0$, it follows that $F_{c}^{*}=0$. Also F_{a} is the identity function and therefore $H^{p}(E \cup D)=0$. Now consider the following Mayer-Victoris exact sequence [8]:

$$
H^{n-1}(E \cup D) \times H^{n-1}(B) \xrightarrow{I^{*}} H^{n-1}(A) \xrightarrow{\Delta^{*}} H^{n}(F) \xrightarrow{J^{*}} H^{n}(E \cup D) \times H^{n}(B) .
$$

Now $H^{n-1}(E \cup D)=H^{n-1}(B)=H^{n}(E \cup D)=H^{n}(B)=0$, and so Δ^{*} is an isomphorphism onto. It therefore follows that $H^{n}(F) \neq 0$ which contradicts the fact that $c d(L) \leqq n$ and $H^{n}(L)=0$.

In the case $n=0, L$ is a single point and therefore the result is trivial. If $n=1$ then L is a chain [1] and so B is at most a single point which implies that $c d(B) \leqq 0$.

We recall (see e.g. [3] or [4]) that if L is a lattice with 0 and 1 then the center of L, denoted by $\operatorname{Cen}(L)$, is the set of all $x \in L$ other then 0 and 1 such that for some $y \in L, x \wedge y=0$ and $x \vee y=1$. If L is distributive and if $x \in \operatorname{Cen}(L)$ then there is a unique element, denoted by $c(x)$, such that $x \wedge c(x)=0$ and $x \vee c(x)=1$.

Corollary. If L is a compact, connected, distributive topological lattice and if $c d(L) \leqq n$ then $\operatorname{card}(\operatorname{Cen}(L)) \leqq 2^{n}-2$.

Proof. We proceed by finite induction. If $c d(L) \leqq 1$ then L is a chain and so card $(\operatorname{Cen}(L)) \leqq 0$. Suppose the theorem is true for all $n<k$ and suppose $c d(L) \leqq k$. If $a \in \operatorname{Cen}(L)$, choose $M \in \mathscr{M}(0)$ such that $a \in M$ so that $B=L \backslash M \in \mathscr{C}(0)$. Thus if $\mathscr{B}(0)$ is empty then $\operatorname{Cen}(L)$ is also empty and the result is established. If $\mathscr{B}(0)$ is not empty, let $B \in \mathscr{B}(0)$. It follows from lemma [9] that B is a closed sublattice of L. Letting $b=\sup (B)$ we have that $b \in B$. We will now show that if $a \in \operatorname{Cen}(L)$ then either $b \wedge a=0, b \wedge a=b, a \in \operatorname{Cen}(B)$ or $c(a) \in \operatorname{Cen}(B)$. If $a \wedge b \neq 0, b$ and if $a \notin B$ and if $c(a) \notin B$ then $a, c(a) \in L \backslash B$ and so $a \wedge c(a) \neq 0$ which is a contradiction. Therefore $a \in B$ or $c(a) \in B$. Now if $a \in B$ then $a \wedge(c(a) \wedge b)=0$ and

$$
a \vee(c(a) \vee b)=1 \vee(a \vee b)=1 \wedge b=b
$$

and so $a \in \operatorname{Cen}(B)$. Similarly if $c(\alpha) \in B$ then $c(a) \in \operatorname{Cen}(B)$. If $a, c(a) \in B$ then $a \vee c(a)=1 \in B$ which is a contradiction. If $a \wedge b=0$ then $a \notin B$ and since $b \notin \cup\{A \in \mathscr{O}(0): A \neq B\}$ we have, by Lemma 7 , that $B=$ $\{x \in L ; x \wedge a=0\}$. Thus it follows that $c(a) \in B$. Therefore $1=$ $a \vee c(a) \leqq a \vee b$ which implies that $c(a)=b$ and $a=c(b)$. If $a \wedge b=b$ then $c(a) \wedge b=0$ and so $c(a)=c(b)$ which implies that $a=b$. It follows, therefore, that card $(\operatorname{Cen}(L)) \leqq 2 \operatorname{card}(\operatorname{Cen}(B))+2$. Now $c d(B) \leqq k-1$ and so $\operatorname{card}(\operatorname{Cen}(B)) \leqq 2^{k-1}-2$ and so

$$
\operatorname{card}(\operatorname{Cen}(L)) \leqq 2\left(2^{k-1}-2\right)+2=2^{k}-2
$$

References

1. L. W. Anderson, On one dimensional topological lattices, Proc. Amer. Math. Soc., to appear.
2. -, On the distributivity and simple connectivity of plane topological latiices, Trans. Amer. Math. Soc., to appear.
3. -, Topologieal lattices and n-cells, Duke Math. Jour., 25 (1958, 205-208.
4. G. Birkhoff, Lattice theory, Amer. Math. Soc., Colloquium Pub, Vol. 25, New York, 1948.
5. C. Capel and W. Strother, Multi-valued functions and Partial order, Port. Math., 17 (1958), 41-47.
6. H. Cohen, A cohomological definition of dimension for locally compact Hausdorff
spaces, Duke Math. Jour., 21 (1954), 209-224.
7. E. Dyer and A. Sheilds, On a conjective of A. D. Wallace, Mich. Math. Jour., to appear.
8. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press, 1952.
9. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc., 52 (1942), 23-36.
10. A. D. Wallace, Factoring a lattice, Proc. Amer. Math. Soc., 9 (1958), 250-252.

The University of Oregon, Eugene, Oregon

