ON THE BREADTH AND CO-DIMENSION OF A TOPOLOGICAL LATTICE

LEE W. ANDERSON

Consider the following two conjectures:

Conjecture 1. (E. Dyer and A. Shields [7]) If L is a compact, connected, metrizible, distributive topological lattice then dim (L) = breadth of L.

Conjecture 2. (A. D. Wallace [10]) If L is a compact, connected topological lattice and if dim (L) = n then the center of L contains at most $2^{n} - 2$ elements.

The purpose of this note is to prove the following results:

(1) If L is a locally compact distributive topological lattice and if each pair of comparable points is contained in a closed connected chain then the breadth of $L \leq$ codim (L).

(2) If L is a compact, connected, distributive topological lattice and if $\operatorname{codim}(L) \leq n$ then the center of L contains at most $2^n - 2$ elements.

1. NOTATION. The terminology and notation used in this paper is the same as in [1] [2] and [3]. If L is a lattice, then the *breadth* of L [4], hereafter denoted by Br(L), is the smallest integer n such that any finite subset, F, of L has a subset F' of at most n elements such that inf $(F) = \inf(F')$.

If A is a subset of a lattice, let $\wedge A^n$ denote the set of all elements of the form $x_1 \wedge x_2 \wedge \cdots \wedge x_n$ where $x_i \in A$.

2. $Br(L) \leq cd(L)$. The proof of the following lemma is quite straight forward and will be omitted.

LEMMA 1. If L is a lattice then the following are equivalent: (i) $Br(L) \leq n$ (ii) If A is an n + 1 - element subset of L then A contains an n-element subset B, such that $\inf(A) = \inf(B)$.

(iii) If A is a subset of L and if $m, p \ge n$ then $\wedge A^m = \wedge A^p$.

If L is a topological lattice, then L is *chain-wise connected* if for each pair of elements, x and y, in L with $x \leq y$ there is a closed connected chain from x to y. Clearly a compact connected topological lattice is chainwise connected.

Received November 3, 1958.

Problem. Is a locally compact (or locally connected), connected topological lattice chain-wise connected?

THEOREM 1. If L is a distributive (chain-wise connected) topological lattice then $Br(L) \leq n$ if, and only if, L does not contain a sublattice topologically isomorphic with a Cartesian product of n + 1 nondegenerate (closed and connected) chains.

Proof. If $Br(L) \leq n$ then L contains an n + 1 element subset, A, such that if B is any proper subset of A then $\inf(A) \neq \inf(B)$. Let x_1, \dots, x_{n+1} be an enumeration of A. Let $b_i = \inf(A \setminus x_i), i = 1, 2, \dots, n+1$ and let $a = \inf(A)$. Then $b_i \neq a$, $i = 1, 2, \dots, n+1$ and $b_i \neq b_j$ if $i \neq j$. Let C_i , $i = 1, 2, \dots, n+1$ be a chain from a to b_i . If L is chain-wise connected we can choose C_i closed and connected. Let $C = C_1 \times C_2 \times \dots \times C_{n+1}$ and define $f: C \to L$ by $f(x_1, x_2, \dots, x_{n+1}) =$ $x_1 \vee x_2 \vee \dots \vee x_{n+1}$. It is shown in [3] that f is a topological isomorphism, hence the result follows.

If L contains a sublattice, L', isomorphic with a product of n+1 nondegenerate chains then $Br(L) \leq n$ since $Br(L) \geq Br(L') \geq n+1$.

COROLLARY 1. If L is a locally compact, chain-wise connected, distributive topological lattice then $Br(L) \leq cd(L)$.

Proof. Suppose $cd(L) \leq n$ and $Br(L) \leq n$. Since L is locally compact and connected it follows that L is also locally convex [1]. Since L is locally convex, the chains C_1, \dots, C_{n+1} chosen in the proof of Theorem 1 can be taken to be compact [2], hence L contains a sublattice topologically isomorphic with a Cartesian product of n + 1 nondegenerate compact connected chains. It follows from a result of Cohen [6] that the Cartesian product of n + 1 nondegenerate compact connected chains has codimension n + 1. Thus it follows that $cd(L) \geq n + 1$ which is a contradiction.

If X is a compact metric space, we denote by 2^x the set of all closed nonvoid subsets of X with the usual Hausdorff metric.

LEMMA 2. If L is a compact, connected, metrizable topological lattice and if $f: 2^{L} \rightarrow L$ defined by $f(A) = \inf(A)$ is continuous then L is an absolute retract.

Proof. If L is a compact topological lattice and if A is a nonvoid subset of L then $\inf(A)$ exists, hence f(A) is defined. If we embed L in 2^{L} in the usual way and if f is continuous then L is a retract of 2^{L} . Since L is compact, connected and metrizable, it follows that L is a

Peano continuum [2]. Therefore 2^{L} is an absolute retract [9] and so L is also an absolute retract.

COROLLARY 2. (Dyer and Shields [7]) If L is a compact, metrizable, distributive topological lattice and if cd(L) is finite then L is an absolute retract.

Proof. If cd(L) = n then $Br(L) \leq n$ and so $\wedge A^n = \wedge A^{n+1} = \cdots$ for all $A \subset L$. Let \mathscr{A} denote the set of $A \in 2^L$ such that $\inf(A) \in A$. It is known [5] that $f: \mathscr{A} \to L$ defined by $f(A) = \inf(A)$ is continuous. Define g: $2^L \to \mathscr{A}$ by $g(A) = \wedge A^n$ then clearly g is continuous and so $F: 2^L \to L$ defined by $F(A) = f(g(A)) = \inf(A)$ is continuous. Thus it follows from Lemma 2 that L is an absolute retract.

Problem. Is $A \rightarrow \inf(A)$ continuous if L is not distributive and not finite dimensional?

3. On the set $\mathscr{B}(x)$. If L is a lattice and $a \in L$, let $\mathscr{M}(a)$ denote the set of all subsets, M, of L that satisfy

- (i) $M \wedge M \subset M$
- (ii) $a \notin M$

(iii) M is maximal with respect to (i) and (ii).

Let $\mathscr{B}(a)$ denote the set of all complements of elements in $\mathscr{M}(a)$.

LEMMA 3. If L is a lattice and $a \in L$ then $\cap \{B: B \in \mathscr{B}(a)\} = \{a\}$.

Proof. If $x \in \cap \{B: B \in \mathscr{B}(a)\}$ and if $x \neq a$ then by the Hausdorff Maximality Principle, there is a maximal \wedge -closed set, M, containing x but not containing a. But then $M \in \mathscr{M}(a)$ and so $x \notin L \setminus M \in \mathscr{B}(a)$. It is clear that $a \in \cap \{B: B \in \mathscr{B}(a)\}$, hence the result is established.

LEMMA 4. If L is a lattice and if $a \in L$, $B \in \mathscr{B}$ (a) then $a \lor L \subset B$ if, and only if, a = 1.

Proof. If $a \lor L \subset B$ then $a \lor L \subset \cap \{B: B \in \mathscr{B}(a)\} = \{a\}$ and so a = 1. If a = 1 then $a \lor L = \{1\} = B$.

LEMMA 5. If L is a lattice and if $a \in L$, $a \neq L$, $B \in \mathscr{B}(a)$, $M = L \setminus B \in \mathscr{M}(a)$ then $x \in B$ if, and only if, $a \in x \wedge M$.

Proof. If $a \in x \land M$ and if $x \notin B$ then $x \in M$ and so $a \in x \land M \subset M$ which is a contradiction. If $x \in B$ and x = a then, since $a \neq 1$, by Lemma 4 we have $M \cap (a \lor L) \neq \varphi$ and hence $a \in a \land M$. If $x \in B$ and if $x \neq a$ and if $a \notin x \land M$ then, since

$$({x} \cup (x \land M)) \land ({x} \cup (x \land M)) \subset {x} \cup (x \land M)$$
,

we have $\{x\} \cup (x \land M) \subset M$. This, however, is a contradiction since $x \in B = L \setminus M$.

LEMMA 6. If L is a lattice and if $a \in L$, $b \in B \in \mathscr{B}(a)$ and if $y \ge a$ then $y \land b \in B$.

Proof. If $b \in B \in B \otimes (a)$, there is an $x \in M = L \setminus B$ such that $b \wedge x = a$. Now $x \wedge (b \wedge y) = (x \wedge b) \wedge y = a \wedge y = a$ and so, by Lemma 5, $b \wedge y \in B$.

LEMMA 7. If L is a lattice and if $a \in L$, $b \in B_0$, $b \neq a$ and $b \notin \cup \{B: B \in \mathscr{B}(a), B \neq B_0\}$ then

$$\{y \in L: \ y \land b = a, \ y \neq a\} \subset \cap \{B: \ B \in \mathscr{B}(a), \ B \neq B_{\scriptscriptstyle 0}\} \cap M_{\scriptscriptstyle 0}$$

where $M_0 = L \setminus B_0$. Moreover if $y \wedge b = a$ and $y \neq a$ then

$$B_{\scriptscriptstyle 0}=\{x\,{\in}\,L{:}\;x\,\wedge\,y=a\}$$
 .

Proof. Let $y \in L$ such that $y \wedge b = a$ and let $B \in \mathscr{B}(a)$ be distinct from B_0 . Now if $y \notin B$ then $y, b \notin B$ and so $y, b \in L \setminus B \in \mathscr{M}(a)$. But $y \wedge b = a$ which is a contradiction and so $y \in \cap \{B: B \in \mathscr{B}(a), B \neq B_0\}$. Now $y \neq a$ and $y \wedge y = y$, thus there is an $M \in \mathscr{M}(a)$ with $y \in M$. However $y \in \cap \{B: B \in \mathscr{B}(a), B \neq B_0\}$ and therefore $M = M_0$. Now if $y \wedge b = a$ and $x \in B_0$ then $y \wedge x \in \cap \{B: B \in B(a)\} = \{a\}$ and so $y \wedge x = a$. Also if $y \wedge b = a$ and $y \neq a$ then $y \in M_0$, and so if $y \wedge x = a$ then $x \in B_0$.

LEMMA 8. If L is a distributive lattice and if Br(L) = n then sup {card $(\mathscr{B}(x))$: $x \in L$ } = n.

Proof. Suppose that for some $a \in L$, card $(\mathscr{B}(a)) \ge n + 1$. Pick n + 1 distinct members of $\mathscr{B}(a)$, say B_1, \dots, B_{n+1} . Since L is distributive, we can pick, for each $i = 1, 2, \dots, n+1$, an $x_i \in B_i$ such that $x_i \notin B_i$ if $i \neq j$. Thus it follows that

$$\inf \ \{x_i: \ i=1, 2, \ \cdots \ n+1\} \in B_{\scriptscriptstyle 1} \cap B_{\scriptscriptstyle 2} \cap \ \cdots \cap B_{n+1}$$

but inf $\{x_i: i \neq j \text{ and } i = 1, 2, \dots, n+1\} \notin B_j$ and so $Br(L) \ge n+1$. Therefore card $(B(x)) \le n$ for all $x \in L$.

Now Br(L) = n and so there is an *n*-element set, say A, such that

inf $(A) \neq \inf (A')$ for all proper subsets A' of A. Thus for each $a \in A$ we can find $a B \in \mathscr{B}$ (inf (A)) such that $a \in B$ and $A \setminus \{a\} \subset L \setminus B$ and so card (\mathscr{B} (inf (A)) $\geq n$.

LEMMA 9. If L is a distributive topological lattice and if $a \in L$ and if card ($\mathscr{D}(a)$) is finite then each $B \in \mathscr{D}(a)$ is a closed sublattice of L.

Proof. Let B_1, B_2, \dots, B_n be an enumeration of $\mathscr{D}(a)$. We will show that B_1 is a closed sublattice of L. Since L is distributive, we can pick $b \in B_1$ so that $b \notin B_i$ if $i \neq 1$. Thus there is a $y \in B_2 \cap \dots \cap B_n$ such that $y \neq a$ and $y \wedge b = a$. By Lemma 7, $B_1 = \{x \in L: x \wedge y = a\}$ and so B_1 is closed. Since L is distributive, B_1 is clearly a sublattice of L.

Problem. If L is a topological lattice and if $a \in L$, and $B \in \mathscr{B}(a)$ is B closed?

THEOREM 2. If L is a compact, connected, distributive topological lattice and if $cd(L) \leq n$ and if $a \in L$ and $B \in \mathscr{B}(a)$ then $cd(B) \leq n-1$.

Proof. We first prove the theorem for the case n > 1. By way of a contradiction let us assume that $cd(L) \leq n$ and cd(B) > n - 1. Then for some closed set $A \subset B$ we have $H^n(B, A) \neq 0$. Since B is a closed sublattice of L we have, letting $b = \sup(B), b \in B$. To simplify our notation, we let $C = \{x \in L: x \land b = a\}, c = \sup(C), D = c \lor L, E = C \lor A$ and $F = B \cup E \cup D$. It follows that $B \cap C = \{a\}$ and $B \cap (E \cup D) = A$, and that C, D, E, and F are closed. We will now show that if $p > 0, H^p(E \cup D) = 0$. Define $f: (E \cup D) \times C \to E \cup D$ by $f(x, y) = x \lor y$. Clearly f is defined and continuous. For each $y \in C$ define $F_y: E \cup D \to E \cup D$ by $F_y(x) =$ f(x, y) then, since $E \cup D$ is compact and C is connected, it follows from the Generalized Homotopy lemma that $F_a^* = F_c^*$.

Now F_c retracts $E \cup D$ onto D and, since $H^n(D) = 0$, it follows that $F_c^* = 0$. Also F_a is the identity function and therefore $H^p(E \cup D) = 0$. Now consider the following Mayer-Victoris exact sequence [8]:

$$H^{n-1}(E \cup D) \times H^{n-1}(B) \xrightarrow{I^*} H^{n-1}(A) \xrightarrow{\varDelta^*} H^n(F) \xrightarrow{J^*} H^n(E \cup D) \times H^n(B) .$$

Now $H^{n-1}(E \cup D) = H^{n-1}(B) = H^n(E \cup D) = H^n(B) = 0$, and so Δ^* is an isomphorphism onto. It therefore follows that $H^n(F) \neq 0$ which contradicts the fact that $cd(L) \leq n$ and $H^n(L) = 0$.

In the case n = 0, L is a single point and therefore the result is trivial. If n = 1 then L is a chain [1] and so B is at most a single point which implies that $cd(B) \leq 0$.

We recall (see e.g. [3] or [4]) that if L is a lattice with 0 and 1 then the center of L, denoted by Cen(L), is the set of all $x \in L$ other then 0 and 1 such that for some $y \in L$, $x \wedge y = 0$ and $x \vee y = 1$. If L is distributive and if $x \in Cen(L)$ then there is a unique element, denoted by c(x), such that $x \wedge c(x) = 0$ and $x \vee c(x) = 1$.

COROLLARY. If L is a compact, connected, distributive topological lattice and if $cd(L) \leq n$ then card $(Cen(L)) \leq 2^n - 2$.

Proof. We proceed by finite induction. If $cd(L) \leq 1$ then L is a chain and so card $(Cen(L)) \leq 0$. Suppose the theorem is true for all n < k and suppose $cd(L) \leq k$. If $a \in Cen(L)$, choose $M \in \mathscr{M}(0)$ such that $a \in M$ so that $B = L \setminus M \in \mathscr{D}(0)$. Thus if $\mathscr{D}(0)$ is empty then Cen(L) is also empty and the result is established. If $\mathscr{D}(0)$ is not empty, let $B \in \mathscr{D}(0)$. It follows from lemma [9] that B is a closed sublattice of L. Letting $b = \sup(B)$ we have that $b \in B$. We will now show that if $a \in Cen(L)$ then either $b \wedge a = 0$, $b \wedge a = b$, $a \in Cen(B)$ or $c(a) \in Cen(B)$. If $a \wedge b \neq 0$, b and if $a \notin B$ and if $c(a) \notin B$ then $a, c(a) \in L \setminus B$ and so $a \wedge c(a) \neq 0$ which is a contradiction. Therefore $a \in B$ or $c(a) \in B$. Now if $a \in B$ then $a \wedge (c(a) \wedge b) = 0$ and

$$a \lor (c(a) \lor b) = 1 \lor (a \lor b) = 1 \land b = b$$

and so $a \in \text{Cen}(B)$. Similarly if $c(a) \in B$ then $c(a) \in \text{Cen}(B)$. If $a, c(a) \in B$ then $a \lor c(a) = 1 \in B$ which is a contradiction. If $a \land b = 0$ then $a \notin B$ and since $b \notin \cup \{A \in \mathscr{B}(0): A \neq B\}$ we have, by Lemma 7, that B = $\{x \in L; x \land a = 0\}$. Thus it follows that $c(a) \in B$. Therefore 1 = $a \lor c(a) \leq a \lor b$ which implies that c(a) = b and a = c(b). If $a \land b = b$ then $c(a) \land b = 0$ and so c(a) = c(b) which implies that a = b. It follows, therefore, that card (Cen(L)) ≤ 2 card (Cen(B)) + 2. Now $cd(B) \leq k - 1$ and so card (Cen(B)) $\leq 2^{k-1} - 2$ and so

card (Cen(L))
$$\leq 2(2^{k-1}-2) + 2 = 2^k - 2$$
.

References

2. _____, On the distributivity and simple connectivity of plane topological lattices, Trans. Amer. Math. Soc., to appear.

^{1.} L. W. Anderson, On one dimensional topological lattices, Proc. Amer. Math. Soc., to appear.

^{3.} ____, Topological lattices and n-cells, Duke Math. Jour., 25 (1958), 205-208.

^{4.} G. Birkhoff, Lattice theory, Amer. Math. Soc., Colloquium Pub, Vol. 25, New York, 1948.

^{5.} C. Capel and W. Strother, Multi-valued functions and Partial order, Port. Math., 17 (1958), 41-47.

^{6.} H. Cohen, A cohomological definition of dimension for locally compact Hausdorff

spaces, Duke Math. Jour., 21 (1954), 209-224.

7. E. Dyer and A. Sheilds, On a conjective of A. D. Wallace, Mich. Math. Jour., to appear.

8. S. Eilenberg and N. Steenrod, *Foundations of algebraic topology*, Princeton University Press, 1952.

J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc., 52 (1942), 23-36.
A. D. Wallace, Factoring a lattice, Proc. Amer. Math. Soc., 9 (1958), 250-252.

THE UNIVERSITY OF OREGON, EUGENE, OREGON